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The general setup

X is an algebraic variety defined over a field k

◮ f : X → X is a regular (dominant) map

◮ f n = f ◦ · · · ◦ f
︸ ︷︷ ︸

n times

Ask questions of algebraic nature on this dynamical

system. Recent sport motivated by:

◮ the study of holomorphic dynamical systems in

arbitrary dimensions;

◮ the arithmetic of torsion points on abelian varieties

(these are preperiodic points for the doubling map).
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The restricted setup

Focus on (dominant) polynomial maps

f (x , y) = (P(x , y),Q(x , y)) : A2
C → A

2
C .

◮ This is a non-trivial class of examples: Hénon maps

(x , y) 7→ (ay , x + P(y))

have been studied in depth (over C and R), and their

dynamics is complicated (positive entropy).

◮ It is easier to deal with than arbitrary maps: small

dimension, simple geometry.
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The program

1. Construction of projective compactifications adapted

to the dynamics (Favre-Jonsson).

2. The dynamical Mordell-Lang conjecture (Xie).

3. The dynamical Manin-Mumford problem

(Dujardin-Favre).
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Degree growth

◮ deg(f ) = max{deg(P), deg(Q)} ∈ N
∗;

Problem

Describe the sequence deg(f n):

◮ give an asymptotic;

◮ compute all degrees.

Motivation: in (P2, ωFS) the entropy is bounded by

htop(f )
Gromov
≤ sup

C

lim sup
n

1

n
log vol(f−n(C)) =

max

{

e(f ), lim sup
n

1

n
log deg(f n)

}

.

e(f ) = #f−1{p} = topological degree of f .
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Basics on degrees

◮ deg(f ◦ g) ≤ deg(f )× deg(g);
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Basics on degrees

◮ deg(f ◦ g) ≤ deg(f )× deg(g);

Proof.

If f = (P,Q), g = (R,S), then we have

f ◦ g = (P(R,S),Q(R,S)).
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Basics on degrees

◮ deg(f ◦ g) ≤ deg(f )× deg(g);

Invariance under conjugacy

◮ if g = h−1 ◦ f ◦ h, for some h ∈ Aut[A2
k ] then

0 <
1

C
≤ deg(gn)

deg(f n)
≤ C < ∞ .

Dynamical degree

◮ The limit λ(f ) := limn deg(f n)1/n exists.

Upper bound

◮ By Bezout e(f ) ≤ λ(f )2.
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Some examples: automorphisms

By Jung and Friedland-Milnor any f ∈ Aut[A2
C
] is

conjugated to

◮ affine map or elementary map

f (x , y) = (ax + b, cy + P(x))

in which case deg(f n) ≤ deg(f ) for all n.

◮ Hénon-like map f = h1 ◦ · · · ◦ hk with

hi = (aiy , x + Pi(y))

di := deg(Pi) ≥ 2, in which case

deg(f n) = deg(f )n = (
∏

i di)
n for all n.

hence λ(f ) is an integer.
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Some examples: monomial maps

◮ if f (z) = f (x , y) = (xayb, xcyd) = zM with

M =

[
a c

b d

]

, ad 6= bc, a, b, c, d ∈ N

then f n(z) = zMn
, and λ(f ) is the spectral radius of

M.

hence λ(f ) is a quadratic integer.
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Algebraic stability

◮ There is a simple geometric condition under which

deg(f n) can be controlled (Fornaess-Sibony).

Definition

A rational map f : X 99K X is algebraically stable iff for

any irreducible curve E ⊂ X, the image variety f̌ n(E) is

not a point of indeterminacy for any n ≥ 1.

Definition

A projective surface X ⊃ A
2
C

is a good dynamical

compactification for f if the (rational) extension of f to X is

algebraically stable.
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Algebraic stability: examples and

consequences

◮ Affine map and Hénon-like maps are alg. stable in

P
2;

◮ an elementary map (x , y + P(x)) is alg. stable in a

suitable Hirzebruch surface;

◮ a monomial map is alg. stable in a suitable product

of weighted projective lines.

Fact

When f is alg. stable in X, then (f n+m)∗ = (f n)∗ ◦ (f m)∗ for

the natural actions of f n on the (real) Neron-Severi space

of X .

◮ λ(f ) is an algebraic integer;

◮

∑

n≥0 deg(f n)T n ∈ Z(T ) (if X dominates P
2)
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Main results

Theorem

Any polynomial map of A2
k admits an iterate for which

there exists a good dynamical compactification X ⊃ A
2
k .
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Main results: precise form

Theorem

When e(f ) < λ(f )2, one can choose X s.t.

1. H∞ := X \ A2
k is irreducible and not contracted by f ;

2. H∞ is irreducible and contracted to a smooth point of

X that is fixed by f N , N ≫ 1;

3. H∞ has two components intersecting transversally at

a fixed point that are contracted to that point by f N .

Corollary

For any polynomial map of A2
k , the real number λ(f ) is a

quadratic integer.
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First tentative

Optimistic hope:

◮ find X = A
2
C
⊔ E with E irreducible and f̌ (E) = E ;

◮ if E exists, the divisorial valuation ordE : C[x , y ] → Z

is f∗-invariant in the sense

f∗(ordE)(P) := ordE(P ◦ f ) = λ(f ) ordE(P) .

Difficulties.

◮ How to find a fixed point for the projective action of f∗
on divisorial valuations?

◮ If a divisorial valuation ν is fixed, is it possible to

compactify A
2
C

by adding one irreducible component

E at infinity such that ν = ordE?
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Identify good valuations

Definition

A good divisorial valuation is a one proportional to ordE

where A
2
k ⊔ E is a compactification.

◮ X = A
2
k ⊔ D, with D = E1 ∪ · · · ∪ Er , and νi = ordEi

.

◮ Dual divisor: Ěi · Ej := δij

Fact

νi is good iff Ěi · Ěi > 0.
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Identify good valuations

Definition

A good divisorial valuation is a one proportional to ordE

where A
2
k ⊔ E is a compactification.

◮ X = A
2
k ⊔ D, with D = E1 ∪ · · · ∪ Er , and νi = ordEi

.

◮ Dual divisor: Ěi · Ej := δij

Theorem

νi is good ⇔ Ěi · Ěi > 0 ⇔ Ěi is nef and big

Remark

Ěi · Ěi only depends on νi not on the choice of a model
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The space of good valuations I

Definition

Let V1 be the space of good divisorial valuations on

C[x , y ], i.e. of the form tordE with t > 0 and E is a

component at infinity in some compactification such that

Ě · Ě > 0.

Remark

A valuation ν ∈ V1 is close to − deg since ν(P) < 0 for all

non constant polynomials.



Dynamics of
polynomial maps

Charles Favre

Algebraic
Dynamics

Degree growth

Methods of proof

The space of good valuations II

To get a space amenable to a fixed point theorem:

Definition

Let V2 be the closure of V1 in the space of all (non-trivial)

valuations ν : C[x , y ] → R−.

Theorem

The space V2 is a cone over

V ′
2 := {ν ∈ V2, min{ν(x), ν(y)} = −1} ,

and V ′
2 is a compact R-tree.
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A tree dream
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The space of good valuations III

For technical reason, and get a better description of the

end points of the tree:

Definition

Let V3 be the closure of the set of good divisorial

valuations tordE such that

A(tordE) := t (1 + ordE(dx ∧ dy)) < 0 .

Theorem

The space V3 is a cone over

V ′
3 := { ν ∈ V3, min{ν(x), ν(y)} = −1} ,

and V ′
3 is an R-tree whose divisorial end points are either

good or associated to a rational pencil.
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Existence of the fixed point

Theorem

A polynomial map induces a natural continuous map f• on

the R-tree V ′
3.

This map admits a fixed point which attracts all good

divisorial valuations when e(f ) < λ(f )2.

◮ Invariance of V ′
3 is by invariance of nef divisors and

the jacobian formula.

◮ Existence of the fixed point follows from a tracking

argument.

◮ The attraction property is deeper: 1√
e(f )

f ∗ is an

isometry on the hyperbolic space lim−→X
NSR(X ).
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Construction of the compactification

If the invariant valuation ν is

◮ divisorial ordE : either it is good (pick A
2
k ⊔ E) or

associated to an rational invariant fibration (pick a

suitable Hirzebruch surface);

◮ not divisorial: allows to construct by induction a

sequence of blow ups Xn+1 → Xn → P
2, and f N is

alg. stable in Xn for some n,N ≫ 1.
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The dynamical Mordell-Lang conjecture

◮ f : X → X regular dominant map of an algebraic

variety defined over C;

◮ V ⊂ X a subvariety, and x ∈ X a point;

Conjecture (Denis, Bell-Ghioca-Tucker)

The set of hitting times {n ∈ N, f n(x) ∈ V} is a finite

union of arithmetic sequences.

An arithmetic sequence is a set {an + b, n ∈ N} for some

integers a, b (possibly zero)
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Origin of the conjecture

Theorem (Skolem-Mahler-Lech’s theorem)

Suppose un ∈ C is defined by a recurrence relation

un+k+1 = akun+k + · · ·+ a0un, ai ∈ C. Then the set

{n ∈ N, un = 0} is a finite union of arithmetic sequences.

Conjecture ⇒ Theorem.

Take X = Ak+1
C , f linear, x = (u0, · · · , uk ), and V a

hyperplane.

Theorem (Falting-Vojta)

Let G be a (semi)-abelian variety over C, let V be a

subvariety, and let Γ be a finitely generated subgroup of

G(C). Then V (C) ∩ Γ is a finite union of cosets of

subgroups of Γ.
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The polynomial case

◮ f : A2 → A2 polynomial dominant map;

◮ V an irreducible curve, and x ∈ X a point.

Conjecture

When {n ∈ N, f n(x) ∈ V} is infinite, then either x or V is

pre-periodic.

Theorem (J. Xie)

For any polynomial map f : A2
Q̄
→ A2

Q̄
the previous

conjecture is true.
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Automorphisms

Theorem (Bell-Ghioca-Tucker)

For any polynomial automorphism f : A2
C → A2

C the set

{n ∈ N, f n(x) ∈ V} is infinite iff x or V is periodic.

◮ Their method applies to any étale maps in any

dimension.

◮ Elaboration of the original method of Skolem based

on p-adic methods.
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First reduction

◮ Use a specialization argument to reduce to the case

f , x ,V have coefficients in Q.

◮ Pick a large prime number p not dividing

denominators in the coef. of f , x ,V , and such that f

mod p remains an automorphism.

Work in Qp: completion of Q w.r.t the p-adic norm |p| = 1
p .

Zp := { x ∈ Qp, |x |p ≤ 1} = closure of Z .
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Skeleton of the argument

1. Replace f by f N to get f̄ (x̄) = x̄ in A2
Fp

;

◮ The map f is then an analytic automorphism of the

open ball B(x , 1);

2. Extend the map n 7→ f n(x) to an analytic map

Φ : Zp → A2
Qp

s.t. Φ(n) = f n(x) for all n;

◮ For an equation V = {h = 0} we have

{n ∈ N, f n(x) ∈ V} ⊂ {t ∈ Zp, h ◦ Φ(t) = 0}

which is finite or equal to Zp.
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p-adic parameterization

Theorem (Poonen)

Let f (x) =
∑

I aIx
I , |aI | → 0, aI ∈ Zp be an analytic

automorphism of the closed unit polydisk B(0, 1)
d

such

that

f ≡ id mod pc with c >
1

p − 1
.

Then there exists an analytic map Φ on Zp × B(0, 1)
d

s.t.

Φ(n, x) = f n(x) for all n.

◮ Any point belongs to a one dimensional disk on

which f is conjugated to a translation by 1.

◮ In the complex domain, an analog statement holds in

1d, but not in 2d!

◮ One line proof but the margin is too small!!!
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Ingredients in Xie’s approach

Theorem (J. Xie)

Pick any polynomial map f : A2
Q̄
→ A2

Q̄
, any irred. curve V

and any point x. If the set {n ∈ N, f n(x) ∈ V} is infinite,

then either x or V are pre-periodic.

1. A local analog of DML for special maps.

2. Arithmetical arguments : Siegel’s theorem, height

argument.

3. Affine geometry: existence of good

compactifications, a special device to construct

auxiliary polynomials.
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A simplified situation

◮ f , x and V are defined over Q;

◮ f is alg. stable in P2 and deg(f n) → ∞;

◮ H∞ is contracted to a point, say q∞;

◮ the invariant valuation in V ′

3 is not divisorial, e.g.

e(f ) < λ(f );

◮ the curve V is a line.

Assumption: x is not preperiodic and the set

N := {n ∈ N, f n(x) ∈ V} is infinite.

Aim: V is preperiodic.



Dynamics of
polynomial maps

Charles Favre

The dynamical
Mordell-Lang
conjecture

p-adic methods

Xie’s approach

The line contains the super-attracting point I

Step 1: f n(x) → q∞ ∈ P2
C is impossible

◮ Blow-up at q∞: f maps again the whole divisor to a

fixed point q<1>
∞

that attracts x . Repeat the process

until q<n>
∞

is not in the closure of V .

◮ same argument works when C is replaced by some

P2
Cp

for some prime p.
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The line contains the super-attracting point II

Step 2: the point x is preperiodic

◮ Uniform upper bound for |f n(x)|p for all n ∈ N and all

place p.

◮ Height of f n(x) is bounded for all n ∈ N .

Remark

This ends the proof when f is a Hénon automorphism.

When f is birational, Xie proves that V not periodic

implies f n(V ) ∋ q∞ for some n.
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The line does not contain the super-attracting

point

◮ Build a sequence of irrreducible pre-images

V−k+1
f

−→V−k
f k

−→V

with Nk := {n ∈ N, f n(x) ∈ V−k} infinite.

◮ Siegel’s theorem: V−k has at most two places at

infinity

Simplification: V−k has a single place for all k .

ν−k (P) := ord∞(P|V
−k
) ∈ Z ∪ {+∞} associated to V−k .
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Auxiliary polynomial

Assumption: the map f has at least three points of

indeterminacy in a good compactification

Theorem

There exists P ∈ C[x , y ] s.t. ν−k (P) > 0 for all k ≥ 0.

Consequence

The function P|V
−k

is identically zero for all k and V is

pre-periodic.
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Xie’s approach

Auxiliary polynomial : existence

◮ Choose a resolution f M : X → P2

◮ X = A2 ⊔
(

∪s
1Ei ∪ F

)

with F (reducible but)

connected, and f−M{− deg} ⊂ {ordEi
}

◮ The curve V−k does not intersect F

Aim: build an ample divisor supported on F so that X \ F

is affine.

◮ roughly: start with 1
λ(f )M (f

M)∗H∞ ∈ NSR(X );

◮ modify it to get zero value on the Ei ’s.

◮ Need to contract a couple of Ei ’s.

→ Look at Xie’s paper for detail !!!
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Xie’s approach

The difficulties in the general case

◮ The curve might have more than one place at infinity

(≤ 2 by Siegel’s theorem).

◮ The case the invariant valuation is divisorial is

substantially harder.

◮ Remove the assumption on the existence of

sufficiently many indeterminacy points: need to

construct suitable height and prove a height bound.

◮ Need to treat the case e = λ(f )2 separately.
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Distribution of preperiodic points

The set up.

◮ f : X → X a regular dominant map on an algebraic

variety /C;

◮ Per(f ) = {x ∈ X , f n(x) = x for some n ≥ 1};

◮ PrePer(f ) = {x ∈ X , f n(x) = f m(x) for some n >
m ≥ 0}.

The problem.

◮ Describe the distribution of Per(f ) (and/or PrePer(f ))
in X .

◮ In the euclidean topology: look at the limits of atomic

measures equidistributed over {f n = id};






Bedford-Smillie: automorphisms of A2
C;

Lyubich, Briend-Duval: endomorphisms of Pd
C;

Many other cases: Dinh, Sibony, etc...
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The abelian case (the Manin-Mumford

conjecture)

◮ X abelian variety (compact complex torus that is

projective);

◮ f (x) = k · x = x + · · ·+ x
︸ ︷︷ ︸

k times

with k ≥ 2;

◮ PrePer(f ) = Tor(X ).
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The abelian case (the Manin-Mumford

conjecture)

◮ X abelian variety (compact complex torus that is

projective);

◮ f (x) = k · x = x + · · ·+ x
︸ ︷︷ ︸

k times

with k ≥ 2;

◮ PrePer(f ) = Tor(X ).

Theorem (Raynaud)

Pick V ⊂ X irreducible s.t. Tor(f ) ∩ V is Zariski dense.

Then V is a translate by a torsion point of an abelian

subvariety.
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The abelian case (the Manin-Mumford

conjecture)

◮ X abelian variety (compact complex torus that is

projective);

◮ f (x) = k · x = x + · · ·+ x
︸ ︷︷ ︸

k times

with k ≥ 2;

◮ PrePer(f ) = Tor(X ).

Theorem (Raynaud)

Pick V ⊂ X irreducible s.t. PrePer(f ) ∩ V is Zariski dense.

Then V is preperiodic.
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Towards a DMM conjecture?

Question (The DMM conjecture)

Pick V ⊂ X irreducible s.t. PrePer(f ) ∩ V is Zariski dense.

Does this imply V to be preperiodic?

◮ Wrong!!! Counterexamples for endomorphisms of P2

(Ghioca-Tucker-Zhang, Pazuki)

◮ True in some cases: a very general endomorphism

of Pd
C (Fakhruddin)
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Variations on the DMM problem

Question

Given f , describe all irreducible subvarieties V ⊂ X s.t.

PrePer(f ) ∩ V is Zariski dense.

Question

Describe the maps f for which the DMM conjecture has a

positive/negative answer.
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The DMM problem for polynomial

automorphisms

f : A2
C → A2

C an automorphism.

◮ When f is affine or elementary

(x , y) 7→ (ax + b, cy + P(y)) the DMM problem has a

positive answer (exercice).

In the sequel suppose

f (x , y) = (ay , x + P(y)), deg(P) ≥ 2

is of Hénon type.
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First reductions

f (x , y) = (ay , x + P(y)), deg(P) ≥ 2 and V an irreducible

curve

◮ Assumption:

V ∩ PrePer(f ) is Zariski dense

◮ Conclusion:
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f (x , y) = (ay , x + P(y)), deg(P) ≥ 2 and V an irreducible

curve

◮ Assumption:

V ∩ PrePer(f ) is infinite

◮ Conclusion:
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First reductions

f (x , y) = (ay , x + P(y)), deg(P) ≥ 2 and V an irreducible

curve

◮ Assumption:

V ∩ Per(f ) is infinite

◮ Conclusion:

V is periodic
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First reductions

f (x , y) = (ay , x + P(y)), deg(P) ≥ 2 and V an irreducible

curve

◮ Assumption:

V ∩ Per(f ) is infinite

◮ Conclusion:

impossible (Bedford-Smillie)!!!
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polynomial
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Ideas of proof

First reductions

f (x , y) = (ay , x + P(y)), deg(P) ≥ 2 and V an irreducible

curve

◮ Assumption:

V ∩ Per(f ) is infinite

◮ Conclusion:

impossible (Bedford-Smillie)!!!

Question

Is the set Per(f ) ∩ V is finite for any irreducible curve V?
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Main theorem

Theorem (Dujardin-Favre)

Suppose f (x , y) = (ay , x + P(y)) with | Jac(f )| = |a| 6= 1.

Then the set Per(f ) ∩ V is finite for any irreducible curve

V .
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Counter-examples: reversible maps

◮ f (x , y) = (y ,−x + y2), f−1 = (−y + x2, x);

◮ f−1 = σ ◦ f ◦ σ with σ(x , y) = (y , x);

◮ ∆ = {(x , x)}, ∆ ∩ f n(∆) ⊂ Fix(f 2n);
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Counter-examples: reversible maps

◮ f (x , y) = (y ,−x + y2), f−1 = (−y + x2, x);

◮ f−1 = σ ◦ f ◦ σ with σ(x , y) = (y , x);

◮ ∆ = {(x , x)}, ∆ ∩ f n(∆) ⊂ Fix(f 2n);

Proposition

|∆ ∩ f n(∆)| → ∞.

Proof.

Use Arnold’s result: mult(x ,x) (f
n(∆),∆) = O(1).
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Counter-examples: reversible maps

◮ f (x , y) = (y ,−x + y2), f−1 = (−y + x2, x);

◮ f−1 = σ ◦ f ◦ σ with σ(x , y) = (y , x);

◮ ∆ = {(x , x)}, ∆ ∩ f n(∆) ⊂ Fix(f 2n);

Proposition

|∆ ∩ f n(∆)| ≍ 2n.

Proof.

The image f n(∆) converges to a laminar current.
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Some conjectures

Conjecture

Suppose Per(f ) ∩ V is infinite. Then f−n = σ ◦ f n ◦ σ for

some n ≥ 1 and some involution σ.

Conjecture (Weak form)

Suppose Per(f ) ∩ V is infinite. Then Jac(f ) is a root of

unity.

Conjecture (Effective bounds)

Fix f for which the DMM conjecture has a positive answer.

Give a bound on Per(f ) ∩ V in terms of deg(V ).
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Szpiro-Ullmo-Zhang’ strategy

Reduce to the case f (x , y) = (ay , x + y2 + c),
V = {Q = 0} with a, c ∈ Q, Q ∈ Q[y ].

Assumption: V ∩ Per(f ) is infinite.

Conclusion: |a| = 1?

◮ Step 1: describe the distribution of periodic point on

V to get µ+
V = µ−

V .

◮ Step 2: exploit the equality of measures and use a

renormalization argument to conclude.
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The Green function

f (x , y) = (x1, y1) = (ay , x + y2 + c),
‖(x , y)‖ = max{|x |, |y |}

◮ if |y | ≥ |x | ≥ R ≫ 1, then

|y1| = |y |2 ≥ |y | = |x1| ≥ R.

◮
1
2n log max{ 1, ‖f n(x , y)‖} converges when n → +∞
uniformly to a Green function G+

Properties:

◮ G+ ≥ 0, G+ is continuous;

◮ G+ ◦ f = 2G+

◮ {G+ = 0} = { (x , y), supn≥0 ‖f n(x , y)‖ < +∞}
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Distribution of periodic points

Theorem

Suppose zn ∈ V is a sequence of distinct periodic points.

Then

1

deg(zn)

∑

wGalois conj. to zn

δw −→ µ+
V := c+∆(G+|V ) .

Corollary

G+|V = c G−|V
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Proof

◮ Build G+
p over any Cp for any prime;

◮ Sum them up to get a height:

h(z) :=
1

deg(z)

∑

w Galois conj. to z

∑

G+
p (z) .

◮ h(z) = 0 when z is periodic

◮ The height function h|V is a good height: one can

apply Autissier’ result to conclude.
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The renormalization argument

Assumptions:

◮ z ∈ Vreg hyperbolic fixed point;

◮ W u
loc(z) and W s

loc(z) cut V transversally

df (z) =

[
λ+ 0

0 λ−

]

, |λ+| > 1 > |λ−|

Main idea: compute the Hölder exponent κ± of G±|V
near z.

◮ Transversality implies G+|V and G+|W u
loc

have the

same exponent

◮ Linearization: f |W u
loc

(z)(t) = λ+t

◮ G+(t) ≍ |t |κ
+

◮ G+ ◦ f (t) = 2G+ =⇒ 2 = |λ+|κ
+
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