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Introduction

This thesis is devoted to the study of some fundamental properties of schemes
parametrizing irreducible, nodal curves in a complete linear system on a
smooth projective surface S. In particular, we focused on surfaces of gen-
eral type since, for such surfaces, less is known than what is proven in other
cases.

These schemes are classically called Severi varieties of irreducible, nodal
curves on S since Severi, in [125] - Anhang F, was the first who studied the
case S = IP2.

We are mainly interested in dimensional and smoothness properties of
such schemes as well as in geometrical properties and moduli behaviour
of the elements they parametrize. More precisely, in our work we study
conditions for a Severi variety on a surface of general type to be smooth of
the expected dimension (regular for short). We are also interested in the
moduli behaviour of the families of nodal curves parametrized by Severi
varieties. In particular, we study the dimension of the locus they span in a
moduli space of curves (the number of moduli).

These problems have complete answers in the case of plane curves (see
[125] and [119], respectively) and the motivation for this work was to explore
the possibility of extending such results to surfaces of general type.

The first chapter can be viewed as a brief summary of notation, fun-
damental definitions and technical results which are used for our analysis.
The reader is frequently referred to a detailed bibliography in order to avoid
repetitions of proofs of well-known results.

Since a natural approach to the dimension problem is to use deformation
theory of nodal curves, Chapter 2 is devoted to recalling basic properties of
equisingular deformations both from Horikawa’s theory point of view and
from the ”Cartesian” approach. In Section 2.3 we also provide a chronolog-
ical overview of the main known results concerning Severi varieties of nodal
curves on a smooth, projective surface S.

Chapter 3 contains our main result on the smoothness and the dimen-
sion problem. It gives purely numerical sufficient conditions, on the divisor
class C ∈ Div(S) and on the number of nodes δ, guaranteeing that the
corresponding Severi variety V|C|,δ is everywhere regular. More precisely, we
prove the following:

Theorem (see Theorem 3.2.3) Let S be a smooth, projective algebraic sur-
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face and let C be a smooth, irreducible divisor on S. Suppose that:

1. (C − 2KS)2 > 0 and C(C − 2KS) > 0;

2. either

(i) K2
S > −4 if C(C − 2KS) ≥ 8,

or

(ii) K2
S ≥ 0 if 0 < C(C − 2KS) < 8.

3. CKS ≥ 0;

4. (CKS)2 − C2K2
S < 4(C(C − 2KS)− 4);

5. either

(i) δ ≤ C(C−2KS)
4 − 1 if C(C − 2KS) ≥ 8,

or

(ii) δ <
C(C−2KS)+

√
C2(C−2KS)2

8 if 0 < C(C − 2KS) < 8.

Then, if [C ′] ∈| C | parametrizes a reduced, irreducible curve with only δ

nodes as singular points, the Severi variety V|C|, δ is smooth of codimension
δ (i.e. regular) at the point [C ′].

By a similar approach, in Chapter 4 we also determine numerical conditions
implying that the nodal curves parametrized by V|C|,δ are geometrically lin-
early normal (see Theorem 4.2.6). Further, this result is used to construct
examples of obstructed curves in a given Severi variety.

Apart from deformation theory, our analysis is based on the study of
some Bogomolov-unstable rank-two vector bundles on S which determine
fundamental numerical criteria for the set of nodes of a nodal curve C ′ not
to impose independent conditions to the linear system |C |. This approach
was first considered by Chiantini and Sernesi (see [27]); our results generalize
what is proven in [27] and in [53] (in the nodal case) as it clearly follows from
the study of examples of blown-up surfaces, surfaces which are elements of
a component of the Noether-Lefschetz locus of surfaces in IP3 or smooth
”canonical” complete intersection surfaces (see Sections 3.2, 3.3 and 4.3).

In Chapter 5, we consider the infinitesimal approach to the ”moduli
problem” of nodal curves of a Severi variety on a smooth, projective and
regular surface S of general type. The problem is to find for which divisor
classes D on S the number of moduli of the family V|D|,δ, δ ≥ 0, coincides
with its dimension, as expected (see Section 5.1 for precise definitions). After
having considered some examples which show that the ”moduli problem”
does not always have a positive answer, we give a cohomological condition
ensuring that the morphism

π|D|,δ : V|D|,δ →Mg

(Mg the moduli space of smooth curves of genus g = pa(D)−δ) has injective
differential at a regular point [X] ∈ V|D|,δ. More precisely, we prove:
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Theorem (see Theorem 5.2.1 and Remarks 5.1.2 and 5.1.4) Let S be a
smooth, projective algebraic surface, which is regular and of general type.
Let D be a smooth, irreducible divisor on S and let X ⊂ S be an irreducible,
δ-nodal curve, δ ≥ 0, which is linearly equivalent to D and whose set of
nodes is denoted by N . If

h1(S, IN/S ⊗ Ω1
S(D +KS)) = 0

and if [X] ∈ V|D|,δ is assumed to be a regular point, then the component of
V|D|,δ containing [X] parametrizes a family having the expected number of
moduli (in the sense of Definition 5.1.1). In particular, when δ = 0,

h1(S, Ω1
S(D +KS)) = 0

is a sufficient condition for the family V|D|,0 to have the expected number of
moduli.

We then prove the main theorem of this section, which determines linear
equivalence classes of divisors for which the cohomological conditions above
hold.

Theorem (see Theorems 5.2.2 and 5.2.5) Let S ⊂ IPr be a smooth, algebraic
and regular surface with hyperplane section H; let D and X be as in the
previous theorem and let g = pa(X)− δ. Assume that:

(i) Ω1
S(KS) is globally generated;

(ii) D ∼ KS + 6H + L on S, where L an ample divisor;

(iii) the Severi variety V|D|,δ is regular at [X].

Then, the morphism
π|D|,δ : V|D|,δ →Mg

has injective differential at [X]. In particular, π|D|,δ has finite fibres on each
regular component of V|D|,δ, so each such component parametrizes a family
having the expected number of moduli. In particular, when δ = 0, hypotheses
(i) and (iii) can be eliminated and the same conclusions are obtained for the
family V|D|,0.

We also give some improvements of this result by restricting our analysis
to smooth complete intersection surfaces in IPr (see Theorem 5.3.1).
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Chapter 1

Preliminaries

This chapter is devoted to recalling some standard results, which will be
frequently used in the sequel. We will review some fundamental definitions
and, when it is not beyond the scope of our work, we shall explain, in detail,
some useful techniques. This answers the sake of establishing a common lan-
guage, fixing, once and for all, our notation. For terminology not explicitly
introduced, we refer the reader to [64].

1.1 Notation and basic definitions

We work in the category of C-schemes; all schemes will be algebraic, i.e
noetherian and of finite type over C. By a point of a scheme S we mean a
closed point, unless otherwise specified (e.g. in the case of a generic point
of S).

A variety X is an integral algebraic scheme; a curve, resp. a surface,
is a variety of pure dimension 1, resp. 2 (exceptions to this terminology
are given by reducible curves, which are considered in the sequel, or by
Definition 2.2.28).

All sheaves will be coherent. Given a sheaf F on a scheme X, when
there is no ambiguity, we denote by H i(F) the vector space H i(X,F) and
by hi(F) its dimension, i.e. hi(F) := dimC(H i(X,F)).

Hom(E ,F) will denote the sheaf of homomorphisms from the sheaf E to
the sheaf F . The dual sheaf of E is simply denoted by E∨. For a locally free
sheaf L of rank one, i.e. an invertible sheaf or, equivalently, a line bundle,
sometimes we shall use the notation L−1 instead of the previous one. The
tensor product F ⊗OX

E will be simply denoted by F ⊗ E . Furthermore,
Ext i(F , E) will denote the sheaf of germs of extensions whereas Tor i(F , E)
is the Tor sheaf of F and E . In the same way, Exti(F , E) and Tori(F , E)
will denote, respectively, the vector space of extensions and the Tor vector
space, for i ≥ 0.

Definition 1.1.1 Let X be a projective scheme of dimension n. The symbol
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pa(X) denotes the arithmetic genus of X, which is defined by

pa(X) := (−1)n(χ(OX)− 1),

where χ(−) is the Euler-Poincare’ characteristic of the sheaf −.

If X is integral, then H0(OX) ∼= C, so that pa(X) = Σn−1
i=0 (−1)ihn−i(OX).

In particular, when X is an integral curve, we find that pa(X) = h1(X,OX).

If Y ⊂ X is a closed subscheme, the ideal sheaf of Y in X is denoted by
IY/X (IY if there is no ambiguity).

Given a scheme X, by a divisor on X we shall always mean a Cartier
divisor on X. We denote by ∼ the linear equivalence of divisors on X.

If X is a scheme and x ∈ X is a point, Tx(X) will denote the Zarisky
tangent space to X at x.

Remark 1.1.2 We write dimx(X) to denote the dimension of the scheme
X at the point x.

A projective variety X is said to be smooth if it is non-singular at each
point. For brevity, X is a projective n-fold if it is a smooth, projective
variety of dimension n. Particular cases are when n = 1, so X is simply a
smooth, projective curve, and n = 2, which is the case of a non-singular,
projective surface.

X ⊂ IPr is said to be non-degenerate if it is not contained in a proper
projective subspace of IPr.

We recall that given f : X → Y a morphism of schemes, one can define
the sheaf of relative differentials of X over Y which is denoted by Ω1

X/Y (see
[64], page 175). When Y = Spec(C), then it is usual to write Ω1

X and to
call it the cotangent sheaf of X.

Proposition 1.1.3 (see [64], Prop. 8.12, page 176) Let f : X → Y be a
morphism of schemes and let Z be a closed subscheme of X, with ideal sheaf
IZ . Then there is an exact sequence of sheaves on Z:

IZ/I2
Z → Ω1

X/Y ⊗OZ → Ω1
Z/Y → 0.

Theorem 1.1.4 (see [64], Theorem 8.15, page 177) Let X be a variety. Ω1
X

is a locally free sheaf of rank n = dim(X) if and only if X is smooth. In
this case, Ω1

X is also said the cotangent bundle of X.

Definition 1.1.5 Let X be a n-fold, the tangent sheaf of X is defined as

TX = HomOX
(Ω1

X ,OX) = Ω1
X
∨
.

It is a locally free sheaf of rank n = dim(X), therefore, it is more usually
called the tangent bundle of X. On the other hand, one can define the
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canonical sheaf of X (or the canonical bundle, since X is smooth) to be the
nth-exterior power of the cotangent bundle, i.e.

Ωn
X =

n∧
Ω1

X .

Since for a smooth variety X the canonical bundle coincides with the du-
alizing sheaf ωX (see [64], Section III.7), we shall also use the symbol ωX

for the canonical bundle whereas KX will denote a canonical divisor on X,
which is defined by the condition OX(KX) ∼= ωX . If X is also projective,
the geometric genus of X is defined as

pg(X) = h0(ωX).

So, in the case of a smooth projective curve, its arithmetic genus and its
geometric genus coincide by Serre duality.

We now recall some standard definitions of particular projective varieties.

Definition 1.1.6 Let X ⊂ IPr be a smooth variety of codimension c =
r − n. Then X is said to be a complete intersection if it is the transverse
intersection of c hypersurfaces F1, . . . , Fc. If di = deg(Fi), this means that
the sheaf morphism

c⊕
i=1

OX(−di)
(F1,...,Fc)−→ IX/IPr

is surjective.

It is a standard consequence of adjunction theory that, if X ⊂ IPr is a
complete intersection, then

ωX = OX(−r − 1 + Σc
i=1di). (1.1)

Definition 1.1.7 Let Y be a closed subscheme of a smooth variety X. We
recall that Y is said to be a local complete intersection in X if the ideal sheaf
IY/X can be locally generated by m = codimX(Y ) elements at every point.

Theorem 1.1.8 (see [64], Theorem 8.17, page 178) Let X be a smooth
variety and let Y ⊂ X be an irreducible closed subscheme defined by the
ideal sheaf IY . Then,

(i) Y is a local complete intersection in X if and only if the exact sequence,
defined in Proposition 1.1.3, is also left-exact, i.e.

0→ IY /I2
Y → Ω1

X ⊗OY → Ω1
Y → 0;

(ii) Y is smooth if and only if the above sequence holds and moreover Ω1
Y is

locally free on Y .

3



The notion of being a local complete intersection is an intrinsic property
of the scheme Y , i.e. it is independent of the smooth variety containing it.
This can be proven by using the Lichtenbaum and Schlessinger cotangent
complex of a morphism (see [81]); however, we shall not use this fact in
the sequel. From the previous proposition, it immediately follows that if
Y is itself non-singular, then it is a local complete intersection inside any
non-singular X which contains it.

Suppose we have a projective scheme X ⊂ IPr and denote by H a general
hyperplane in IPr. With abuse of notation, we denote by OX(H) (or by
OX(1)) the sheaf i∗(OIPr(H)), where i : X ↪→ IPr is the natural embedding.
In the same way, OX(nH) (equiv. OX(n)) shall denote the locally free sheaf
determined, on X, by a general hypersurface of degree n in IPr.

If we have a sheaf F on a projective scheme X ⊂ IPr, we shall always
write F(n) to mean F ⊗OX(n).

Definition 1.1.9 Let X ⊂ IPr be a normal scheme of pure dimension n.
X is said to be arithmetically Cohen-Macaulay (or projectively Cohen-
Macaulay) if

(i) H i(X,OX(ρ)) = 0, for each ρ ∈ Z, 0 < i < n;

(ii) the restriction morphism

H0(IPr,OIPr(ρ))→ H0(X,OX(ρ))

is surjective, for each ρ ∈ Z; from the standard exact sequence defining
X ⊂ IPr,

0→ IX/IPr → OIPr → OX → 0,

this is equivalent to

H1(IX/IPr(ρ)) = 0, ∀ ρ ∈ Z.

It is a standard fact that smooth complete intersections X ⊂ IPr are arith-
metically Cohen-Macaulay

Remark 1.1.10 If X is a normal scheme of pure dimension n and if we
suppose that only condition (ii) in the previous definition holds, then X is
said to be projectively normal. When X is projectively normal, the hyper-
surfaces of degree ρ > 0 cut out on X complete linear systems. Moreover,
from (ii) with ρ = 0, if X is projectively normal then it is connected; in par-
ticular, if X is smooth and projectively normal, then X must be irreducible.
X is said to be linearly normal if (ii) holds with ρ = 1, which means that X
cannot be a projection in IPr of a smooth variety in IPN with N > r.

Obviously, when X is a curve, i.e. n = 1, the property of being projectively
normal coincides with the one of being arithmetically Cohen-Macaulay. For
brevity, in this chapter we shall write a.C.M. to mean arithmetically Cohen-
Macaulay and p.n. to mean projectively normal.

4



Proposition 1.1.11 Let X ⊂ IPr be a smooth variety of dimension n and
let Y be a smooth hyperplane section of X. Then X is a.C.M. if and only
if Y is a.C.M.

Proof: It immediately descends from the following standard diagram

0 0 0
↓ ↓ ↓

0→ IX/IPr(ρ− 1) → OIPr(ρ− 1) → OX(ρ− 1) → 0
↓ ↓ ↓

0→ IX/IPr(ρ) → OIPr(ρ) → OX(ρ) → 0
↓ ↓ ↓

0→ IY/IPr−1(ρ) → OIPr−1(ρ) → OY (ρ) → 0
↓ ↓ ↓
0 0 0

for each ρ ∈ Z. 2

We want to recall the definition of liaison relation for curves in IP3,
which will be used in the sequel (see Sections 3.3 and 4.3). It may be noted
that many of the definitions below could be made in a greater generality by
working in an arbitrary projective space, or even in a variety which is not a
projective space. The decision to restrict to space curves has been made for
simplicity and for the fact that all the examples considered in Chapters 3
and 4, which involve liaison relation, are determined by space curves which
are residual in a complete intersection. For further details, the reader is
referred, for example, to [91] or [107].

For any curve C in IP3, I(C) denotes its homogeneous ideal, which is
defined by

I(C) :=
⊕
n∈Z

H0(IP3, IC/IP3(n)).

Definition 1.1.12 (see [91], Def. (1.3), page 8) Let C and C ′ be curves in
IP3 and let X = (F1) ∩ (F2) be a complete intersection of the surfaces (Fi),
determined by the vanishing of homogeneous polynomials Fi of degrees di,
1 ≤ i ≤ 2, respectively. Then, C and C ′ are (directly) geometrically linked
by X (written C 1X,g C

′) if

(a) C ∪ C ′ = X as schemes, i.e. I(C) ∩ I(C ′) = I(X);

(b) C contains no component of C ′ and conversely.

Observe that deg(C)+deg(C ′) = deg(X). In a general setting this definition
poses no problem. For example, if (F1) is the union of two planes and (F2)
is a plane, then X has degree two and should represent the direct geometric
linkage of two lines. However, one would like this to hold regardless of
the positioning of the planes (provided they do not coincide). There are
some positions for which the complete intersection of such planes links a
line to itself. Yet, this violates both conditions in the definition. There is a
need for a definition of linkage which is equivalent to Definition 1.1.12 when
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the curves have no component in common, but which does not require this
condition.

Definition 1.1.13 (see [91], Def. (1.4), page 9) Let C and C ′ be curves
in IP3 and let X = (F1) ∩ (F2) be a complete intersection of two surfaces
in IP3. Then, C and C ′ are (directly) algebraically linked by X (written
C 1X,a C

′) if

(a) C ∪ C ′ ⊆ X as schemes, i.e. I(X) ⊆ I(C) ∩ I(C ′);

(b) I(X) : I(C) = I(C ′);

(c) I(X) : I(C ′) = I(C).

C ′ is said to be residual to C in the complete intersection X and conversly.

One can sheafify (b) and (c) of the previous definition to obtain equivalent
conditions, where the ideals I are simply replaced by I. The fact that
the direct geometric linkage implies the direct algebraic linkage is a result of
Peskine-Szpiro, [107]. Conversely, that direct algebraic linkage implies direct
geometric linkage (in the event that C and C ′ have no common component)
is proven in Rao’s paper [113].

Definition 1.1.14 Liaison is the equivalence relation among curves (in IP3)
generated by direct algebraic linkage. Two curves C and C ′ in the same
liaison class are said to be linked and we write C 1 C ′. If they are directly
linked by a complete intersection X we write C 1X C ′.

Proposition 1.1.15 Let C 1X C ′ where X = (F1)∩(F2) and deg(Fi) = di.
Then

(a) deg(C ′) = deg(X)− deg(C) = d1d2 − deg(C);

(b) pa(C ′) = pa(C) + pa(X) − deg(C)(d1 + d2 − 4) − 1 = pa(C) + 1
2 [(d1 +

d2 − 4)(d1d2 − 2deg(C))];

(c) If C is p.n., then C ′ is p.n.

Proof: These are standard consequences of Serre duality and Serre vanish-
ing theorem applied to the exact sequence

0→ IC′(ρ)→ OIP3(ρ)→ OC′(ρ)→ 0,

ρ ∈ Z. For details, see Proposition (1.12) in [91]. 2

We now want to recall some useful exact sequences of sheaves on IPr and
on smooth, projective varieties. We have already recalled the tangent sheaf
of a smooth variety in Definition 1.1.5. Since IPr is obviously smooth, we
have a tangent sheaf fitting in the following exact sequence

0→ OIPr → O⊕(r+1)
IPr (1)→ TIPr → 0, (1.2)

which is called the Euler sequence (see [64], II.8.20.1).

6



If Y ⊂ X are schemes, the normal sheaf of Y in X is denoted by NY/X

and defined as
NY/X

∼= HomOY
(IY /I2

Y ,OY ).

The sheaf IY /I2
Y is therefore called the conormal sheaf of X in Y .

Remark 1.1.16 If Y is a local complete intersection in a smooth variety
X, then IY /I2

Y is locally free of rank c = codimX(Y ), as it follows from
Theorem 1.1.8 (i). Therefore, also NY/X is locally free, of the same rank. In
such a case, we shall use the terminology of conormal and normal bundles,
respectively. In this situation, some texts call the embedding Y ⊂ X a
regular embedding and Y is said to be regularly embedded in X (see for
example [120], page 4-8).

In particular, when X is a smooth variety which is a complete intersection
in IPr, then its normal bundle completely splits; more precisely, with same
notation as in Definition 1.1.6, if c = codimIPr(X), then

NX/IPr ∼=
c⊕

i=1

OX(di). (1.3)

If we have closed embeddings of schemes

Z ⊂ Y ⊂ X,

we determine other important exact sequences involving the fact that such
schemes form a chain. More precisely, we have

0→ IY/X → IZ/X → IZ/Y → 0, (1.4)

which induces, after takingHom(−,OZ), an exact sequence of normal sheaves

0→ NZ/Y → NZ/X → NY/X ⊗OZ ,

where the cokernel has support contained in the locus where Z is not a local
complete intersection in Y and/or Y is not a local complete intersection in
X. If Z is regularly embedded in Y and Y is regularly embedded in X

then the sequence is also exact on the right and becomes the following exact
sequence of normal bundles

0→ NZ/Y → NZ/X → NY/X ⊗OZ → 0. (1.5)

Since this chapter is devoted to a general overview, singular varieties (in
particular nodal curves embedded in smooth, projective surfaces) will be
treated in more detail in Section 1.4. Therefore, here we focus on properties
of such sheaves when they are defined on smooth subvarieties of smooth
varieties, i.e. we shall consider here only vector bundles.

Let Y be a smooth subvariety of a non-singular variety X. If we dualize
the conormal sequence

0→ IY /I2
Y → Ω1

X ⊗OY → Ω1
Y → 0,
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then we get the exact sequence

0→ TY → TX ⊗OY → NY/X → 0, (1.6)

called the tangent sequence of Y in X.

Proposition 1.1.17 (see [64], Proposition 8.20, page 182) Let Y be a smooth
subvariety of codimension c in a smooth variety X. Then, the canonical bun-
dle of Y is such that

ωY
∼= ωX ⊗

c∧
(NY/X).

In case c = 1, i.e. Y a smooth divisor of X, then

ωY
∼= ωX ⊗OX(Y )⊗OY .

Proof: These results trivially follow from taking the highest exterior powers
of the bundles in the conormal exact sequence of Y in X and from recalling
that formation of highest exterior power commutes with taking the dual of
a given sheaf. 2

From now on, each restriction of a sheaf FX , on a scheme X, to a proper
subscheme Y ⊂ X, will be denoted by FX |Y instead of FX ⊗OY .

When we consider nodal curves, it will be fundamental the use of some
sheaves which are not locally free on such curves.

Definition 1.1.18 A sheaf F on an integral scheme X is said to be a tor-
sion sheaf if dim(supp(F)) < dim(X), where supp(F) denotes the support of
F . A sheaf is said to be torsion-free if it does not contain torsion subsheaves.

If F and E are sheaves on a scheme X, we recall that an extension of F
by E is an exact sequence of sheaves

0→ E → H → F → 0.

Two such extensions are equivalent if there is a map between them, inducing
the identity on the outer terms. The equivalence classes of extensions of F
by E are parametrized by the vector space Ext1(F , E).

Theorem 1.1.19 (Spectral sequence for Ext, see [47], page 265) Let X be
a scheme and let E and F be sheaves on X. There exists a spectral sequence
with Ep,q

2 = Hp(X,Extq(F , E)) which converges to Extp+q(F , E), i.e. Ep,q
∞ ⇒

Extp+q(F , E). In particular, by the Leray spectral sequence, we have the
following exact sequence:

0→ H1(Hom(F , E))→ Ext1(F , E)→ H0(Ext1(F , E))→

→ H2(Hom(F , E))→ Ext2(F , E)→ · · · .
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Since the main subject of our thesis is the study of families of nodal
curves on smooth projective surfaces, we want to end this section by briefly
recalling some important definitions and results on (algebraic) surface the-
ory, which will be frequently used in the sequel.

Notation: From now on, the symbol S will denote a smooth, irreducible
projective surface, unless otherwise specified. Div(S) and Pic(S) denote its
divisor group and its Picard group, respectively. The term curve is used for
a reduced, irreducible divisor on S.

We recall that D ∈ Div(S) is said to be very ample if there exists a

closed immersion S
φ
↪→ IPr (for some r) such that

OS(D) = φ∗(OIPr(1)).

On the other hand, D is said to be ample if nD is very ample, for some
n ∈ IN. There are other equivalent definitions of ample divisors on an
arbitrary projective scheme X (see [64]).

A line bundle L ∈ Pic(S) is said to be globally generated (or free) if, for
each p ∈ S, there exists a global section in H0(S,L) which does not vanish
on p; equivalently if the evaluation morphism

ev : H0(S,L)⊗OS → L

is surjective.

If D ∈ Div(S), we denote by |D | (or, sometimes with the sheaf-notation,
by |OS(D) |) the complete linear system consisting of all effective divisors on
S which are linearly equivalent to D. A linear system Λ of divisors linearly
equivalent to D is simply a projective subspace of |D |.

A point p ∈ S is a base point for a linear system if it belongs to all
divisors in the given linear system. The linear system is base point free if
it has no base point. Otherwise, if the intersection of all the divisors in a
linear system is not empty, it is called the base locus of the linear system.

Another important ”ingredient” in (algebraic) surface theory is given by
the Neron-Severi group of a surface S. In his GAGA paper, [123], Serre
proves that the category of projective complex schemes is isomorphic to
the category of projective analytic spaces. This means that one may use
algebraic and analytical tools interchangeably. Therefore, on S we have the
exponential sequence

0→ Z→ OS → O∗S → 0.

From the associated cohomology sequence, we get the first Chern map

H1(S,O∗S) = Pic(S) c1→ H2(S,Z),

where c1(L) is called the first Chern class of the line bundle L.

Definition 1.1.20 The image of c1 is called the Neron-Severi group of S,
denoted by NS(S), which is a finitely generated abelian group. Its rank (i.e.
the rank of its free-abelian part) is the Picard number of S, which is denoted
by ρ(S).

9



One has the following exact sequence

0→ Pic0(S)→ Pic(S)→ NS(S)→ 0,

where Pic0(S) ∼= H1(OS)/H1(Z) consists of line bundles L on S such that
c1(L) = 0. In the next section we shall discuss in more detail Chern classes
of vector bundles on a smooth surface and their numerical properties.

By pulling-back to Pic(S) the bilinear, non-degenerate form given by
the intersection form on H2(S,Z), we have an itersection pairing on Div(S)
which depends only on the linear equivalence classes, i.e. if C1 ∼ C2 on S

then C1 ·D = C2 ·D, for each D ∈ Div(S).

For simplicity, from now on we will omit the symbol · and we shall simply
write CD to denote the intersection of divisors on S.

With this numerical tool, we can reinterpret the sheaf isomorphism

ωC
∼= ωS ⊗OS(C)⊗OC ,

recalled in Proposition 1.1.17, when C is a smooth curve in S. Indeed, by
taking the degrees of the line bundles in both sides of the previous isomor-
phism, we get the adjunction formula

2g(C)− 2 = C(C +KS), (1.7)

where g(C) = pg(C) is the geometric genus of the smooth, irreducible divisor
C and KS is a canonical divisor on S. We shall see in Section 1.4 that the
adjunction formula can be generalized also to reduced, non-zero effective
divisors X by using the dualizing sheaf instead of the canonical bundle; thus,
the geometric genus in the formula above will be replaced by the arithmetic
genus pa(X).

A curve C in S for which C2 < 0 has a remarkable property: there are
no other curves linearly equivalent to C, i.e. C cannot move in a linear
system. Such curves are called exceptional. Important kind of exceptional
curves are recalled in the following definition.

Definition 1.1.21 Let S be a smooth, surface and let C be a curve on S.
Then, C is an exceptional curve of first kind (or (-1)-curve) if it is a smooth,
rational curve with self-intersection −1.

Remark 1.1.22 From adjunction formula and from the fact that (−1)-
curves are rational, we immediately get

C2 = CKS = −1.

A smooth surface S is called minimal if it does not contain (-1)-curves.

A fundamental subject which must be briefly recalled is Hodge theory on
a smooth, projective surface S. In general, when X is a projective variety,
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then it is a Kählerian manifold with respect to the complex topology. From
Hodge theory, (see, for example [8]), we write

Hp,q(X) := Hq(X,Ωp
X); (1.8)

these complex vector spaces are such that

H i(X,C) =
⊕

p+q=i

Hp,q(X), 0 ≤ i ≤ n,

and
hp,q(X) = hq,p(X),

where hp,q(X) = dimC(Hp,q(X)).

When X = S is a smooth, projective surface, then

q(S) := h1,0(S) = h0,1(S) = h1(OS) = h0(Ω1
S)

is called the irregularity of S; therefore, if we denote by bi(S) the ith-Betti
number of S, 2b1(S) = q(S). On the other hand,

pg(S) := h2,0(S) = h0,2(S) = h2(OS) = h0(ωS)

is the geometric genus of S, as in Definition 1.1.5. Consider now the real
vector space

H1,1
IR (S) := H1,1(S) ∩H2(S, IR).

Theorem 1.1.23 (Signature theorem, see [8], page 120) The cup-product
on H2(S, IR), induced by the intersection form, has signature (1, h1,1 − 1)
when restricted to H1,1

IR (S) .

The Signature theorem here is mostly used in the algebraic form.

Theorem 1.1.24 (Algebraic index theorem or Hodge index theorem, see
[8], page 120) Let D and E be divisors on S. If D2 > 0 and DE = 0, then
E2 ≤ 0; moreover, E2 = 0 if and only if E is homologous to 0, in particular
EB = 0 for each divisor B ∈ Div(S).

Definition 1.1.25 (see [43], page 17, or [100], page 85) A divisor D on S

is numerically equivalent to 0 (in symbols D ≡ 0) if DB = 0 for all divisors
B ∈ Div(S). D1 and D2 are numerically equivalent (D1 ≡ D2) if D1−D2 is
numerically equivalent to 0. Note that linear equivalence implies numerical
equivalence. We let Num(S) be the quotient of Div(S) by the numerical
equivalence relation, which is called numerical divisor class group of S.

Combining the Algebraic index theorem and the Signature theorem we get
the following:

Proposition 1.1.26 (see [43], page 18) The induced map from Num(S) to
H2(S,Z) ∩H1,1(S) ⊆ H2(S,C) is an isomorphism. Therefore, Num(S) is
the free-abelian part of NS(S), i.e. Num(S) = NS(S)/tors(NS(S)), and
its rank is the Picard number ρ(S) of Definition 1.1.20.
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There is a fundamental numerical characterization of ample divisors on
a smooth, projective surface S.

Theorem 1.1.27 (Nakai-Moishezon criterion, see [64], page 365) A divisor
H is ample on S if and only if H2 > 0 and HC > 0, for each curve in S

(i.e. for each reduced, irreducible divisor C on S).

The ample divisors on S form an open cone in Num(S)⊗ IR = NS(S)⊗
IR, which is denoted by N(S)+ (see, for example, [43], page 19, or [63], page
40). The next definition allows us to consider the elements in the closure
of N(S)+. These are the so called ”nef” divisors. This terminology means
numerically effective divisors. According to some authors (for example M.
Reid) ”nef” stands for numerically eventually free.

Definition 1.1.28 Let S be a smooth, projective surface. An element C ∈
Div(S) is said to be nef, if CD ≥ 0 for each curve D in S. A nef divisor
B is said to be big if B2 > 0; this is equivalent (for nef divisors) to saying
that h0(S,OS(mB)) grows like m2 (see [80]).

Remark 1.1.29 To be more precise, an effective divisor D on a smooth
surface S is called big if the projective map determined by the complete
linear system |nD |, for n >> 0, maps S birationally onto its image. If D is
nef, then the condition to be big is equivalent to saying that D2 > 0.

Theorem 1.1.30 (Kleiman’s criterion, see [63], page 34) If D is a nef
divisor, then D2 ≥ 0.

Remark 1.1.31 By Kleiman’s criterion, D is nef if and only if it is in the
closure of the ample divisor cone of S (see [63] and [80]).

1.2 Vector bundles on projective varieties and some

vanishing theorems.

In this section we want to recall some standard results on vector bundles on
smooth, projective varieties, expecially on smooth, projective surfaces.

Let X denote a n-fold and E a rank-k vector bundle on X. IP(E) :=
Proj(Sym(E∨)) is a projective scheme of dimension n+k−1 and OIP(E)(1)
is its tautological line bundle.

We start by recalling some standard definitions on vector bundle theory
(see, for example, [63], page 83). E is said to be globally generated if, as in
the case of line bundles in Section 1.1, the evaluation morphism

ev : H0(X,E)⊗OX → E

is surjective. A vector bundle E on X is ample if one of the following
equivalent condition holds:
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(i) For each coherent sheaf F , there exists an integer n0 = n0(F) such that,
for each n ≥ n0, F ⊗ Symn(E) is globally generated;

(ii) For each coherent sheaf F , there exists an integer n1 = n1(F) such that,
for each n ≥ n1, H i(X,F ⊗ Symn(E)) = (0), for each i > 0;

(iii) The tautological line bundle OIP(E)(1) is ample on IP(E).

Some standard properties of ampleness are the following.

Proposition 1.2.1 Let X be a smooth, projective variety.

(i) Let E be a vector bundle on X and let Y ⊂ X be a closed subscheme;
then E ample on X implies E |Y ample on Y .

(ii) Suppose to have a surjection of vector bundles E → E′ → 0 on X, such
that E is ample (resp. globally generated), then E′ is ample (resp. globally
generated).

(iii) Let 0→ E′ → E → E′′ → 0 be an exact sequence of vector bundles on
X. Then E′ and E′′ ample implies that E is ample.

(iv)
⊕n

i=1Ei is ample if and only if each Ei is ample.

(v) If E is ample, then E⊗m, Symm(E) and
∧j(E) are ample, for m ∈ IN

and 1 ≤ j ≤ k.

(vi) If E1 is ample and E2 is ample or globally generated then E1 ⊗ E2 is
ample.

If X is a n-fold, denote by Ar(X), r ≤ n, the group of cycles of codi-
mension r in X and by A(X) =

⊕n
i=0A

i(X) the Chow ring of X. Given E
a vector bundle on X, then its first Chern class is defined by

c1(E) := c1(det(E)) ∈ A1(X) ∼= Pic(X)

(see for example [64], Appendix A.3). Observe that this definition is consis-
tent with the one for line bundles given in Section 1.1 via the exponential
sequence, since there is a homomorphism Ai(X) → H2i(X,Z) which sends
a codimenson i cycle to its fundamental class.

To define ci(E) in general, one observes that the definition is trivial
for a vector bundle which is a direct sum of line bundles; indeed, if E =
L1 ⊕ · · · ⊕ Ln, then

1 + c1(E) + · · ·+ cn(E) = (1 + c1(L1)) · · · (1 + c1(Ln))

and the actual formula is obtained by equating the terms that lie in the cor-
respondent group Ai(X). From the splitting principle, one has a definition
of Chern classes for an arbitrary vector bundle E.

Given a rank-k vector bundle E on X of dimension n, c(E) = 1+c1(E)+
· · ·+ cn(E) is called the total Chern class.

There are some standard, useful properties of Chern classes (see, for
example, [43]).
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Proposition 1.2.2 Let X be a n-fold. Denote by E and L a rank-k vector
bundle and a line bundle on X, respectively. Then,

(i) ci(E∨) = (−1)ici(E), 0 ≤ i ≤ n,

(ii) c1(E ⊗ L) = c1(E) + kc1(L),

(iii) c2(E ⊗ L) = c2(E) + (k − 1)c1(E)c1(L) +

(
k

2

)
c1(L)2.

There is another important formula for Chern classes of a rank-two vector
bundle E on a smooth, projective surface S, which will be frequently used
in the sequel.

Proposition 1.2.3 Let S be a smooth, projective surface and let E be a
rank-two vector bundle on S. Denote by Z a zero-dimensional subscheme of
S and suppose there exists an exact sequence

0→ L→ E → L′ ⊗ IZ/S → 0,

where L and L′ are line bundles on S. Then

(i) c1(E) = c1(L) + c1(L′);

(ii) c2(E) = c1(L)c1(L′) + l(Z), where l(Z) is the length of Z, which is
defined as

l(Z) := h0(OZ) = h0(OS/IZ).

Another important aspect of vector bundles on smooth varieties is given
by the cohomological behaviour of such vector bundles. We shall frequently
use several vanishing results, some of which are not so standard.

Theorem 1.2.4 (Mumford’s vanishing, [43], page 247) Let S be a smooth
surface and let D be a big and nef divisor on S. Then H1(S,OS(−D)) = 0.

In 1982, a generalization of the previous result to all dimensions has been
given:

Theorem 1.2.5 (Kawamata-Viehweg vanishing, [80], page 25) Let X be a
smooth, projective variety. If D is a big and nef divisor then

H i(X,OX(KX +D)) = 0,

for each i > 0.

There is also a generalization of the previous result, in the case dim(X) = 2,
for Q-divisors, but we shall not make use of this result in the sequel.

Particular cases to apply such cohomological results are given, for ex-
ample, by blow-ups of smooth surfaces. Consider S a smooth, projective
surface and let D be an ample (or nef and big) divisor on S. One could ask,
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for example, if the line bundle ωS ⊗OS(D) is free (i.e. globally generated)
at a point x ∈ S. Since, by the definition, this happens when the map

H0(S, ωS ⊗OS(D))→ H0(S, ωS ⊗OS(D)⊗Ox)

is surjective, freeness in x is equivalent to proving that

(∗) H1(S, ωS ⊗OS(D)⊗ Ix) = (0).

Vanishing theorems above cannot directly apply because the sheaf in ques-
tion is not locally free on S. The traditional step around this problem is
to blow-up at x, which at least reduces the question to one involving only
invertible sheaf.

Lemma 1.2.6 Let S be a smooth surface and let

µ : X = Blx(S)→ S

be the blow-up of S at a point x ∈ S. Denote by E the µ-exceptional divisor
in X. Let L be a line bundle on S and r > 0 be any positive integer. Then,
for all i ≥ 0, there are isomorphisms

H i(S, ωS ⊗ L⊗ Ir
x) ∼= H i(X,ωX ⊗ µ∗L⊗OX(−(r + 1)E)).

Proof: See [64] or [80]. 2

Thus, with the previous result, one can apply some standard vanishing theo-
rems, as Kodaira vanishing, if L = OS(D) is ample, or Mumford’s vanishing
(Theorem 1.2.4), if D is big and nef, to prove (∗) and so to determine if
ωS ⊗OS(D) is globally generated at the given point.

There are also some vanishing results of vector bundles on smooth, pro-
jective varieties, or more generally, on compact, complex manifolds, known
as Griffiths vanishings (see [128], pages 107, 109 and 110, respectively),
which will be used in Chapter 5.

Theorem 1.2.7 Let X be a complex, compact manifold and let E be a
vector bundle on X. If E is globally generated and if L is a positive (ample,
in the algebraic case) line bundle, then

Hq(X, OX(KX)⊗ Syml(E)⊗ det(E)⊗ L) = (0), ∀ l, q > 0.

Similarly,

Theorem 1.2.8 Let X be a complex, compact manifold and let E be a
vector bundle on X. If E is ample and if L is a nef line bundle, then

Hq(X, OX(KX)⊗ Syml(E)⊗ det(E)⊗ L) = (0), ∀ l, q > 0.
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Remark 1.2.9 In the original statement L is taken to be a semi-positive
line bundle; however, at page 114 of [128], it is remarked that ”semi-positive”
can be replaced by ”nef”.

Corollary 1.2.10 Let X be a complex, compact manifold and let E be a
vector bundle on X. If E is ample then

Hq(X, OX(KX)⊗ Syml(E)⊗ det(E)⊗k) = (0), ∀ l, k, q > 0.

We end the section by recalling the notion of stability of vector bundles
and some other tools related to it. There are several definitions of ”stabil-
ity” (see, for example [43]). We will be mainly concerned with Bogomolov-
stability of rank-two vector bundles on a smooth, projective surface.

In 1960, Mumford introduced the notion of a stable or semistable vector
bundle on a curve and used Geometric Invariant Theory ([99]) to construct
moduli spaces for semistable vector bundles over a given curve. There were
various attempts to generalize Mumford’s definition of stability to surfaces
or to higher-dimensional varieties in order to construct moduli spaces of
vector bundles. In 1972, Takemoto gave the straightforward generalization
to higher-dimensional (polarized) smooth, projective varieties, which is now
called the Mumford-Takemoto stability or µ-stability.

Definition 1.2.11 (Mumford-Takemoto stability) Let X be a n-fold with a
fixed ample divisor H and let E a vector bundle on X. The slope of E (or
its normalized degree with respect to H) is defined by

µ(E) :=
c1(E)Hn−1

rank(E)
∈ 1
rank(E)

Z ⊂ Q.

E is said to be µ-stable (resp. µ-semistable) if for all coherent subsheaves F
of E, with 0 < rank(F) < rank(E), we have µ(F) < µ(E) (µ(F) ≤ µ(E)
resp.). E is µ-unstable if it is not µ-semistable and µ-strictly semistable if it
is µ-semistable but not µ-stable. Finally, a subsheaf F of E is destabilizing
if µ(F) ≥ µ(E).

Since F is a torsion-free sheaf, then µ(F) is well defined because F is locally
free in codimension one (see, for example, [95], page 61). For simplicity, here
we shall simply write stability instead of µ-stability. There are equivalent
definitions of stability; for example by using quotient sheaves of E instead of
its subsheaves (see [43]). Moreover, the notion of (semi)stability is preserved
under dualizing operation or tensoring operation by a line bundle. More
precisely, E is (semi)stable if and only if E∨ is (semi)stable or if and only if
E ⊗ L is (semi)stable, for each line bundle L.

Note that, if X is a curve, then µ(E) = deg(c1(E)) is independent from
the choice of H and we obtain the original definition due to Mumford. How-
ever, for dim(X) ≥ 2, if rank(Num(X)) ≥ 2, then the definition of stability
strongly depends on the choice of the numerical class of H.
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On the other hand, in 1975, Bogomolov ([12] or [114]) gave an exten-
sion of Mumford’s definition of stability on projective curves to varieties of
higher-dimension and proved an instability criterion. The fundamental fact
is that his criterion, at least in the case of a rank-two vector bundle E on
X = S a smooth, projective surface, translates into a numerical criterion
only in terms of the Chern classes of E.

Definition 1.2.12 (Bogomolov instability) Let S be a smooth projective
surface. A rank-two vector bundle E on S is said to be Bogomolov-unstable
if there exist A, B ∈ Div(S) and a zero-dimensional scheme Z (possibly
empty), fitting in the exact sequence

0→ OS(A)→ E → IZ(B)→ 0 (1.9)

and moreover c1(OS(A)) − c1(OS(B)) = A − B ∈ N(S)+, where N(S)+

denotes the ample divisor cone of S (see Section 1.1). Otherwise, E is
Bogomolov-stable.

Very concretely, we recall that the condition A − B ∈ N(S)+ is equivalent
to the conditions

(i) (A−B)2 > 0, and

(ii) (A−B)H > 0 for each ample divisor H.

Bogomolov’s statement is the following.

Theorem 1.2.13 (Bogomolov’s criterion) Let E be a rank-two vector bun-
dle on a smooth, projective surface S. Then

c1(E)2 − 4c2(E) > 0

if and only if E is Bogomolov-unstable.

Proof: See the original paper [12] or [114]. 2

From Proposition 1.2.3, since E fits in the exact sequence (1.9) we immedi-
ately get c1(E) = A+B and c2(E) = AB + l(Z).

Remark 1.2.14 Observe that, from Proposition 1.2.2, given a rank-two
vector bundle E and a line bundle L on S, we have

c1(E∨)2 − 4c2(E∨) = c1(E)2 − 4c2(E)

and
c1(E ⊗ L)2 − 4c2(E ⊗ L) = c1(E)2 − 4c2(E);

thus, the polynomial
c1(−)2 − 4c2(−)
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in the Chern classes of a rank-two vector bundle E is invariant under the
operations of tensoring E with a line bundle and of passing to the dual
bundle E∨. Therefore, also the notion of Bogomolov’s instability is preserved
by such operations.

In the same paper, Bogomolov proved also that the cotangent bundle
Ω1

S of a smooth, projective surface of general type is Bogomolov-stable. As
a consequence, he got the well known inequality for a surface S of general
type

c21(S) ≤ 4c2(S),

(see also Section 1.3).

We conclude by recalling an important technical tool in vector bundle
theory on smooth, projective surfaces.

Definition 1.2.15 Let E be a rank-k vector bundle on a smooth, projective
surface S. The discriminant of E is denoted by δ(E) and defined by

δ(E) := (
k − 1
2k

)c1(E)2 − c2(E).

By Theorem 1.2.13, if k = 2 and δ(E) > 0 then E is Bogomolov-unstable.
The definition of the discriminant of a vector bundle is a technical tool
which is very useful for computations, expecially when we are dealing with
elementary modifications of vector bundles on S or restrictions of stable
bundles on S to its divisors (see [14]). These are fundamental techniques
which will be considered in Chapter 5 to give some first positive answers to
our ”moduli problem” (see Section 5.1).

Definition 1.2.16 Let C be an effective divisor on a smooth, projective
surface S. If E and F are vector bundles on S and C, respectively, then a
vector bundle TC,F (E) is obtained by an elementary modification of E by F
along C if there exists an exact sequence

0→ TC,F (E)→ E → i∗F → 0,

where i denotes the embedding C ⊂ S.

As usual, we just write F instead of i∗F meaning F with its natural OS-
structure.

Proposition 1.2.17 TC,F (E) is locally free. Moreover, we have the follow-
ing numerical equalities.

(i) c1(TC,F (E)) = c1(E)− rk(F )C;

(ii) c2(TC,F (E)) = c2(E) + c1(F )− rk(F )(c1(E)C) + rk(F )(rk(F )− 1)C2;

(iii) δ(TC,F (E)) = δ(E) + rk(F )
rk(E)(c1(E)C) + rk(F )( rk(E)−rk(F )

2rk(E) )C2 − c1(F ).

Proof: These are straightforward computations. The reader is referred to
the original paper [14] or to [70], page 129. 2
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1.3 Fundamental properties of surfaces of general

type

This section is devoted to recalling some of the fundamental properties of
smooth, projective surfaces of general type. As it is well known, smooth
surfaces can be basically divided into four ”classes”, according to the the
behaviour of their pluricanonical divisors.

Definition 1.3.1 Let X be a smooth, projective variety, KX be a canonical
divisor of X, ϕn be the rational map from X to the projective space associated
to the complete linear system | nKX |. The Kodaira dimension of X, written
κ(X), can be defined as the maximum dimension of the images ϕn(X), for
n ≥ 1.

If | nKX |= ∅ then ϕn(X) = ∅ and one defines κ(X) = −∞.

If X = S is a surface, a first classification can be done in terms of the
Kodaira dimension of S. Recall that

Pn(S) := h0(S, ω⊗n
S )

is called the nth-plurigenus of S, for n ≥ 1; if n = 1, one simply denotes by
pg(S) the first plurigenus of S, which coincides with the geometric genus of
S. These, as well as κ(S), are birational invariants of S.

If κ(S) = 2 then S is called a surface of general type. Therefore, S is of
general type if and only if, for some N , ϕN (S) is a surface.

Trivial examples of surfaces of general type are given by products of
two smooth curves, C1 × C2, where Ci of genus gi ≥ 2. Furthermore, if
Sd1,...,dr−2 denotes a surface in IPr which is the complete intersection of r−2
hypersurfaces of degrees d1, . . . , dr−2 then, since KS = (

∑r−2
i=1 di − r − 1)H,

H a hyperplane section of S, we obtain that S2, S3, S2,2 are rational, S4,
S2,3, S2,2,2 are K3 surfaces, whereas, all the other surfaces Sd1,...,dr−2 are of
general type. In particular, if S ⊂ IP3 is smooth, of degree d ≥ 5 then it is
a regular surface (as all surfaces in IP3) of general type.

Proposition 1.3.2 Let S be a smooth, projective surface such that κ(S) ≥
0. Let C ⊂ S be an effective, reduced and irreducible divisor such that
KSC < 0. Then C is a (−1)-curve (see Definition 1.1.21). Moreover, on
such a S, there exists only a finite number of (−1)-curves. In particular, if
S is minimal, then KS is nef.

Proof: Since κ(S) ≥ 0, there exists an effective divisorD ∈|mKS |, for some
m > 0. Suppose C irreducible such that CKS < 0. Then DC = mKSC < 0;
this implies that C is a component of D and that C2 < 0. Indeed, if
D = aC + D′, then DC = aC2 + D′C, with D′C ≥ 0 and a > 0, which
implies C2 < 0. By adjunction,

−2 ≤ 2pa(C)− 2 = C2 + CKS ≤ −2.
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Therefore, C2 = CKS = −1 and pa(C) = pg(C) = 0, therefore C is rational
and smooth. If E1 6= E2 are (−1)-curves in S, then E1E2 = 0; so, these are
independent elements of NS(S). It follows that (−1)-curves in S are finitely
many. 2

Remark 1.3.3 If S is a minimal surface of general type, then K2
S > 0 (see,

for example, [8] or [10]). Since it is also nef, by Remark 1.1.29 KS is big
and nef.

There are fundamental inequalities involving Chern classes of S. Such
inequalities will be used in some examples in Section 5.1, when we deal with
some positive answers to the ”moduli problem” for pluri-canonical linear
sytems on a regular projective surface of general type.

To this aim, we recall that the Chern classes of S are defined as

ci(S) := ci(TS), 1 ≤ i ≤ 2.

Therefore, c1(S) = −KS and c2(S) = e(S). As already mentioned in Section
1.2, Bogomolov proved, in [12] (see also [114]), that if S is a smooth, pro-
jective surface of general type, then Ω1

S (and so TS) is Bogomolov-stable, in
the sense of Definition 1.2.12. By his numerical criterion (Theorem 1.2.13)
we get

c1(S)2 ≤ 4c2(S). (1.10)

A year later, Miyaoka and Yau independently improved the previous in-
equality by showing that for a surface S of general type

c1(S)2 ≤ 3c2(S) (1.11)

holds (see the original papers [92] and [141] or [8], page 212).

We end this section by recalling a general result of Matsumura which is
related to varieties of general type ([87]).

Proposition 1.3.4 If V is a projective, non-singular variety and if the ra-
tional mapping of V determined by | nKV | is birational onto its image, for
some n > 0, then Bir(V ), the group of all birational transformations of V
onto itself, is finite.

Proof: See Corollary 2, [87]. 2

In our case, if S is a smooth, projective surface of general type then Aut(S)
is a finite group. This gives a useful cohomological condition; indeed, since
H0(TS) is the Lie algebra of the Lie group of automorphisms of S, then

H0(TS) = 0, (1.12)

for each smooth surface of general type. There are some papers, which
determine a polynomial estimate, in terms of c2(S), for an upper-bound on
the order of Aut(S) (see, for example, [33]).
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1.4 Embedded curves in a projective surface. Nodal

and stable curves

In this section, we shall deal with singular (in particular nodal) curves on a
smooth projective surface.

Let S be a smooth, projective surface and let X ⊂ S be an effective,
reduced divisor, which can be singular and even reducible. If ϕ : C → X ⊂ S
is the normalization of X, then C is a smooth (possibly reducible) curve.
For x ∈ X singular, ϕ−1(x) consists of finitely many points, corresponding
to the different branches of X through x. On X one has the normalization
sequence

0→ OX → ϕ∗OC → t→ 0, (1.13)

where t is a torsion sheaf, supported on the singularities of X.

In general, we can define the local genus drop at x (or the δ-invariant at
x) to be the non-negative integer

δx := dimC(ϕ∗OC/OX)x = dimC(tx). (1.14)

Thus, δx = 0 if and only if x is a smooth point in X. For example, if x is
an ordinary double point (a node) then δx = 1.

For an arbitrary non-zero effective divisor X we can define the arithmetic
genus of X by the formula

2pa(X)− 2 = (KS +X)X,

as in the adjunction formula (1.7) for the smooth case.

For simplicity, assume that X is reduced and irreducible. There exists
on X the dualizing sheaf which is denoted by ωX and defined as ωX =
ωS ⊗NX/S ; moreover, since X is a reduced divisor in a smooth, projective
surface, ωX is locally free (see [64]) and

2pa(X)− 2 = deg(ωX).

The morphism ϕ is finite so, for any sheaf F on C, the higher direct
images Riϕ∗F vanish. Hence we get the Leray isomorphisms

H i(C,F) ∼= H i(X,ϕ∗F), (1.15)

for each i ≥ 0 (see [64]). From the fact that X is reduced and irreducible,
it follows that

H0(OX) ∼= H0(OC) ∼= H0(ϕ∗OC) ∼= C.

Thus, by (1.13), we get that

h1(OX) = h1(ϕ∗OC) + h0(t) = h1(OC) + δ,
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where δ is the non-negative integer

δ :=
∑
x∈X

δx.

Furthermore, by Definition 1.1.1, pa(X) = 1 − χ(OX); since h0(OX) = 1,
we have

pa(X) = h1(OX) = h0(ωX),

by the definition of dualizing sheaf.

Therefore, the genera of C and X are related by

pa(X) = pa(C) + δ = g(C) + δ,

where g(C) is the geometric genus of the smooth curve C and δ is called the
genus drop of the curve X.

Observe that, if each singular point is a node, then δ coincides with the
cardinality of the support of Sing(X) (the singular locus of X), i.e. δ is the
number of nodes of X.

Note that we can still define the global invariant δ even if X is assumed
to be only reduced. As before, one obtains, more generally, that if Ci,
1 ≤ i ≤ n, denote the (smooth) connected components of C, with g(Ci) = gi,
then

pa(X) =
n∑

i=1

gi + δ + 1− n. (1.16)

In complete analogy with the smooth case, one can prove the Riemann-
Roch theorem for any locally free sheaf F on a singular curve X. This
theorem holds even if X is not reduced (see [8], Theorem 3.1, page 51).
Since in the sequel we will mainly consider reduced, nodal curves, we prove
this result only in the reduced case.

For every locally free sheaf F on X, one defines deg(F ) as deg(det(F )),
as in the smooth case.

Theorem 1.4.1 (Riemann-Roch theorem for reduced, embedded curves) Let
X ⊂ S be a reduced curve, embedded in a smooth, projective surface S and
let F be a locally free sheaf of rank r on X. Then

χ(F ) = deg(F ) + rχ(OX).

Proof: Since X is reduced, then we have the normalization map

ϕ : C → X ⊂ S.

The fact that ϕ is birational implies that the degree of the map (defined as
in [64], page 137) is such that deg(ϕ) = 1. Therefore,

deg(ϕ∗F ) = deg(ϕ)deg(F ) = deg(F ).

Moreover, by the Leray isomorphisms in (1.15),

χ(ϕ∗F ) = χ(ϕ∗ϕ∗F ) and χ(OC) = χ(ϕ∗OC).

22



So Riemann-Roch theorem on C implies

deg(F ) = χ(ϕ∗F )− rχ(OC) = χ(ϕ∗ϕ∗F )− rχ(ϕ∗OC).

Since F is locally free, (ϕ∗ϕ∗F/F ) ∼= (ϕ∗OC/OX)⊕r = t⊕r and

χ(F ) = χ(ϕ∗ϕ∗F )− χ(ϕ∗ϕ∗F/F ) =

= deg(F ) + rχ(ϕ∗OC)− rχ(ϕ∗OC/OX) =

= deg(F ) + rχ(OX),

as stated. 2

In 1.1.18 we have given the definition of a torsion-free sheaf. Equiva-
lently, F is a torsion-free sheaf of rank one on a curve X (not necessarily
smooth) if there exists a finite set N of points of X such that F |X\N is a
line bundle and the map F → i∗i

∗F is injective, where i : X \ N → X is
the natural inclusion map (see [43], page 198). Thus, for example, ϕ∗OC is
a torsion-free sheaf of rank one on the singular curve X.

One can simply extend the notion of degree to torsion-free sheaves of
rank one on singular curves.

Definition 1.4.2 (see [43], page 198) Let F be a torsion-free sheaf of rank
one on a reduced curve X. Then,

deg(F) := χ(F) + pa(X)− 1.

As an immediate consequence of the previous definition and of the exact
sequence (1.13), we get that deg(ϕ∗OC) = δ.

We now want to study local properties of some fundamental invertible
or torsion-free sheaves on a reduced, irreducible nodal curve embedded in a
smooth, projective surface. Roughly speaking, a nodal curveX is a complete
curve which is locally smooth or analytically isomorphic to xy = 0, where
(x, y) are local coordinates of S. Denote by N = {p1, . . . , pδ} the set of
nodes of X; let ϕ : C → X ⊂ S be the normalization map and let {qi, q′i}
be the preimages in C of the node pi in X, 1 ≤ i ≤ δ. Put B =

∑δ
i=1(qi +q

′
i)

on C. Then, the dualizing sheaf ωX is such that

ωX ⊂ ϕ∗(ωC(B))

(see [8] or [60]).

To deal more closely with the sheaf of differentials of X, by GAGA’s
results we can consider the analytic approach which is more appropriate
for a local analysis (see [7]). In general, if Y is a complex, analytic space
embedded in a complex, projective manifold V of dimension n, let IY be (as
in the algebraic approach) the ideal sheaf of Y in V and Ω1

V be the vector
bundle of holomorphic 1-forms on V . The usual differentiation induces a
map

IY → Ω1
V |Y ,
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locally defined by

f → d(f) :=
n∑

i=1

∂f

∂zi
dzi,

where (z1, . . . , zn) are local coordinates for V . Since for each f, g ∈ IY ,
d(fg) = d(f)g + d(g)f , we have an induced map

(IY /I2
Y ) d→ Ω1

V |Y ,

whose cokernel is called the sheaf of Kähler differentials. This is nothing
but the cotangent sheaf Ω1

Y recalled in Section 1.1.

Remark 1.4.3 An intrinsic definition can be given by considering the OY -
module generated by the symbols gd(f), where g, f ∈ OY , modulo the usual
relations imposed by C-linearity and Leibnitz rule; thus, for each OY -module
E ,

Hom(Ω1
Y , E) = DerC(OY , E).

By Theorem 1.1.4, Ω1
Y is locally free if and only if Y is smooth and,

by Theorem 1.1.8, if Y is reduced and a local complete intersection in V

then IY /I2
Y is locally free of rank c = codimV (Y ) and such that the exact

sequence
0→ IY /I2

Y → Ω1
V ⊗OY → Ω1

Y → 0

holds.

We restrict ourselves to the case Y = X reduced curve, with only nodes
as singularities, in V = S a smooth, projective surface. The sheaf Ω1

X and its
dual sheaf (denoted by ΘX in the sequel) are fundamental tools in studying
first-order equisingular deformations of nodal curves.

If p ∈ X is a smooth point then, with a local coordinate z centered at p
such that z(p) = 0,

Ω1
X,p = {f(z)dz | f(z) holomorphic around 0}

so there is nothing else to say.

Let, therefore, p be a double point of X; thus, in a neighborhood of p the
curve X is isomorphic to the curve xy = 0 in a certain open set U ⊂ C2

(x,y),
where (x, y) local coordinates for S around p = (0, 0). Now,

OX,p = {k+f1(x)+f2(y) | k ∈ C, fi holomorphic s.t. fi(0) = 0} =
C{x, y}

(xy)
.

Therefore, by Remark 1.4.3,

Ω1
X,p =

{(k + f1(x) + f2(y))(g1(x)dx+ g2(y)dy)}
relations =< xy = 0, ydx+ xdy = 0 >

,

where gi, fi holomorphic which map 0 to 0. Thus, we get

(∗) Ω1
X,p = {f1(x)g1(x)dx+ f2(y)g2(y)dy + (k + f1(x))g2(y)dy+

+(k + f2(y))g1(x)dx}/relations < xy = 0, ydx+ xdy = 0 > .
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Now,
xndy = xn−1xdy = −xn−1ydx

and
yndx = −yn−1xdy

over X, for n ≥ 2; so only the linear terms of f1(x) and f2(y) give some con-
tributions to the third and last summand of (∗). Therefore, the contribution
of these two summands can be written as

(k + h1(x)x)g2(y)dy + (k + h2(y)y)g1(x)dx.

The contributions of kg2(y)dy and kg1(x)dxmay be absorbed by f2(y)g2(y)dy
and f1(x)g1(x)dx respectively, so we are left with

h1(x)xg2(y)dy + h2(y)yg1(x)dx;

of course, here the terms of g1 and g2 of degree greater than or equal to one
do not give any contribution because xy = 0; so we are left with

xk1dy + yk2dx, ki ∈ C.

By using xdy = −ydx, we get finally an expression of the form

αydx, α ∈ C.

Thus,
Ω1

X,p
∼= {a(x)dx+ b(y)dy + αydx} (1.17)

where a(x) = f1(x)g1(x), b(y) = f2(y)g2(y), respectively.

The terms of type αydx are (somehow improperly) called torsion dif-
ferentials, because x(αydx) = 0. From the above discussion we get that, if
ϕ : C → X ⊂ S is the normalization of X, the following exact sequence
holds

0→ T DX → Ω1
X → ϕ∗Ω1

C = ϕ∗ωC → 0. (1.18)

T DX is the sheaf of the torsion differentials, for which

a) T DX,p = 0, if p is a smooth point of X, or

b) T DX,p
∼= C, if p is a node of X.

Another important ”ingredient” is the conductor ideal of a reduced, irre-
ducible nodal curve X embedded in a smooth, projective surface S. This is
strictly related to the first-order equisingular deformations of such a curve.

More generally, as we shall explain in more detail in Section 2.2, there
are two ways of analyzing deformations of a reduced, irreducible singular
curve in S satisfying certain geometric conditions.

In the ”parametric” approach, one looks at deformations of the normaliza-
tion map

ϕ : C → X ⊂ S.
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It is the fundamental result of Horikawa’s theory that the tangent space to
the space of such deformations is, a priori, a subspace of the space of sections
of the normal sheaf of the map Nϕ (see Section 2.2). This has the virtue of
incorporating the condition that the geometric genus of X is preserved in
the deformations. Moreover, Nϕ is a sheaf on a smooth curve. On the other
hand, it has the defect that, unless we know that ϕ has generically injective
differential, the sheaf Nϕ can have torsion. Fortunately, in the nodal case,
Nϕ is a line bundle on C (see Section 2.2).

In the other approach, which is usually called the ”Cartesian” approach, we
look instead at deformations of X as a subscheme of the surface S; so that
the tangent space to the space of deformations is, a priori, a subspace of
the space of sections of the normal bundle NX/S

∼= OX(X) of the divisor
X ⊂ S. In some ways, this is more direct and it is in particular useful when
we want to intersect our family of deformations with other subvarieties of
the projective space determined by the complete linear system of curves
linearly equivalent to X. But it has the drawback that we have to impose
extra conditions to ensure that the geometric genus of X stays constant in
deformations. These conditions, moreover, sometimes interact badly with
conditions such as tangency with a fixed curve (see also [15] and [17]).

In some cases, there is a reasonably straightforward relationship between
these two approaches. To start with, we make the following definition.

Definition 1.4.4 Let S be a smooth, projective surface and let ϕ : C →
X ⊂ S be a map from a smooth curve C into S with injective differential (for
example when X is an irreducible, nodal curve and ϕ is the normalization
map). We denote by

ςX ⊂ OX

the conductor ideal of the curve X, which may be characterized in several
equivalent ways.

(i) It is the annihilator of the sheaf ϕ∗(OC)/OX ;

(ii) More concretely, it is the ideal in OX whose restriction to each branch
∆i of X, at each point p ∈ X, is equal to the restriction to that branch
of the ideal of the union of all other branches of X through p. In other
words, if pi ∈ C is the point lying over p in the branch ∆i,

ϕ∗ςX = OC(−
∑

i

(
∑
j 6=i

multp(∆i∆j))pi).

Therefore, if X contains only a node p as singularity, such that ϕ(p1) =
ϕ(p2) = p, then ϕ∗ςX = OC(−p1 − p2).

Remark 1.4.5 From (i) above, we observe that ςX is an ideal sheaf on X

of OX -modules and of ϕ∗OC-modules, defined by

ςX = {c ∈ OX | ca ∈ OX , ∀ a ∈ ϕ∗(OC)}.
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If p ∈ X, we denote by δ(p) the dimension dimC((ϕ∗(OC)/OX)p); the point
p is smooth if and only if δ(p) = 0. Otherwise, if p is an ordinary double
point, then δ(p) = 1.

Remark 1.4.6 There is another standard definition for the conductor sheaf
(see, for example, [71], page 365). More generally, let f : V → Y be a
finite map from a n-fold into a (n + 1)-fold Y such that the induced map
h : V → f(V ) is birational. Denote by Z the image f(V ), which is a closed
subvariety of Y . Then, the conductor of the finite, birational map h : V → Z

is given by the formula

ςZ = HomOZ
(h∗OV ,OZ).

From this definition, if we consider our case Y = S, V = C, Z = X an
irreducible, nodal curve and h = ϕ the normalization map, we can consider
the normalization sequence (1.13)

0→ OX → ϕ∗OC → t→ 0

and we can apply the functor Hom(−,OX) to immediately get that the
conductor ςX is an ideal sheaf, since

0→ HomOX
(ϕ∗OC ,OX)→ OX → Ext1( t,OX)→ . . .

holds because t is a torsion sheaf on X.

No matter how we characterize the conductor, it is not hard to see that,
since ϕ : C → X ⊂ S has injective differential, the normal bundle Nϕ of the
map and the normal bundle NX/S

∼= OX(X) of the curve X are related by

Nϕ = ϕ∗(ςX ⊗NX/S). (1.19)

This can be most easily seen in terms of description (ii) in Definition 1.4.4.
If the local defining equation f(x, y) of X at a point p ∈ X factors, in the
completion of the local ring OX,p, as

f(x, y) = f1(x, y)f2(x, y) · · · fn(x, y),

then a general first-order deformation of the map ϕ will simply move each
branch, resulting in a curve given by the equation

fε(x, y) = (f1(x, y) + α1ε)(f2(x, y) + α2ε) · · · (fn(x, y) + αnε).

As a deformation of the map, that is, as a section of Nϕ, this will be non-zero
at the point of C corresponding over the branch ∆i given by fi(x, y) = 0
if and only if the coefficient αi 6= 0. But the corresponding section of
the normal bundle NX/S (that is, the restriction to X of the coefficient
of ε in fε(x, y)) on this branch is αi

∏
i6=j fj(x, y), which vanishes to order∑

j 6=imultp(∆j∆i).
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In any event, the conclusion is that the sections of NX/S coming from
deformations of the map are simply those lying in the conductor ideal. We
thus have a very useful dictionary between the two languages, at least as
long as ϕ has an injective differential, otherwise the correspondence is more
complicated.

To sum up, the conductor ideal determines the subsheaf of the normal
bundle NX/S , whose global sections correspond to equisingular deformations
of X in S. Even if more will be said in Section 2.2 on the subject of eq-
uisingular deformation theory and of the sheaves describing abstract and
embedded equisingular deformations of the nodal curve X, here we shall
make a brief overview of the principal exact sequences which must be con-
sidered to approach the problem.

Given S a smooth, projective surface, X ⊂ S an irreducible, nodal curve
and ϕ : C → X ⊂ S the normalization map, we can apply the contravariant,
left-exact functor Hom(−,OX) to the exact sequence

0→ IX/I2
X → Ω1

S |X→ Ω1
X → 0

(see Theorem 1.1.8). Thus, we get

0→ Hom(Ω1
X ,OX)→ Hom(Ω1

S ,OX)→

→ Hom(ConX/S ,OX)→ Ext1(Ω1
X ,OX)→ 0,

since Ω1
S |X is locally free.

Observe that Hom(Ω1
S ,OX) = TS |X , whereas Ω1

X is the cotangent sheaf
(or the sheaf of Kählerian differentials) of X and its dual

ΘX := Hom(Ω1
X ,OX), (1.20)

is called the sheaf of derivations of OX .

On the other hand,

T 1
X := Ext1(Ω1

X ,OX) (1.21)

is called the first cotangent sheaf of X; this is a torsion sheaf supported on
Sing(X), with T 1

X,p
∼= C for each p ∈ Sing(X) ([81]). The resulting exact

sequence
0→ ΘX → TS |X→ NX/S → T 1

X → 0

splits into the shorter exact sequences

0→ ΘX → TS |X→ N ′
X → 0

and
0→ N ′

X → NX/S → T 1
X → 0.

The sheaf N ′
X , defined as the kernel of the surjection NX/S → T 1

X , is called
the equisingular sheaf. We shall see (Section 2.2 - Cartesian approach) that
the 0− th and first cohomology groups of the sheaf N ′

X/S give the first-order
equisingular embedded deformation space of X and its obstruction space,
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respectively. On the other hand, the first and the second cohomology groups
of the sheaf ΘX give the first-order abstract and locally trivial deformation
space of X and its obstruction space, respectively (see Section 1.5 and [7]).
Observe that N ′

X and ΘX are torsion-free sheaves on X, since ΘX ⊂ TS |X
whereas N ′

X ⊂ NX/S .

Since X is nodal, it is well-known that

N ′
X = ςXNX/S , (1.22)

where ςX is the conductor sheaf defined above, and moreover that N ′
X,p

coincides with the maximal ideal of the node p ∈ X, since NX/S is locally
free whereas ςX,p

∼= mp (see, for example, [131], page 111).

Using what we have introduced up to now, we can prove (1.22) directly (see
[60]). Suppose that X is locally embedded in S, with ideal sheaf IX , as
the analytic locus given by xy = 0 at the node p = (0, 0), in suitable local
holomorphic coordinates on S. Locally, the first two terms of the exact
sequence

0→ IX/I2
X

α→ Ω1
S |X→ Ω1

X → 0

look like
OX,p{xy}

αp→ OX,p{dx, dy},

with the map αp given by

αp(xy) = d(xy) = xdy + ydx,

in a neighborhood of p = (0, 0).

For what we have observed in (1.17), Ω1
X is locally free of rank one except

at the node p. Dualizing, we get

0→ ΘX → TS |X
α∨→ NX/S → T 1

X → 0,

with α∨ locally the map

OX,p{
∂

∂x
,
∂

∂y
}

α∨p→ OX,p{xy}∨

defined by sending ∂
∂x and ∂

∂y to the natural functionals, i.e.

∂

∂x
−→ {xy → y}

and
∂

∂y
−→ {xy → x},

respectively. Since NX/S is Hom(IX/I2
X ,OX) = Hom(IX ,OX), it is gener-

ated by the homomorphism
{xy → 1}.

Therefore, the image of α∨ is exactly mpNX,p ⊂ NX,p. Hence, at a node
p, the quotient T 1

X,p is isomorphic to the fibre at p of NX/S , i.e. T 1
X,p
∼=

NX,p/mpNX,p. Since NX/S is locally free of rank one, NX,p
∼= OX,p as

modules, therefore Im(α∨p ) = N ′
X,p
∼= mp, as stated in Tannenbaum’s paper

[131].
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Remark 1.4.7 From what observed, we obtain that N ′
X is not locally free

on X.

For what concerns ΘX , at a node p ∈ X we have

f1(x)
∂

∂x
+ f2(y)

∂

∂y

α∨p−→ {xy → f1(x)y + f2(y)x = 0},

by the condition xy = 0. This means that

ker(α∨p ) = {f1(x)
∂

∂x
+ f2(y)

∂

∂y
| fi holomorphic, fi(0) = 0, 1 ≤ i ≤ 2}.

So, ΘX,p is of rank two at a node p.

Remark 1.4.8 By summarizing, ΘX is not locally free on X; moreover, if
t is supported on δ nodes, then

χ(ΘX ⊗ t) = 2δ. (1.23)

We end this section by considering particular cases of nodal (possibly
reducible) curves, i.e. stable curves, which play a major role in the com-
pactification of the moduli space of smooth curves of given genus.

Definition 1.4.9 ([35]) Let T be any scheme and let pa ≥ 2 be a positive
integer. A stable curve of (arithmetic) genus pa over T is a proper, flat
morphism

π : C → T,

whose geometric fibres are reduced, connected, one-dimensional schemes Ct
such that:

(i) Ct has only ordinary double points as singularities;

(ii) if E is a non-singular, rational component of Ct, then E meets the
other components of Ct in at least 3 points;

(iii) dimC(H1(OCt)) = pa.

If T = Spec(C), then C will be simply denoted by C.

Suppose that π : C → T is a stable curve. Since π is flat and its geo-
metric fibres are local complete intersections, the morphism π is locally a
complete intersection morphism, i.e. locally C is isomorphic as T -scheme
to V (f1, . . . , fn−1) ⊂ An × U , where An is the n-dimensional affine space,
U ⊂ T is an open subset and f1, . . . , fn−1 ∈ H0(OAn×U ) form a regular
sequence (see, also Definition 2.2.13, Chapter 2). Therefore, there exists the
relative dualizing sheaf, ωC/T , which is an invertible sheaf on C. Thus, if for
example T = Spec(C) and if F is a sheaf on C, then

H1(C,F)∨ ∼= Hom(F , ωC).
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Observe that, in view of the connectedness of Ct, for each t ∈ T , and
of condition (ii) of the definition, the automorphism group of Ct is a finite
group, for each t ∈ T .

If we weaken condition (ii) by replacing the number 3 by 2, the result-
ing curves are called semistable. For simplicity, if we limit ourselves to the
case T = Spec(C), the semistability of C geometrically amounts to allow-
ing chains C1, . . . , Ck of smooth, rational curves as subcurves of C. More
precisely, saying that we have a chain means that : C1 and Ck each meets
the complement of the chain in C in a single node; the other Ci are disjoint
from this complement, and each Ci, 2 ≤ i ≤ k − 1, meets each of Ci−1 and
Ci+1 in a single node and meets no other components of the chain.

Stable curves with marked points are defined analogously. In this case,
the finiteness condition can be equivalently reformulated as saying that every
rational component of the normalization of C has, at least, 3 points lying
over singular and/or marked points of C. Also, as before, if we weaken either
of these conditions by replacing the number 3 by 2, the resulting pointed
curves are called semistable.

The fundamental differences between stable and semistable curves are
explained in the following:

Example. Let C be a semistable curve and let E be a smooth rational
component of C, meeting the rest of the curve in exactly 2 points p1, p2 ∈ E.
Then,

ωC ⊗OE = ωE(p1 + p2) = OE ,

because, since E is rational, ωE
∼= OE(−p1− p2). Thus, ωC |E= OE cannot

be ample on E and, therefore, ωC is not ample on C. This depends on the
fact that C is supposed to be semistable.

Stable curves are nodal curves for which the linear systems associated to
multiples of the dualizing sheaf behave as the pluricanonical linear systems
on smooth curves of genus g ≥ 2. Indeed, if C is a stable curve of arithmetic
genus pa(C) ≥ 2, then: ωC is ample, H1(C,ω⊗n

C ) = 0, for each n ≥ 2 and
ω⊗n

C is very ample for n ≥ 3 (see [7] or [35]).

1.5 Basic results on families of projective varieties

and deformation theory

For the reminder of this chapter we will be considering families of schemes.
Even if in the next chapters we will be concerned with families of schemes
over C, the first definitions of this section are given in a more generality for
families defined over a field k, which is not necessarily algebraically closed
or of characteristic 0. For terminology not explicitely recalled, we refer the
reader to [64] and to [120].

Let f : X → Y be a morphism of schemes, defined over a field k, and let
y ∈ Y be a point. We denote by

Xy = X ×Y Spec(k(y))
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the fibre of f over y, where k(y) is the residue field of y.

Definition 1.5.1 Given a scheme X0 over a field k, a family of deforma-
tions of X0 is defined as a flat morphism f : X → Y , with Y connected,
together with a point y0 ∈ Y , such that k(y0) = k and Xy0

∼= X0. The other
fibres Xy of f are called deformations of X0.

Definition 1.5.2 Let Y and S be schemes. A flat family of closed sub-
schemes of Y parametrized by S is a closed subscheme X ⊂ Y × S, such
that the morphism X → S, induced by the projection Y ×S → S, is flat. The
family is called trivial if X = X × S, for some closed subscheme X ⊆ Y .
When S = Spec(A), with A a noetherian k-algebra with residue field k,
then X is a local family of closed subschemes of Y ; moreover, if A is also
artinian, then X is an infinitesimal deformation of Xo in Y (or first-order
embedded deformations of Xo in Y ), where o ∈ S is the closed point of S.

Our next aim is to briefly recall some basic properties of first-order ab-
stract and first-order embedded deformations of smooth abstract curves and
of smooth or nodal curves embedded in a non-singular, projective surface
S; these subjects are related to the infinitesimal study of the moduli space
Mg of curves of genus g and of the Hilbert scheme of subschemes in a given
scheme, respectively.

For simplicity, in the sequel we shall consider all schemes defined over
C, even if the treatement can be done in a more generality.

As notation, we will frequently consider the affine scheme

∆ε := Spec(C[ε]/(ε2)), (1.24)

where C[ε]/(ε2) is the ring of dual numbers; ∆ε has only a closed point o,
corresponding to the unique prime ideal (ε). It is a standard result that a
C[ε]/(ε2)-valued point of a scheme X is the same as a closed point p of X
together with an element of the Zariski tangent space to X at p, in symbols

Tp(X) = (mp/m
2
p)
∨ ∼= Morph((∆ε, o), (X, p); o→ p). (1.25)

This is a fundamental point relationing first-order deformations and tan-
gent space to fine moduli (or parameter) spaces of suitable functors (for
terminology of coarse and fine moduli space and parameter space, we follow
[60]).

Definition 1.5.3 Let r be a positive integer and let P (t) ∈ Q[t]. The
Hilbert scheme of IPr relative to P (t), HilbrP (t), is a scheme parametriz-
ing a flat family of closed subschemes of IPr

W ⊂ IPr ×HilbrP (t)

↓ π

HilbrP (t)
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all whose fibres have Hilbert polynomial P (t) and having the following uni-
versal property:

• for every flat family of closed subschemes of IPr

X ⊂ IPr × Σ
↓ f

Σ

with Hilbert polynomial P (t), there is a unique morphism

g : Σ→ HilbrP (t),

called the classifying map for the family f , such that π induces f by
base change, i.e.

X = Σ×Hilbr
P (t)
W ⊂ Σ× IPr.

The Hilbert scheme is a generalization of complete linear systems of hyper-
surfaces and of Grasmannians. Once proven that it exists, HilbrP (t) is unique
so that π is the universal family.

Theorem 1.5.4 For every P (t), HilbrP (t) exists and is a projective scheme.

Proof: For a proof, see [60] or [120]. 2

From the universal property it immediately follows that if X ⊂ IPr has
Hilbert polynomial equal to P (t), there is a unique point of HilbrP (t) which
parametrizes X (i.e. whose fibre in the universal family is X).

Notation. From now on, when X is a scheme which belongs to a family of
schemes parametrized by a base-scheme X , we will denote by [X] the point
in X parametrizing X.

The existence of the universal family ensures us that HilbrP (t) is a fine
moduli (or a parameter) space for the geometric objects determined by
closed subschemes of IPr with given Hilbert polynomial P (t). The functor
posing such a moduli problem is called the Hilbert functor of IPr, relative to
the given polynomial P (t). For every scheme Σ, let

HilbrP (t)(Σ) := {flat families of closed subschemes of IPr

with Hilbert polynomial P (t) parametrized by Σ}.

Since flatness is preserved under base change, this defines a contravariant
functor from the category of schemes to the category of sets. Therefore, the
universal property of the Hilbert scheme means that the couple (HilbrP (t), π)
represents the functor HilbrP (t).

Among families of closed subschemes of IPr, complete families play a
central role.
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Definition 1.5.5 Let
X ⊂ IPr × Σ
↓ f

Σ

be a flat family of closed subschemes of IPr with Hilbert polynomial P (t) and
let g : Σ→ HilbrP (t) be the classifying map. The family f is called complete
(resp. effectively parametrized) at a closed point s ∈ Σ if the morphism g

is smooth (resp. ètale) at s.

Remark 1.5.6 The completeness in s implies that g(Σ) contains a neigh-
borhood of the point g(s) ∈ HilbrP (t); in other words, f parametrizes all
”sufficiently small” deformations of Xs in IPr. On the other hand, ”ef-
fectively parametrized” implies that the classifying map g is finite-to-one
nearby the point s.

The functoriality of the Hilbert scheme makes the study of their local
properties particularly natural. If we consider z ∈ HilbrP (t) a closed point,
then let X = Wz ⊂ IPr be the closed subscheme parametrized by z, where
W is such as in Definition 1.5.3. Let NX be the normal sheaf of X in IPr,
which is locally free if X is regularly embedded in IPr (see Remark 1.1.16).
The local properties of HilbrP (t) at z = [X] are given by the properties of
the local ring OHilbr

P (t)
,[X].

Definition 1.5.7 X is said to be unobstructed (resp. obstructed) if HilbrP (t)

is non-singular (resp. singular) at [X].

As in (1.25) above, the Zariski tangent space to HilbrP (t) at [X] corre-
sponds to the vector space of scheme morphisms

Morph((∆ε, o), (HilbrP (t), [X]); o→ [X]),

where (∆ε, o) is as in (1.24). In view of the functoriality of the Hilbert
scheme, to give a morphism f : ∆ε → HilbrP (t) is equivalent to giving a
flat family (Xε,∆ε, pε), with central fibre X, i.e. a first-order embedded
deformation of X in IPr (see Definition 1.5.2). Thus, the Zariski tangent
space T[X](HilbrP (t)) to HilbrP (t) at [X] can be easily identified.

Theorem 1.5.8
T[X](Hilb

r
P (t)) ∼= H0(X,NX). (1.26)

Proof: See [60], pages 13-14, or [120], Proposition (8.1). 2

We recall that, if X is any scheme and x ∈ X, then

dim(OX,x) ≤ dimC(Tx(X)),

where the dimension on the left is the Krull dimension of the local ring.
The equality holds if and only if X is smooth at x. Applying all this to the
Hilbert scheme, we find the following
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Corollary 1.5.9

dim[X](Hilb
r
P (t)) ≤ h

0(X,NX),

with the further information that the equality holds if and only if HilbrP (t) is
smooth at [X].

Let
X ⊂ IPr × Σ
↓ f

Σ

be a flat family of closed subschemes of IPr with Hilbert polynomial P (t)
and let g : Σ→ HilbrP (t) be the classifying map. Let s ∈ Σ be a closed point
and X = Xs ⊂ IPr.

Definition 1.5.10 The differential

dgs : Ts(Σ)→ H0(X,NX) (1.27)

is called the characteristic map of the family f .

The following is a useful criterion.

Proposition 1.5.11 In the above situation, the following statements are
true:

(i) If f is complete (resp. effectively parametrized) at s, then the charac-
teristic map is surjective (resp. bijective);

(ii) If Σ is smooth at s and the characteristic map is surjective (resp.
bijective), then f is complete (resp. effectively parametrized) at s and
HilbrP (t) is smooth at g(s).

Proof: These are direct consequences of Definition 1.5.5 and of properties
of smooth and ètale morphisms (see [120]). 2

Remark 1.5.12 With this set up, one can easily show, for example, that a
complete intersection X ⊂ IPr is always unobstructed; if dim(X) > 0, this
can be proven by constructing a complete family of complete intersections
(see [120], page 8-4).

In general, other information on the dimension estimate can be deduced
from the theory of obstructions. The main result is that there exists a vector
space o(X, IPr), called the space of obstructions of X in IPr, such that for
any first-order embedded deformation α of X in IPr, one has a C-linear map
o(α) (the obstruction map)

Ex1(C[ε]/(ε2),C)
o(α)→ o(X, IPr),
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where Ex1(C[ε]/(ε2),C) denotes the space of algebra extensions of C[ε]/(ε2)
by C (see [120]). By definition, o(α) maps an extension B to 0 if and only if
α can be extended to an infinitesimal deformation parametrized by Spec(B).

The main feature of the obstruction theory is the following result.

Proposition 1.5.13 Let X ⊂ IPr be a closed subscheme with Hilbert poly-
nomial P (t). Then:

(i) h0(NX)− dim(o(X, IPr)) ≤ dim[X](HilbrP (t));

(ii) If, moreover, X is a local complete intersection (i.e. it is regularly
embedded in IPr) then o(X, IPr) is a subspace of H1(NX).

Proof: See [77], Theorem 2.8 and Proposition 2.14. 2

Remark 1.5.14 A nice consequence of the above result is that if h1(NX) =
0 and X is a local complete intersection, then [X] is a smooth point for
HilbrP (t). The converse does not hold. In fact, we have already recalled in
Remark 1.5.12 that a complete intersection X is always unobstructed, but
if dim(X) > 0 in general h1(NX)) 6= 0, as one can immediately find, for
example, with a complete intersection of type (2,m), m ≥ 4, in IP3.

When X is a local complete intersection curve in IPr, we shall denote
by Hilbd,g,r the Hilbert scheme of curves in IPr of degree d and (arithmetic)
genus g, since in such a case the Hilbert polynomial is P (t) = dt+ (1− g).
We can give a simpler formula for the lower-bound of the dimension of each
component of this Hilbert scheme.

Corollary 1.5.15 If X is a local complete intersection curve in IPr,

χ(NX) ≤ dim[X](Hilbd,g,r) ≤ h0(NX), (1.28)

and the second inequality is an equality if and only if X is unobstructed.
Moreover,

χ(NX) = (r + 1)d+ (r − 3)(1− g)

is called the Hilbert number, denoted by h(d, g, r).

Proof: (1.28) is nothing but Proposition 1.5.13. To compute h(d, g, r) it
suffices to consider the normal sequence of X in IPr and the Euler sequence
of IPr restricted to X. 2

The number h(d, g, r) is sometimes called also the expected dimension (or the
estimated dimension) of the Hilbert scheme. Non-special curves or canonical
curves, of genus g ≥ 3, are examples of smooth points of their corresponding
Hilbert scheme components with the expected dimensions.
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Definition 1.5.16 A component W of the Hilbert scheme Hilbd,g,r whose
general point corresponds to an irreducible, non-singular and non-degenerate
curve, is called regular if it is smooth of the expected dimension h(d, g, r) at
its general point. If it is not regular, W is said to be superabundant.

Notice that a superabundant component may very well have the expected
dimension in which case it is not smooth at its general point, i.e. it is not
reduced. There is a famous example, due to Mumford ([98]), of a non-
reduced component of the Hilbert scheme of curves of degree 14 and genus
24 in IP3. On the other hand, we already know that one may also have
superabundant components which are generically smooth, but of dimension
larger than h(d, g, r). Examples are given by complete intersection curves
with special normal bundle; in this case, the expected dimension is strictly
less than the effective one.

There are a number of useful variants of the Hilbert scheme (see [60]
or [120]); one is the Hilbert scheme parametrizing subschemes of a given
subscheme of IPr.

Fix r ≥ 1, a polynomial P (t) ∈ Q[t] and a closed subscheme Y ⊂ IPr.
For every scheme Σ let

HilbYP (t)(Σ) := {flat families X ⊂ Y × Σ of closed subschemes of Y

parametrized by Σ with Hilbert polynomial P (t)}.

We obtain a contravariant functor

HilbYP (t) : (schemes)→ (sets)

called the Hilbert functor of Y relative to the polynomial P (t), which is a
subfunctor of HilbrP (t).

Theorem 1.5.17 For every Y and P (t) as above HilbYP (t) is represented
by a closed subscheme HilbYP (t) of HilbrP (t), called the Hilbert scheme of Y
relative to P (t), and by a universal family

UY ⊂ Y ×HilbYP (t) ⊂ IPr ×HilbYP (t)

↓
HilbYP (t) .

Proof: See [120], page 10-5. 2

The infinitesimal study of the schemes HilbYP (t) can be carried out with-
out changes as in the case of the ordinary Hilbert schemes. As for the general
case, one finds that for a given X ⊂ Y ⊂ IPr the tangent space to HilbYP (t)

at [X] is such that

T[X](Hilb
Y
P (t)) ∼= H0(X,NX/Y ), (1.29)

where NX/Y is the normal sheaf of X in Y (see [41], page 137). As be-
fore, this gives an ”a priori” estimate for the dimension of the componets of
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HilbYP (t). There is also a definition of the obstruction space of X in Y , de-
noted by o(X,Y ), analogous to that of o(X, IPr). If X is regularly embedded
in Y , then o(X,Y ) ⊂ H1(X,NX/Y ), and the previous results on HilbrP (t)

generalize with no changes (see [77], page 34, and [120], page 10-8).

With complete analogy of what we have considered before, given a flat
family

X ⊂ Y ×B → B

of subschemes of Y parametrized by B, such that X = Xb0 , one can define
the characteristic map of the family,

ρ : Tb0(B)→ H0(NX/Y ) = T[X](Hilb
Y
P (t)).

Indeed, as before, an element v in Tb0(B) can be interpreted as a morphism
of pointed schemes

v : (∆ε, o)→ (B, b0).

Pulling back the family X via v yields a first-order embedded deformation
of X in Y , so that an element of H0(NX/Y ).

On the other hand, we shall consider the schemeMg, which is the coarse
moduli space for smooth, complete, connected curves of genus g. There
are several approaches to construct Mg: Teichmüller approach, the Hodge
Theory approach and the Geometric Invariant Theory (GIT) approach, due
to Mumford (see [60] for a brief overview). The main result is the following:

Theorem 1.5.18 Given a positive integer g ≥ 2, Mg is a coarse moduli
space. It is a quasi-projective variety of dimension 3g − 3. Indeed, if we
denote by M0

g the open dense subscheme of Mg consisting of isomorphism
classes of smooth, non-trivial-automorphism-free curves of genus g, then for
[C] ∈M0

g (which is a smooth point of Mg)

T[C](M0
g) ∼= H1(C, TC). (1.30)

Proof: See [60], Chapters 2 and 4. 2

The compactification ofMg is a fundamental result of Deligne and Mum-
ford ([35]), which shows that stable curves of (arithmetic) genus g are the
right class of curves to consider for moduli problems.

Notation. Mg and Mg,n denote the coarse moduli spaces of stable and
n-pointed stable curves. These spaces exist as projective varieties and they
are stable compactifications of Mg and Mg,n, respectively (see [60]).

An immediate remark on the geometry of such compactifications is the
following. Fix a stable curve X with δ nodes and ν irreducible components
Xi, each of geometric genus gi. To specify such a stable curve, we have to
consider the normalizations Ci’s of the Xi’s and the points, on each of these
curves, that will be identified to form the nodes of X; there will be 2δ such
points in all. The family of such curves has dimension

(∗)
ν∑

i=1

(3gi − 3) + 2δ
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(see [60]); by using Leray’s isomorphisms, we can compute the arithmetic
genus g of X, which is

g = (
ν∑

i=1

gi) + δ − ν + 1,

then (∗) equals
3g − 3− δ. (1.31)

From (1.31), we deduce the following important property ([60]).

Proposition 1.5.19 The locus Sδ inMg, determined by stable curves with
exactly δ nodes, has pure codimension δ in Mg. Moreover, the locus of
curves with more than δ nodes lies in the closure of the locus of those with
exactly δ nodes.

We can relate what we have discussed up to now to infinitesimal defor-
mation theory. In the last part of this chapter, we shall limit ourselves to
consider only deformations related to curves.

There are several variations of the basic first-order deformation theory
plan. In general, the application of deformation theory involves three steps:
(i) pose the appropriate deformation theoretic problem, (ii) calculating the
space of first-order deformations and (iii) constructing, if it exists, a versal
deformation space. For what concerns point (i), denote by C a smooth,
complete, connected curve. Then:

(a) A deformation of C is nothing but a flat family π : X → B together
with an isomorphism C ∼= π−1(o).

(b) A deformation of a pointed curve (C, p1, . . . , pk) is a flat family π :
X → B together with an isomorphism ψ : C ∼= π−1(o) and disjoint
sections σi : B → X such that σi(o) = ψ(pi).

(c) A deformation of a map ϕ : C → Y , with C and Y fixed, is a map
ϕ̃ : C ×B → Y ×B, whose restriction to C × {o} is ϕ.

(d) A deformation of a map ϕ : C → Y , with Y fixed, is a deformation
π : X → B of C together with a map ϕ̃ : X → Y × B fitting into the
commutative diagram:

C
∼=→ π−1(o) → X ϕ̃→ Y ×B ← Y

↓ ↓ ↓ ↓ ↓
o = o ∈ B = B 3 o .

(Particular cases of (d) are equisingular deformations which will be the
core of the next chapter).

Step (ii) reduces to compute first-order deformations.

The space of first-order deformations of a smooth curve of genus g (case
(a)) is the vector space H1(C, TC), related to the infinitesimal study of the
moduli space Mg at the smooth point [C].
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For case (c), the space of first-order deformations of ϕ, with C and Y as-
sumed to be fixed, is H0(ϕ∗(TY )). In particular, if Y = C and ϕ is the iden-
tity map, then the first-order deformation space is just the space H0(C, TC)
of global vector fields on C.

Case (d) is related to Horikawa’s theory; as already mentioned, if ϕ has
everywhere injective differential, the first-order deformation space of the
map ϕ : C → Y , with Y fixed, is nothing but H0(Nϕ) (see Section 2.2 for
more details). In particular, the space of the first-order deformations of the

identity C
id
↪→ Y ⊂ IPr is the space H0(NC/Y ).

Finally, in case (b), the space of the first-order deformations of the pointed
curve is the vector space H1(TC(−p1− . . .−pk)). Note that in this example,
there is a natural map to the space of first-order deformations of C alone;
indeed, if we putD = p1+. . .+pk ∈ Div(C), it is the map onH1’s associated
to the exact sequence

0→ TC(−D)→ TC → OD → 0.

In particular, if C has no global vector fields, then the space of the first-
order deformations of the points on the fixed variety is just H0(OD), i.e.
the direct sum of tangent spaces to C at the points pi.

Another important example is the space of first-order deformations of a
singular curve (see [7] and [60], Chapter 3). We shall consider only the case
of nodal curves in a smooth, projective surface S.

Denote by X a reduced, irreducible, δ-nodal curve in S and let ϕ :
C → X ⊂ S be its normalization map. To introduce first-order deformation
theory of nodal (in particular semistable) curves we need an object which
replaces, in this situation, the tangent bundle on a smooth curve. Such
a key tool is the sheaf of derivations of X in (1.20), Section 1.4, which
was denoted by ΘX . Recall that, by applying the contravariant, left-exact
functor Hom(−,OX) to the exact sequence

0→ IX/I2
X → Ω1

S |X→ Ω1
X → 0,

we obtained

0→ ΘX → TS |X→ NX/S → Ext1(Ω1
X ,OX)→ 0;

moreover, we posed
T 1

X = Ext1(Ω1
X ,OX),

which is the first cotangent sheaf of X, supported on Sing(X) (see Sect.
1.4, (1.21)). As in [7], if we denote by T1

X the set of isomorphism classes of
all first-order deformations of X, then

T1
X
∼= Ext1(Ω1

X ,OX)

(formula 4.2.13 in [7]). Thus the study of first-order deformations ofX nodal
reduces to compute the dimension of the vector space of the equivalence class
extensions of Ω1

X by OX .
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By applying the local-to-global spectral sequence for Ext of Theorem
1.1.19 to

0→ ΘX → TS |X→ NX/S → T 1
X → 0,

we get

0→ H1(ΘX)→ T1
X
∼= Ext1(Ω1

X ,OX) v→ H0(T 1
X)→ 0. (1.32)

This exact sequence has the following geometric interpretation.

Proposition 1.5.20 Let S be a smooth, projective surface, let X ⊂ S be a
reduced, irreducible nodal curve and let ϕ : C → X ⊂ S be the normalization
map. Let pa(X) be the arithmetic genus of X and g its geometric genus.

(i) The vector space H1(X,ΘX) parametrizes the isomorphism classes of
locally trivial first-order deformations of X; in particular, all the sin-
gularities of X persist by deforming X along these directions of defor-
mation.

(ii) T 1
X is a skyscraper sheaf supported at the singular points of X. For

each node p of X, T 1
X,p
∼= C. In particular h0(X,T 1

X) = δ, the number
of nodes of X. Any first-order deformation of X whose isomorphism
class in Ext1(Ω1

X ,OX) is mapped by v into a non-zero element of T 1
X,p

represents a smoothing directions of the singularity p of X.

(iii) dim(Ext1(Ω1
X ,OX)) = 3pa(X)− 3, if pa(X) ≥ 2 and X is stable.

Proof: See [7], Proposition 4.2.18. 2

Corollary 1.5.21 For a stable curve X, with δ nodes and arithmetic genus
pa(X) ≥ 2, we have that

h1(ΘX) = 3pa(X)− 3− δ

and
H0(X,T 1

X) = ⊕p∈Sing(X)T
1
X,p;

in particular, one can independently smooth each singular point of X (up to
the first-order).

Remark 1.5.22 If p1, . . . , pδ, q1, . . . , qδ are points in C mapping to the
nodes of X via ϕ : C → X ⊂ S, i.e. ϕ(pi) = ϕ(qi), then one has

Hom(Ω1
X ,OX) = ϕ∗TC(−B),

where B =
∑δ

i=1(pi + qi). So, by Leray isomorphism (1.15), deformations of
X preserving the singularities correspond to deformations of the 2δ- pointed
smooth curve (C; p1, . . . , pδ, q1, . . . , qδ) (see [60]).
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Chapter 2

Families of Nodal Curves on

Algebraic Surfaces and

Severi Varieties

This chapter is devoted to the subject of singular curves in projective va-
rieties; in particular we shall focus on nodal curves on smooth projective
surfaces. We shall begin (see Section 2.1) with a brief introduction to the
problem, by recalling some of the most important motivations which have
classically and recently stimulated researches in these topics. Since this is
not intended as an exhaustive survey, the reader is referred to a sufficiently
detailed bibliography.

In Section 2.2, we recall the basic definitions and properties of the
schemes which parametrize nodal curves on smooth, projective surfaces.
These are classically known as Severi varieties, even if Severi considered
only plane curves. We shall give the precise definition of what we intend for
Severi variety, since it is slightly different from what is classically meant.
Indeed, we shall consider families of irreducible, nodal curves in given linear
systems, which determine only locally closed subschemes in these projective
spaces. Moreover, we shall ”specialize” the first-order deformation theory,
recalled in the previous chapter, to the case of equisingular deformations.
This allows us to give a cohomological interpretation of the tangent space at
a smooth point of a Severi variety and then to easily compute the dimension
of such a scheme. This will be fundamental in the sequel for our analysis
(see Chapters 3 and 4).

In the last section, we shall give an overview of what is known, up to
now, about Severi variety theory. Indeed, in recent times, there have been
many results on this subject and in many directions. In fact, one may study
several problems concerning Severi varieties: existence (i.e. non-emptyness),
dimensional and smoothness problems, enumerative problems, irreducibility
and the behaviour, from a moduli point of view, of the curves parametrized
by such varieties. We have tried to recall some of the most important results
on these subjects and, when it was not too far from the scope of our work,
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to briefly examine the techniques used to prove such results. For a deeper
analysis, the reader is referred to the original articles.

2.1 Singular curves on projective varieties: moti-

vations, related problems and historical back-

ground

The classification of (algebraic) varieties is based on the study of invariants
that one can discover on them. One way to determine important invari-
ants consists in observing the possible subvarieties that a given variety can
contain; this leads, for example, to the classical definition of the group of
divisors existing on a variety X (see Section 1.1); this is strictly related to
its analytic structure, i.e. to the meromorphic functions defined on X.

In order to control the invariants of a variety, it is fundamental to know
their behaviour in a family of varieties. For example, in the case of S a
smooth surface in IP3, of given degree d ≥ 4, there is a well-known result,
the Noether-Lefschetz theorem, which states that the Picard group of the
generic surface is a rank-one free Z-module, generated by the plane section
of S, i.e. Pic(S) ∼= Z[H] (see [103]). Then, one naturally arrives to the
definition of the Noether-Lefschetz locus.

Definition 2.1.1 Let d be a positive integer bigger than 3 and let N =
h0(OIP3(d)) − 1. The Noether-Lefschetz locus, NL(d), is the set of points
s ∈ IPN corresponding to smooth surfaces S in IP3 such that Pic(S) is not
generated, over Z, by OS(H).

It is well-known that this locus is a countable union of proper subvarieties
of IPN (see, for example. [83]).

Recent researches have given further refinements for the classification
problem; one way is to study what kind of singular curves can exist in a
given variety or, in the case of a surface S, in a given Picard class. The
study of this problem has been recently stimulated not only by research
interests in Algebraic Geometry, but also by several applications to other
fields, as Particle Physics and Hyperbolic Geometry. Indeed, on the one
hand the theory of strings of nuclear physicists deals with the enumerative
geometry of rational curves contained in some projective threefolds, which
has given ”life” to the quantum cohomology machinery (see, for example,
[45], [78], [79] and [109]); on the other hand, the study of singular curves is
naturally related to the hyperbolic geometry of complex projective varieties.
We recall that a compact, complex manifold M is said to be hyperbolic (in
the sense of Kobayashi, [74]) if there are no non-constant, entire holomorphic
maps f : C→M . An important problem is to characterize which projective
varieties X, over the complex field, are hyperbolic. The most optimistic
lower bound for the degree of hyperbolic n-dimensional hypersurfaces would
be 2n+ 1, for n ≥ 2 (see [37]). So, in the case of a smooth surface S ⊂ IP3,
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the bound is strongly expected to be equal to 5, which is precisely the lowest
possible degree for S to be of general type. In [37] there is a partial answer
to Kobayashi’s conjecture on the hyperbolicity of generic surfaces of general
type in IP3; indeed, it is proven that the general surface of degree at least 42
is hyperbolic in the sense of Kobayashi. So the problem still remains open
for low degrees.

An approach, for an intermediate step, to give an affirmative answer to
this problem was given by Demailly ([36]), since he proved that hyperbolicity
on a smooth, projective variety X implies that it is algebraically hyperbolic,
i.e. there exists a real positive number ε such that every algebraic curve
C ⊂ X, of geometric genus g and degree d, satisfies 2g − 2 ≥ εd. Clemens
([31]) proved, in the following result, that a general surface of degree at least
6 in IP3 is algebraically hyperbolic.

Theorem 2.1.2 Let C be a curve on a surface S of degree d ≥ 5 in IP3.
By the Noether-Lefschetz theorem, if S is general, C must be a complete
intersection of type (d, k) in IP3, for some k ∈ IN. Then, there is no (d, k)-
type curve on S with geometric genus g ≤ 1

2dk(d−5). In particular, there is
no curve with geometric genus g ≤ 1

2d(d− 5) on a general surface of degree
d ≥ 5 in IP3.

Clemens argument was extended by Ein ([39], [40]), to the case of com-
plete intersections in higher dimensional varieties. Other generalizations of
Clemens result in higher dimensions are given by Voisin ([137]). There are
also some recent results of Chiantini, Lopez and Ran ([26]) concerning the
study of the desingularization of subvarieties of generic hypersurfaces in any
variety.

For what concerns singular curves in projective surfaces, we mention
that in 1994 Geng Xu ([143]) improved Clemens result for surfaces in IP3

and gave an affirmative answer to a conjecture of Harris, which stated that
on a generic surface of degree d ≥ 5 in IP3 there are neither rational nor
elliptic curves.

Theorem 2.1.3 On a generic surface S of degree d ≥ 5 in IP3, there is
no curve with geometric genus g ≤ 1

2d(d − 3) − 3 and this bound is sharp.
Moreover, this sharp bound can be achieved only by tri-tangent hyperplane
sections if d ≥ 6. In particular, S is algebraically hyperbolic.

In [25], Chiantini and Lopez translate Xu’s local analysis approach with
a global study of the focal locus of a family in order to consider algebraic
hyperbolicity problem for surfaces which are general in a given component of
the Noether-Lefschetz locus of surfaces in IP3, and for surfaces in IP4 which
are projectively Cohen-Macaulay.

For what concerns families of curves on surfaces, expecially surfaces of
general type, we must also recall the paper of Bogomolov [13], where he
considers the problem of bounding curves in surfaces of general type by
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their geometric genus. His technique relies on the idea of lifting curves to
the tangent bundle of the surface and uses foliation arguments. In [85], Lu
and Miyaoka determine some effective bounds for the degree of a curve in a
surface of general type, with the only constraints on the number of ordinary
nodes and ordinary triple points of the curve. Moreover, they prove that in
a surface of general type, there are only a finite number of rational curves
and elliptic curves with a fixed bound on the number of ordinary nodes and
ordinary triple points of each curve. They generalize these results to higher
dimensions in [86].

From this brief overview, it is then clear how important is the problem
of studying families of smooth and singular curves on varieties and how
much must still be proven. From now on, we shall focus on the problem of
studying some properties of some families of singular curves on a smooth,
projective surface.

Among singular curves, nodal curves play a central role in this subject.
In [125], Anhang F, Severi studied families of plane curves of given degree
and given geometric genus. The varieties, which parametrize such plane
curves, can be viewed as particular cases of Hilbert schemes. As recalled in
Section 1.5, we know that in general the structure of the projective variety
Hilbd,g,r is very hard to understand; it may be reducible, with components
of arbitrarily many dimensions, except that dim(Hilbd,g,r) ≥ 3g − 3 + ρ +
(r+ 1)2 − 1 when Hilbd,g,r 6= ∅. Moreover, recall that there are examples of
non-reduced components of some Hilbert schemes; in fact, in [98], Mumford
describes a family of non-singular space curves whose component of the
Hilbert scheme is generically non-reduced.

In the case r = 2, i.e. what is classically known as Severi variety of plane
curves, the situation is more favourable. To make clearer the exposition, we
have to recall some definitions and some notation from [59] and [60].

In Definition 1.1.5, we have recalled the definition of geometric genus for
a smooth and irreducible variety.

Definition 2.1.4 If C is any reduced (but possibly reducible) curve, by geo-
metric genus of C we mean the arithmetic genus of its normalization. Thus,
if C is the union of ν irreducible components Ci of geometric genera gi,
respectively, the geometric genus of C will be

g(C) = (
ν∑

i=1

gi)− ν + 1. (2.1)

Let now IPN , N = d(d+3)
2 , be the projective space parametrizing all plane

curves of degree d. There are some locally closed subschemes of IPN , fitting
in the following diagram

Ud, δ ⊂ Ud, g ⊂ IPN

∪ ∪
Vd, δ ⊂ Vd, g

where
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· Ud, g is the subset of IPN consisting of reduced (but not necessarily irre-
ducible) curves of degree d and geometric genus g (as in Definition 2.1.4);

· Vd, g is the subset of Ud, g consisting of irreducible curves of degree d and
geometric genus g;

· Ud, δ is the subset of Ud, g consisting of reduced curves of degree d, with
only δ = 1

2d(d− 1)− g nodes as singularities.

· Vd, δ is the intersection of Vd, g with Ud, δ, i.e. it consists of reduced and
irreducible curves of degree d, with only δ = 1

2(d − 1)(d − 2) − g nodes as
singularities.

It is well-known that these are locally-closed subschemes of IPN ; their clo-
sures are classically named Severi varieties of plane curves of degree d, with
the further conditions on the geometric genus or on the number of nodes,
respectively.

Observe that, a priori, for nodal curves in Ud, δ, the number of nodes δ
is such that 0 ≤ δ ≤ d(d−1)

2 . There always exist curves of degree d with δ

nodes, for δ varying in this range of values, but the bigger is the value of δ,
the higher is the possibility to find only reducible nodal curves. Indeed, the
maximum δ = d(d−1)

2 is reached only by d-gons, i.e. by curves consisting of
d distinct lines, no three of which have a common point. We shall prove the
theorem, due to Severi, of the existence of irreducible, nodal plane curves
with δ ≤ (d−1)(d−2)

2 (see Theorem 3.1.1). Indeed, for irreducible curves of
degree d with δ nodes to exist it is necessary and sufficient that δ satisfies
this stronger inequality.

Severi ([125]) focused on this subject and proved the following result.

Theorem 2.1.5 (Theorem of Severi, see [44], [60] (pag.30) and [145]) For
d, g and δ ≤ d(d−1)

2 non-negative integers, one has:

(i) Ud, δ is non-empty;

(ii) Ud, δ is everywhere smooth of dimension d(d+3)
2 − δ = 3d+ g − 1;

(iii) If δ > σ, then Ud, δ is contained in the closure of Ud, σ. The branches
of Ud, σ through a point [C] in Ud, δ are non-singular and correspond to the
choices of σ assigned points among the δ nodes of C. The other δ−σ virtual
nodes disappear when one deforms [C] to the corresponding branch of Ud, σ;

(iv) If [C] ∈ Ud, δ and if A is a set of σ < δ nodes of C, the curves C ′, with
[C ′] in the corresponding branch of Ud, σ, have k irreducible components,
where k is the number of connected components of the complement of A in
C.

Corollary 2.1.6 If δ ≤ (d−1)(d−2)
2 , Vd, δ is non-empty and everywhere smooth

of dimension d(d+3)
2 − δ = 3d+ g − 1.

Observe that 3d+g−1 = N−δ, which means that the nodes of an irreducible,
nodal curve C impose independent conditions to the complete linear system
| dL | (L a line in IP2) to which C belongs. As Zariski wrote, this is in
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agreement with the intuitive expectation that the requirement that a curve of
degree d possesses δ nodes (in non-assigned position) imposes δ independent
algebraic (non-linear) conditions on the curve ([145], pag. 209). As we
shall see in Theorem 3.1.1, this can be easily proven by using equisingular
deformation theory.

The application of deformation theory to the geometry of these schemes
was carried out first by Arbarello and Cornalba [2] and then, independently
and via a different approach, by Zariski [145].

Zariski proved a general result on algebraic systems of plane curves.
Before stating his result, we recall some terminology.

Definition 2.1.7 Let S be a smooth surface and let V be a variety. Denote
by Σ a subvariety of the product S×V . (Σ, V ) (with abuse of language only
Σ) is said to be an algebraic system of curves parametrized by V if, for each
y ∈ V , Σy = Σ · (S ×{y}) is a curve in S. (Σ, V ) is said to be irreducible if
V is; the dimension of the algebraic system is, by definition, dim(V ). The
algebraic system of curves is called complete (or maximal) if there exists
no irreducible algebraic system Σ′ containing Σ as a proper subsystem and
such that the general curve C of Σ is a general curve of Σ′. In the case of
S = IP2, (Σ, V ) is an algebraic system of plane curves of degree d and genus
g if, for a general y ∈ V , the curve Σy is of degree d and genus g.

Theorem 2.1.8 (Zariski, [145]) Let Σ denote a complete, irreducible alge-
braic system of plane curves of degree d, in which the general curve C is
reduced and has arbitrary singularities. Let g denote the geometric genus of
C, as in Definition 2.1.4. Then,

dim(Σ) ≤ 3d+ g − 1,

with equality if and only if C has only nodes as singularities.

From this, it follows that the general element of V d,g is an irreducible nodal
curve of geometric genus g = pa(dL)− δ. Therefore, we have the following

Corollary 2.1.9 With notation as in Theorem 2.1.5, Vd,δ is dense in Vd,g.

Another important point, which we didn’t mention in Severi’s theorem
above (Theorem 2.1.5), is the fact that V d, g is irreducible. Indeed, this was
not proven by Severi, since his approach was wrong. With terminology as
in Definition 2.1.7, he stated that:

Each complete, irreducible system, whose general point is an irreducible
plane curve of degree d, with only δ nodes as singularities, contains all the
d-gons of the plane (i.e. all the curves consisting of d lines in general posi-
tion).

To prove this, he asserted that each complete, algebraic system contains
curves C0 consisting of d distinct lines through a point O (and this was
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correct). Moreover, he also stated that, if a general curve C of such a
complete system has only δ nodes as singularities and if it specializes to
the above curve C0 = L1 + · · · + Ld, then the δ nodes of C specialize to
δ nodes of C0 centered at O, i.e. in the specialization each node of C
specializes to a node formed by two of the d lines Li. This second assertion
is false. There are some counterexamples treated in [145]. This has been an
important open problem for a long time. By using Severi’s correct statement
on the smoothness of V d, g and Corollary 2.1.9, to prove its irreducibility is
equivalent to showing that the dense open subset Vd,δ is connected.

One of Severi’s reasons for proving that Vd,δ is connected was to give a
proof of the (connectedness) irreducibility of the moduli space Mg, using
only methods of Algebraic Geometry, and to find a proof for his conjecture
on the unirationality ofMg, for all g. Indeed, there is a well-defined map

πd,δ : Vd,δ →Mg,

where g = (d−1)(d−2)
2 − δ, by considering the simultaneous desingularization

of all the nodal curves parametrized by Vd,δ. Since every curve can be
represented by a nodal plane curve of sufficiently large degree d, then πd,δ

is dominant onMg, for d large with respect to g. Moreover, Severi already
knew, in 1921, that Mg is unirational for g ≤ 10 ([125]; see also [3] for a
modern proof).

After the Deligne-Mumford compactification of Mg (see Section 1.5),
whose boundary points correspond to stable curves of arithmetic genus g, to
show the (connectedness) irreducibility ofMg is equivalent to the assertion
that any non-singular curve of genus g can be degenerated to a stable curve.
This was proven later by Fulton in the Appendix of [61]; in the same article,
Harris and Mumford gave a negative answer to Severi’s conjecture, by prov-
ing that Mg is of general type for g ≥ 24 and that the Kodaira dimension
ofM23 is bigger then 0.

However, after the article [61] Severi’s assertion on the irreducibility of
V d, g was still an open problem. Only after more than 60 years from Severi’s
statement, Harris completed, in [58], the proof of the irreducibility of the
Severi variety V d, g of the projective plane, by showing that the dense open
subset Vd, δ is connected (cf. also Arbarello-Cornalba, [4], for a proof in
case 3d − 2g − 6 > 0). Harris proof is along lines suggested by Severi;
he argues that there is a unique component of V d, g containing the locus
of rational nodal curves and, then, that every component of V d, g contains
V d, 0. The first of these two statements has been known for some time
before and we will recall it later on. To establish the second, Harris shows
that any component W of V d, g contains suitable degenerations (said good
degenerations) to curves of lower geometric genus. This is done by forcing
the curves in W to have a higher and higher contact with a line L ⊂ IP2.
For details, the reader is referred to the original paper. Here we only want
to mention the following result.

Proposition 2.1.10 (see [58])

There is a unique component of V d, g which contains the variety V d, 0.
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Proof: Note first that the variety V d, 0 of rational curves of degree d is irre-
ducible. Indeed, the previous variety contains the subscheme of irreducible,
maximal nodal curves V

d,
(d−1)(d−2)

2

as an open dense subset. This open set

is connected, since each rational, nodal curve in IP2 is simply the projection
of the rational normal curve X ⊂ IPd from a subspace Λ ∼= IPd−3 ⊂ IPd to a
plane Γ ∼= IP2. This gives a dominant rational map from the product of a
Grassmannian G(d−3, d) with the variety PGL(3,C), of isomorphisms of Γ
with IP2, to the Severi variety V d, 0, showing that V d, 0 is irreducible. Then,
we can explicitly describe the variety V d, g in an analytic neighborhood of
a general point of V d, 0. In fact, since a general point in V d, 0 corresponds
to a curve E with (d−1)(d−2)

2 nodes and since there exist deformations of
E smoothing independently any subset of these nodes1, there are exactly(

(d−1)(d−2)
2
g

)
sheets of V d, g through E, corresponding to the subsets of

cardinality g in the whole set of nodes. The statement of the proposition now

ammounts to the assertion that, as E varies in V d, 0, these

(
(d−1)(d−2)

2
g

)
sheets are interchanged transitively. This will in turn follow from the fact
that :

as E varies in V d, 0, the monodromy group acts as the full symmetric group
of nodes of E.

Since, as we have observed before, E can be realized as a projection of a
rational, smooth curve X from a linear subspace Λ ⊂ IPd, the nodes of E
correspond to the points of intersection of Λ with the the chordal variety of
X. By the Uniform Position theorem (see [5]), the monodromy action on
the points of intersection of any irreducible variety with a general plane of
complementary dimension is the full symmetric group. 2

As an immediate consequence of the previous proposition, we see that
to prove that V d, g is irreducible reduces to prove that every component of
V d, g contains V d, 0 in its closure. By induction, there must be proven that
any component of V d, g contains in its closure a nodal curve of geometric
genus g′ < g. This is the analysis of nice deformations of Harris (see [58] or
[59]).

2.2 Equisingular deformations and Severi varieties

of irreducible, nodal curves on smooth, projec-

tive surfaces

As mentioned in the introduction of the present chapter, here we shall deal
with equisingular deformation theory of nodal curves on a smooth, projective
surface S. We will describe the Cartesian and the parametric approach to
the problem, by analyzing in detail the exact sequences of sheaves and the

1We shall see in the next section that this is an important consequence of the fact

that the nodes impose independent conditions to the complete linear system to which E

belongs.
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vector spaces which describe the problem. Then, we shall give the definition
of what we intend, from now on, for Severi variety. This will enable us to
give a natural interpretation of the vector spaces which represent the tangent
space and the space of obstructions at a point [X] of such a variety, in terms
of the ideal sheaf of the 0-dimensional scheme of nodes of the singular curve
X.

As in (1.24), Section 1.5, let ∆ε = Spec(C[ε]/(ε2)) and let o denote its
unique closed point.

We shall focus on equisingular deformations of an irreducible, nodal
curve X ⊂ S. So, let

ϕ : C → X ⊂ S

be the normalization map of X, let pa = pa(X) denote the arithmetic genus
of X, whereas g its geometric genus, so that pa = g + δ, where δ denotes
the number of nodes of X. As already mentioned in Section 1.4, one can
approach the problem of studying equisingular deformations of the nodal
curve X in two different ways.

The first one can be called the Cartesian approach, which deals with the
cohomology of the equisingular sheaf. As computed in Section 1.4, from the
conormal sequence of X in S one determines the following exact sequence
on X:

0→ ΘX → TS |X→ NX/S → T 1
X → 0 (2.2)

(see Sect. 1.4, (1.20) and (1.21)), which splits into the shorter exact se-
quences

0→ ΘX → TS |X→ N ′
X → 0 (2.3)

and

0→ N ′
X → NX/S → T 1

X → 0, (2.4)

where N ′
X , the kernel of the surjection NX/S → T 1

X , is the equisingular
sheaf.

If X is such a curve, one can consider the functor of Artin rings

HX(A) = {divisors XA ⊂ SA, A− flat, inducing X on the closed fibre}

for each Artin local C-algebra A and the subfunctor

H′X(A) = {XA ⊂ SA locally trivial over A}.

As we shall see in the sequel, the 0− th and first cohomology groups of the
sheaf N ′

X give the tangent and obstruction spaces of H′X , respectively.

On the other hand, by Horikawa’s works ([67], [68] and [69]), we can
consider deformations of non-degenerate morphisms which are related to
the parametric approach (see also [2] and [15] for an Algebraic Geometry
approach). More generally, these are concerned with families of maps from

50



a possibly variable smooth domain to a fixed smooth target space. In other
words, one considers a flat, smooth, proper family f : Y → B over a smooth,
connected base B, a smooth variety W and a morphism Φ : Y → B ×W of
B-schemes. For each b ∈ B, we let φb : Yb → W be the restriction of Φ to
the fibre Yb of Y over B and

dφb : TYb → φ∗bTW

be its differential.

In this way, we get a family of deformations of morphisms into W , which
is the quadruplet (Y,Φ, f, B) of schemes Y, B and morphisms Φ and f , with
f proper and surjective.

From now on, we will assume that each φb has injective differential (dφb)y

at each point y. Thus, for each b ∈ B, we have an injective sheaf morphism,

0→ TYb

(φb)∗→ φ∗b(TW ).

In particular, for b = o, the central point of B (for which Yo
∼= Y ), we have

an exact sequence

0→ TY
(φo)∗→ φ∗o(TW )→ Nφo → 0.

Remark 2.2.1 Observe that, when φo = i is the identity and Y ⊂W , then
Nφo = NY/W .

Definition 2.2.2 The cokernel Nφo of the morphism (φo)∗ is the normal
sheaf of the map φo and H0(Nφo) is called the characteristic system of the
map.

Equivalently, if we let

dΦ : TY → Φ∗T (B ×W )

be the differential of Φ and N = Coker(dΦ) the normal sheaf of Φ, then
the normal sheaf Nφb

is the restriction of N to the fibre Yb, that is Nφb
=

N ⊗ OYb
. Note that, since φb has injective differential, Nφb

will be locally
free.

The standard applications of Horikawa’s theory are based on a funda-
mental fact. If the family Φ of morphisms is nowhere isotrivial (i.e. the
restriction of Φ to the subfamily YB0 = f−1(B0) ⊂ Y is not isotrivial for
any analytic arc B0 ⊂ B), then at a general point b ∈ B there is an ”a
priori” bound on the dimension of the family:

dim(B) ≤ h0(Yb,Nφb
)

(see Proposition 2.2.3 and Theorem 2.2.5). The Chern classes of the normal
sheaf Nφb

are in general readily calculated, so that in many cases it may
be possible to exactly estimate h0(Yb,Nφb

). The difficulty arises when φb
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has not an injective differential; indeed, if φb is assumed to be only equidi-
mensional onto its image, then the sheaf Nφb

will have a torsion subsheaf
supported exactly on the locus where dφb fails to be an injective bundle map.
Thus, if for example S = IP2 and if the differential dφb vanishes at points of
Yb, the sheaf Nφb

will have torsion there so that the quotient Nφb
/(Nφb

)tors

(and hence Nφb
itself) may well be special, i.e. h1(Nφb

) 6= 0. In such a case,
the dimension h0(Yb,Nφb

) will indeed be larger than the expected estimate
for the dimension of our family. As already mentioned in section 1.4, there
is a standard result, due to Arbarello and Cornalba [2], which states that
first-order deformations of the map φb corresponding to a torsion section of
Nφb

can never be equisingular.

We shall briefly recall the basic results of Horikawa’s theory.

Proposition 2.2.3 The characteristic map of the family B is the vector
space homomorphism

ρΦ : To(B)→ H0(Nφo),

which is the differential at o of the map

B → HilbWPφo(Y )(t)

(see Definition 1.5.10). If ρ denotes the Kodaira-Spencer map of the given
deformation2and ∂ is the coboundary map

∂ : H0(Nφo)→ H1(TY )

of the cohomology sequence associated to

0→ TY
(φo)∗→ (φo)∗(TW )→ Nφo → 0,

then one has a factorization ρ = ∂ ◦ ρΦ, i.e. a commutative diagram

To(B)
ρΦ−→ H0(Nφo)
↘ ρ ↓ ∂

H1(TY ) .

Proof: For a proof, see also [18], Proposition 8.4, or directly [67], Proposi-
tion 1.4. 2

In a complete analogy, one can extend Definition 1.5.5 of complete fam-
ilies to this situation.

Definition 2.2.4 A family (Y,Φ, f, B) is complete at o ∈ B if for any
family (Y ′,Φ′, f ′, B′), such that φ′o′ : Y ′o′ →W is equivalent to φo : Yo →W

for a point o′ ∈ B′, there exists a morphism h from o′ ∈ U ⊂ B′ into B with
h(o′) = o such that the restriction of (Y ′,Φ′, f ′, B′) on U is equivalent to the
family induced by h from (Y,Φ, f, B).

2ρ is the infinitesimal deformation map of the family (Y, f, B) (see [76] or [124])
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Horikawa ([67]) proved in this context a generalization of Proposition 1.5.11.

Theorem 2.2.5 Let ϕ : Y → W be a morphism of smooth varieties with
injective differential at each y ∈ Y .

(1) Let (Y,Φ, f, B) be a family of deformations of morphisms into W such
that φo = ϕ, o ∈ B such that Yo

∼= Y . If the characteristic map

To(B)
ρΦ−→ H0(Nϕ)

is surjective, then the family is complete at o (in the sense of Definition
2.2.4);

(2) If H1(Y,Nϕ) = (0), then there exists a family (Y,Φ, f, B) of morphisms
into W with injective differentials and a point o ∈ B such that:

(i) φo : Yo →W is equivalent to ϕ : Y →W ;

(ii) To(B)
ρΦ−→ H0(Nϕ) is bijective.

In case (1), if B is smooth, with classical terminology one can also say that
the characteristic system H0(Nϕ) of the map ϕ : Y →W is complete.

Remark 2.2.6 From this brief overview, it is clear thatH0(Nϕ) is the exact
analouge of H1(TY ) (in the case of deformations of the smooth variety Y )
or of H0(NY/W ) (in the case ϕ = i the identity embedding), discussed in
Section 1.5. Recall that a sufficient condition in order that the Kuranishi
family is smooth is the sharp assumption h2(TY ) = 0 (see, for example,
[124]). On the other hand, by Remark 1.5.14, if Y is assumed to be l.c.i. in
W , then the condition h1(NY/W ) = 0 implies that Y is unobstructed, i.e. it
corresponds to a smooth point of the Hilbert scheme HilbWP (t). In a similar
fashion, Horikawa proves the generalization for Nϕ, as stated in in Theorem
2.2.5 (2); moreover, in this case, the Kodaira-Spencer map coincides with
the coboundary map

∂ : H0(Nϕ)→ H1(TY),

as it immediately follows from the diagram in Proposition 2.2.3. We em-
phasize the deformation-theoretic interpretation of the cohomology sequence
of

0→ TY → ϕ∗TW → Nϕ → 0.

The coboundary
∂ : H0(Nϕ)→ H1(TY ),

takes a deformation of the map ϕ to the corresponding deformation of Y ,
forgetting the map. The kernel consists of deformations of the map ϕ fixing
both Y and W , modulo automorphisms of Y .
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When Y is a smooth curve of genus g (with no non-trivial automorphism)
and φ0 = ϕ = i (so that Y ⊂ W ) this gives a relationship between the
tangent space at [Y ] to HilbWP (t) and the tangent space at [Y ] to Mg.

Remark 2.2.7 Assume that Y is a smooth curve. If the characteristic
system is complete, then H0(Nϕ) determines the exact number of parame-
ters necessary to describe the first-order deformation family of morphisms
parametrized by B, as in Definition 2.2.4. Indeed, a priori, B could be
described by redundant parameters. h0(Nϕ) is the number of independent
parameters to entirely describe B, whereas

dim(Im(∂)) ≤ h1(TY )

determines the number of moduli of the first-order deformed curves, i.e. the
number of parameters to describe the local moduli space for the elements of
the family.

Sometimes, the characteristic map of the family of Proposition 2.2.3 is
called the Horikawa map of the family (of morphisms) Φ at a point b ∈ B
(see [2] and [15]).

As already mentioned, in our case we have a map ϕ : C → X ⊂ S which
is the normalization of an irreducible, δ-nodal curve X ⊂ S, where S is a
smooth, projective surface. Thus ϕ has injective differential at each point
of C, so Nϕ is a line bundle on C fitting in the exact sequence

0→ TC → ϕ∗TS → Nϕ → 0. (2.5)

The coboundary map

· · ·H0(C,Nϕ) ∂→ H1(C, TC)→ · · · (2.6)

of the cohomology sequence of (2.5) applies the Horikawa class to the Kodaira-
Spencer class of the family pδ : Cδ → ∆ε, where Co ∼= C, o the closed point
of ∆ε (see Theorem 2.2.5 and Remark 2.2.6).

In this case, we will show that the Cartesian approach and the parametric
approach coincide by proving that N ′

X
∼= ϕ∗Nϕ as sheaves onX (see Remark

2.2.11). This depends on the following more general fact:

Definition 2.2.8 (see [18], Def. 9.15 and 11.4) Let Y and W be smooth
varieties. Let ϕ : Y → W be a non degenerate morphism (i.e. it has
generically injective differential) and assume that Σ := ϕ(Y ) is birational
to Y . The map ϕ is said to be stable if the direct image sheaf ϕ∗(Nϕ) is
isomorphic to the equisingular sheaf N ′

Σ, defined as the cokernel of the sheaf
injection

TW (−log(Σ)) ↪→ TW ,

where TW (−log(Σ)) denotes the sheaf of tangent vectors on W which are
also tangent to Σ.
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Proposition 2.2.9 (see [18], Prop. 11.6) Let ψ : Y → W be a non degen-
erate morphism and let Σ = ψ(Y ), with Y and W smooth varieties. Assume
dim(Y ) = 1 and that p ∈ Σ is a singular point of Σ. If ψ is stable, then

(i) Σ is birational to Y ;

(ii) p is an ordinary double point (i.e. a node);

(iii) dim(W ) = 2.

Proof: We do not mention here the proof of this result and we refer the
reader directly to [18]. 2

Example: The morphism t→ (t2, t3), giving an ordinary cusp in the affine
plane over C, is not stable since in fact the deformation

t→ (x1(t) = a0 + t2, x2(t) = b0 + b1t+ t3)

gives a node; in fact, ∂(x1)
∂t = 2t, ∂(x2)

∂t = b1 + t2. The points given by
t = ±

√
−b1 are two points on the affine line mapping to the same point.

Therefore, the morphism cannot be equisingular, otherwise all the deformed
curves would have only cusps.

Turning back to our case, denote by N the set of nodes of X ⊂ S, i.e.

N := Sing(X).

For each non-empty subset I ⊂ N , denote by T 1
X|I the restriction of the first

cotangent sheaf T 1
X to I, extended by zero on X, and by

N I
X = ker(NX/S → T 1

X|I).

We will shortly denote NN
X by N ′

X , and we may view NX/S as being N ∅
X

(see, also, [119]). For every set inclusions

∅ 6= J ⊂ I ⊂ N,

we have sheaf inclusions

N ′
X ⊂ N I

X ⊂ N J
X ⊂ NX/S .

Denote by | I | the number of elements of the set I. The following proposition
is an obvious generalization of what is proven in [119] in the case of X ⊂ IPr.

Proposition 2.2.10 With notation as above, the following properties hold.

(i) For each I ⊆ N ,
χ(N I

X) = χ(NX/S)− | I | .

(ii) We have
χ(NX/S) = χ(Nϕ) + δ,

where δ =| N |.
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Proof:

(i) The statement directly follows from the exact sequence

0→ N I
X → NX/S → T 1

X|I → 0.

(ii) On C we have the exact sequence

0→ Nϕ → ϕ∗(NX/S)→ ϕ∗(T 1
X)→ 0; (2.7)

indeed, by combining the pull-back of (2.4) and (2.5), we get:

0→ TC → ϕ∗TS → Nϕ → 0
↓ ‖ ↓

0→ ϕ∗ΘX → ϕ∗TS → ϕ∗NX/S → ϕ∗T 1
X → 0,

which gives (2.7). By considering the exact sequence

0→ OX → ϕ∗(OC)→ t→ 0, (2.8)

where t is a sky-scraper sheaf supported onN , and by the projection formula,
we deduce

0→ ϕ∗Nϕ → NX/S ⊗ ϕ∗(OC)→ T 1
X ⊗ ϕ∗(OC)→ 0. (2.9)

By tensoring (2.8) with NX/S we obtain the exact sequence:

0→ NX/S → NX/S ⊗ ϕ∗(OC)→ NX/S ⊗ t→ 0. (2.10)

Now compare (2.9) and (2.10) and use that χ(X,ϕ∗(Nϕ)) = χ(C,Nϕ). We
get

χ(C,Nϕ) = χ(X,NX/S) + χ(X,NX/S ⊗ t)− χ(X,T 1
X ⊗ ϕ∗(OC)) =

χ(X,NX/S) + (dim(S)− 1)δ − 2δ = χ(X,NX/S)− δ.

Observe that

χ(X,T 1
X ⊗ ϕ∗(OC)) = h0(X,T 1

X ⊗ ϕ∗(OC)) = 2δ

since, by projection formula, T 1
X⊗ϕ∗(OC) ∼= ϕ∗ϕ

∗T 1
X and h0(X,ϕ∗ϕ∗T 1

X) =
h0(C,ϕ∗T 1

X). 2

Remark 2.2.11 Combining (2.9) and (2.10) one can easily deduce the fol-
lowing exact sequence on X:

0→ N ′
X → ϕ∗Nϕ → NX/S ⊗ t→ T 1

X ⊗ t→ 0. (2.11)

From (2.11), one obtains

h0(N ′
X) ≤ h0(Nϕ).

Since S is a surface, NX/S is locally free of rank one on X; thus

NX/S ⊗ t ∼= T 1
X ⊗ t.
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From this fundamental fact, we directly find that

ϕ∗Nϕ
∼= N ′

X , (2.12)

i.e. ϕ is stable in the sense of Definition 2.2.8; hence,

hi(X,N ′
X) = hi(C,Nϕ), 0 ≤ i ≤ 1.

Moreover, by using the pull-back of (2.4) and the exact sequence (2.7), we
also find

Nϕ
∼= ϕ∗N ′

X , (2.13)

being the kernels of the same surjection of sheaves.

By Theorem 2.2.5, we know that if H1(C,Nϕ) = 0 then a family of
morphisms into S, f : C → B and Φ : C → B × S, always exists such that,
for some closed point o ∈ B, φo : Co → S is equivalent to ϕ : C → X ⊂ S

and the characteristic map is bijective (i.e. the vector space H0(C,Nϕ)
represents the tangent space to B at the smooth point o, corresponding to
[ϕ : C → X ⊂ S]). In such a case, the map ϕ is called non-obstructed.
We can directly obtain these results by considering the Cartesian approach.
More precisely, we can see that the 0 − th and first cohomology groups of
the sheaf N ′

X/S give the first-order equisingular deformation space and its
obstruction space, respectively. For this approach we shall use [119], [120]
and [121].

We start by recalling some useful definitions of infinitesimal algebra and
locally complete intersection schemes (see, [57]).

Definition 2.2.12 A local ring (R,m) is called a complete intersection
(c.i.) ring if the m-adic completion R̂ is isomorphic to a ring of the form
B/I, where B is a complete regular local ring and I is an ideal generated by
a regular sequence. A scheme X is a local complete intersection (l.c.i.) at
the point x ∈ X if the local ring OX,x is a complete intersection ring.

Thus, X is a local complete intersection scheme if it is so at every point.

Definition 2.2.13 Let Y and T be schemes and let g : Y → T be flat
morphism. g is said to be a complete intersection morphism at y ∈ Y if the
fibre g−1(g(y)) is a l.c.i. at the point y. If g is a c.i. morphism at every
y ∈ Y , then it is said to be a a complete intersection morphism.

Proposition 2.2.14 Let g : Y → T be flat morphism of finite type.

(i) If g is a c.i. morphism, then for every scheme morphism T ′ → T , the
induced morphism g′ : Y ′ = Y ×T T

′ → T ′ is a c.i. morphism.

(ii) If g is proper, then the set of t ∈ T such that g−1(t) is a l.c.i. is an open
subset U ⊂ T .
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Proof: See [57], (19.3.9) (ii) and (19.3.8). 2

If X ⊂ IPr is a projective curve, a point x ∈ X is an ordinary double
point (node) if the complete local ring ÔX,x of X at x is isomorphic to the
ring C[[T1, T2]]/(T 2

1 + T 2
2 ); thus X is a l.c.i. at a node x.

Let now S ⊂ IPr be a smooth, projective surface. As in Section 1.5,
given a polynomial p(t) ∈ Q[t], we denote by HilbSp(t) the Hilbert scheme
which parametrizes closed subschemes of S having Hilbert polynomial p(t),
and by HilbSp(t) the corresponding Hilbert functor. Fix integers d > 0 and
pa ≥ 0, and let p(t) = dt + 1 − pa. Let B be a scheme and Y ⊂ S × B
a flat family of closed subschemes of S parametrized by B, having Hilbert
polynomial p(t) (it follows that Y has relative dimension 1 over B). One
can consider the first relative cotangent sheaf of Y over B, T 1(Y/B,OY),
with respect to OY , in such a way that T 1(Y/B,OY) is independent of the
embedding Y ⊂ IPr × B, its definition is consistent with base change and
Supp(T 1(Y/B,OY)) is contained in the locus where Y is not smooth over
B. Moreover, when B = Spec(C),

T 1(Y/B,OY)y
∼= OY,y/mY,y = C⇔ Y has a node at y, (2.14)

(see [81]).

Proposition 2.2.15 Let Y → B be a flat family of closed subschemes of a
smooth surface S, parametrized by B, having Hilbert polynomial p(t). Sup-
pose that the following properties are satisfied:

(a) The projection Y → B is a complete intersection morphism;

(b) T 1(Y/B,OY) is the structure sheaf of a reduced closed subscheme ∆ ⊂ Y
(i.e. dim(T 1(Y/B,OY)y) ≤ 1 at every point y ∈ Y) and ∆ is ètale over B,
of degree δ.

Then, for every geometric point b ∈ B, the fibre Yb is a reduced curve having
δ ordinary double points and no other singularities; in particular, Yb is a
smooth curve if δ = 0.

Proof: Since T 1(Y/B,OY) satisfies the base change property, we have

T 1(Yb,OYb
) ∼= T 1(Y/B,OY)⊗OYb

.

From this and property (b) it follows that T 1(Yb,OYb
) is the structure sheaf

of δ distinct reduced closed points {p1, . . . , pδ}. Therefore, Yb is smooth
outside {p1, . . . , pδ} and at each p = pi we have

T 1(Yb,OYb
))p
∼= C.

It follows that Yb has an ordinary double point at p, from the fact that Yb

is a local complete intersection and from property (2.14). 2

For each intenger δ ≥ 0, we define a functor

FS
δ,p(t) : (Schemes)→ (Sets)
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letting:

FS
δ,p(t)(B) = {(Y ⊂ S ×B) ∈ HilbSp(t)(B) | T 1(Y/B,OY) satisfies

properties (a) and (b) and Yb is connected for each b ∈ B}.

This is a functor because properties (a) and (b) are obviously functorial. We
have an injective functorial morphism

FS
δ,p(t) → Hilb

S
p(t).

It can be proven (see [100]) that FS
δ,p(t) is representable by a locally closed

subscheme VS
δ,p(t) of HilbSp(t) and by the restriction to it of the universal

family X over HilbSp(t). Denote such a restriction by Xδ ⊂ S × VS
δ,p(t). This

is called the universal family of curves of S of degree d, arithmetic genus pa,
having only δ nodes and no other singularity.

We will most often write HilbSd,pa
, VS

δ,d,pa
and FS

δ,d,pa
instead of HilbSd,p(t),

VS
δ,p(t) and FS

δ,p(t). For any scheme B, an element (Y ⊂ S ×B) ∈ FS
δ,d,pa

(B)
will be called a family of curves of S of degree d, arithmetic genus pa having δ
nodes and no other singularity. This terminology is justified by the following
result:

Corollary 2.2.16 Suppose that B is a reduced scheme and that Y ⊂ S×B
is a c.i. flat family. Assume that for every closed point b ∈ B the fibre Yb

is a reduced curve of degree d and arithmetic genus pa, having only δ nodes
and no other singularity. Then (Y ⊂ S ×B) ∈ FS

δ,d,pa
(B).

Proof: Let f : S → HilbSd,pa
be the functorial morphism induced by the

family Y. By hypothesis, f(S) is contained in the support of VS
δ,d,pa

. Since
S is reduced, by the universal property of VS

δ,d,pa
, S factors through it.

Therefore Y is the pullback of the universal family over VS
δ,d,pa

and this
proves the statement. 2

The families Xδ ⊂ S×VS
δ,d,pa

are generalizations of the families of Severi
varieties in the plane. We will now study the local geometrical properties
of the schemes VS

δ,d,pa
by investigating the infinitesimal deformations of a

reduced projective curve X ⊂ S, of degree d and arithmetic genus pa, having
only nodes as singularities.

For simplicity, if A is a local C-algebra and if Y is a scheme, we will
denote by YA the fibre-product Y ⊗Spec(C) Spec(A). Let A be the category
of local artinian C-algebras. Consider the local Hilbert functor

HX/S : A → (Sets)

defined, for every A ∈ A, by

HX/S(A) := {flat families of deformations of
X ⊂ S parametrized by Spec(A)}.

Note that every such family Y ⊂ S × Spec(A) satisfies condition (a) of
Proposition 2.2.15, because the fibre over the central point Spec(C) does,
and that T 1(Y/Spec(A),OY) = O∆, where ∆ is a closed subscheme of Y.
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For every subset I ⊆ N we define a subfunctor of HX/S :

HI
X/S : A → (Sets);

this is determined by considering, for each A ∈ A, only family of deforma-
tions Y ⊂ S × Spec(A) such that ∆ is ètale over Spec(A), at every p ∈ I.
In particular,

H∅X/S = HX/S

and HN
X/S will be shortly denoted H′X/S ; this last functor is the restriction

to A of FS
δ,p(t). Using the theorem of Schlessinger [116], it is straightforward

to check that the functors HI
X/S are prorepresentable for each subset I ⊆ N .

We now denote by Â the category of complete, local C-algebras with
residue field C, and local homomorphisms, and let (R,m) be in Â. Let
tR := (m/m2)∨ be the Zarisky tangent space of R. By the structure theorem
for complete local C-algebras, we have an isomorphism

R ∼= C[[T1, . . . , Tn]]/a, (2.15)

where n = dimC(tR) and where a is an ideal contained in (T1, . . . , Tn)2 =
(T )2. The C-vector space

o(R) := (a/(T )a)∨

is called the obstruction space of R. Its dimension equals the minimal
number of generators of a; in particular, o(R) = (0) if and only if R ∼=
C[[T1, . . . , Tn]]. If o(R) 6= (0), then R will be called obstructed. It is possible
to show that, modulo isomorphism, o(R) does not depend on the presenta-
tion of (2.15) (see [120]). If we denote by dim(R) the Krull dimension of R,
we have the following obvious inequalities:

dimC(tR)− dimC(o(R)) ≤ dim(R) ≤ dimC(tR), (2.16)

and the second is an equality if and only if o(R) = (0) if and only if both
inequalities are equalities.

If we translate in this context what we have observed in Section 1.5
about Hilbert schemes, we get that H0(X,NX/S) is the Zarisky tangent
space of OHilbS

d,pa
,[X]. Moreover, it is a standard verification to check that

o(OHilbS
d,pa

,[X]) is a subspace of H1(X,NX/S); this amounts to check that

H1(X,NX/S) is an obstruction space for the functor HX/S (see [100] or
[120]). From (2.16), applied to R = ÔHilbS

d,pa
,[X], we deduce the following

well known inequalities, which generalize Corollary 1.5.15:

χ(NX/S) ≤ dim[X](Hilb
S
d,pa

) ≤ h0(NX/S); (2.17)

indeed, dim[X](HilbSd,pa
) = dim(ÔHilbS

d,pa
,[X]).

It is similarly easy to show that, for each I ⊆ N = Sing(X), H0(N I
X)

and H1(N I
X) are respectively the tangent space and an obstruction space

for the functor HI
X/S . Therefore, in view of the Proposition 2.2.10, we also

have the following inequalities:

χ(NX/S)− | I |≤ dim(RI) ≤ h0(N I
X). (2.18)
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In particular, for I = N , noting that dim[X](VS
δ,d,pa

) = dim(ÔVS
δ,d,pa

,[X]), we
have

χ(NX/S)− δ ≤ dim[X](VS
δ,d,pa

) ≤ h0(N ′
X), (2.19)

where δ =| N |, the number of nodes of X.

To every morphism h : A → B in Â, there are associated homomor-
phisms of vector spaces dh : tA → tB and o(h) : o(A)→ o(B). We will need
the following result.

Lemma 2.2.17 Let h : A → B be a surjective local homomorphism of
complete local C- algebras with residue field C. Then, for every irreducible
component U of Spec(A) and V of Spec(B) such that V ⊂ U , we have

dim(U) ≥ dim(V ) ≥ dim(U)− dimC(tA) + dimC(tB)− dimC(ker(o(h))).

Proof: The first inequality is obvious. We may assume that

A = C[[T1, . . . , Tn, Z1, . . . , Zm]]/a,

where n = dimC(tB) and m = dimC(tA)− dimC(tB), a ⊂ (T ,Z)2 and

B = C[[T1, . . . , Tn]]/b,

b ⊂ (T )2, and that h is induced by the projection

H : C[[T1, . . . , Tn, Z1, . . . , Zm]]→ C[[T1, . . . , Tn]],

such that Tj → Tj , Zk → 0. We have b = (H(a), β1, . . . , βt), and, by defini-
tion of o(h), t = dimC(ker(o(h))). Therefore, B = C[[T1, . . . , Tn, Z1, . . . , Zm]]/c,
where

c = (a, Z1, . . . , Zm,H
−1(β1), . . . ,H−1(βt)).

Since U and V correspond to minimal primes of the set Ass(a) (determined
by the associated prime ideals of a) and of Ass(c), respectively, the conclu-
sion follows from the generalized Krull ”Hauptidealsatz”. 2

We will now apply the above lemma to prove a refinement of inequalities
(2.17), (2.18) and (2.19).

Proposition 2.2.18 Let S be a smooth, projective surface, X ⊂ S be a
nodal curve, N the set of nodes of X and R = ÔHilbS

d,pa
,[X]. Then:

(i) Given J ⊂ I ⊂ N , and irreducible components Φ of Spec(RI) and Ψ of
Spec(RJ), such that Φ ⊂ Ψ, we have

dim(Ψ)− | I | + | J |≤ dim(Φ) ≤ dim(Ψ).

(ii) If in (i) the first inequality is an equality then, for every J ⊂ G ⊂ I,
and for every irreducible component Σ of Spec(RG), such that Φ ⊂ Σ ⊂ Ψ,
we have

dim(Σ) = dim(Ψ)+ | G | − | I | (= dim(Φ)+ | G | − | J |).

61



Proof:

(i) From the exact sequence of sheaves on X

0→ N I
X → N J

X → T 1
X |I\J→ 0,

we deduce an exact sequence of vector spaces, such that the injection

H0(N I
X) t→ H0(N J

X)

coincides with the differential map dfJI , where fJI : Spec(RJ) ↪→ Spec(RI),
and the surjection

H1(N I
X) o→ H1(N J

X)

fits into the commutative diagram:

H1(N I
X) o−→ H1(N J

X)
∪ ∪

o(RI)
o(fJI)−→ o(RJ)

It follows that ker(o(fJI)) ⊂ ker(o), and we have

| I | − | J |= h0(T 1
X |I\J) = h0(N J

X)− h0(N I
X) + dim(ker(o)) ≥

h0(N J
X)− h0(N I

X) + dim(ker(o(fJI))).

The conclusion follows from Lemma 2.2.17 applied to h = fJI .

(ii) If dim(Ψ)− | I | + | J |= dim(Φ), then both

dim(Σ) < dim(Ψ)− | I | + | G |

and
dim(Σ) > dim(Ψ)− | I | + | G |= dim(Φ)+ | G | − | J |

contradict (i). 2

The next result provides a sufficient cohomological condition for the
hypothesis (ii) of the previous proposition to be satisfied.

Proposition 2.2.19 Assume that for some I ⊆ N we have H1(N I
X) = (0).

Then, for all J ⊆ I, Spec(RJ) is smooth of dimension χ(NX/S)− | J | and,
in particular, HilbSd,pa

is smooth of dimension χ(NX/S) at [X].

Proof: Since H1(N I
X) is an obstruction space for the functor HI

X/S , the
hypothesis implies that HI

X/S is smooth, hence that Spec(RI) is smooth of
dimension h0(N I

X) = χ(NX/S)− | I |. From the exact sequence

0→ N I
X → N J

X → T 1
X |I\J→ 0

we deduce that we also have H1(N J
X) = (0) for all J ⊆ I. This concludes

the proof. 2

Corollary 2.2.20 If H1(N ′
X) = (0), then Spec(RJ) is smooth of dimension

χ(NX/S)− | J |, for all J ⊆ N ; in particular, HilbSd,pa
and VS

δ,d,pa
are both

smooth at [X], of dimension χ(NX/S) and χ(NX/S)− δ, respectively.
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Proof: It is an immediate consequence of the previous proposition and of
the fact that H1(N ′

X) is an obstruction space for the functor H′X/S , which

is prorepresented by ÔVS
δ,d,pa

,[X]. 2

By generalizing Definition 1.5.7 for Hilbert schemes, we can make the
following:

Definition 2.2.21 The curve X will be called obstructed (resp. unob-
structed) in VS

δ,d,pa
or in HilbSd,pa

if [X] is a singular (resp. a non-singular)
point of VS

δ,d,pa
or of HilbSd,pa

.

We want to briefly consider another important aspect which can be called
the smoothability property.

Definition 2.2.22 Let S be a smooth, projective surface. A closed sub-
scheme X ⊂ S having Hilbert polynomial P (t) is called smoothable in S if
[X] ∈ HilbSp(t) belongs to an irreducible component H of HilbSp(t) whose gen-
eral point parametrizes a non-singular subvariety of S. If X ⊂ S is a curve
of degree d and arithmetic genus pa having δ nodes and no other singularity,
X is smoothable in S if and only if [X] ∈ VS

0,d,pa (where VS
0,d,pa denotes

the closure in HilbSd,pa
). The curve X ⊂ S is said to be i-smoothable in

S (”i” stands for ”independently”), if there are irreducible componets Zj of
VS

j,d,pa
, 0 ≤ j ≤ δ, such that

[X] ∈ Zδ ⊂ Zδ−1 ⊂ · · · ⊂ Z1 ⊂ Z0.

The property of i-smoothability in S means that X is the flat specialization
of curves contained in S and having any number of nodes between δ and 0.
Of course, the fact that X is i-smoothable in S implies that X is smoothable
in S, but the converse, in general, is not true (see [21]). Note that, in the
previous definition, we have dim(Zj) ≤ dim(Zj−1)−1 because Zj is properly
contained in Zj−1. Therefore, we also have dim(Zδ) ≤ dim(Z0) − δ. From
Proposition 2.2.18, it follows that we must have equality, hence that

dim(Zj) = dim(Z0)− j, 0 ≤ j ≤ δ,

and Z0 must coincide with a component of HilbSd,pa
.

It can be proven ([121]) that, conversely, in order forX to be i-smoothable
in S, it is sufficient that [X] is contained in a component of VS

δ,d,pa
which

has codimension δ in a component of HilbSd,pa
. We state, without proving

it, the following:

Theorem 2.2.23 (i) Let Φ and Ψ be irreducible components of VS
δ,d,pa

and
of HilbSd,pa

, respectively, such that Φ ⊂ Ψ. Then we have

dim(Ψ)− δ ≤ dim(Φ) ≤ dim(Ψ).
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(ii) Assume that the irreducible component Φ of VS
δ,d,pa

is contained in the
component Ψ of HilbSd,pa

and that dim(Φ) = dim(Ψ) − δ. Then, for every
0 ≤ j ≤ δ, there is an irreducible component Zj of VS

j,d,pa
, such that

Φ = Zδ ⊂ Zδ−1 ⊂ · · · ⊂ Z1 ⊂ Z0 = Ψ.

Equivalently, every closed point of Φ parametrizes a nodal curve which is
i-smoothable in S.

The criterion of i-smoothability can often be applied when the curve
X is given as a member of a family of nodal curves whose dimension l is
known. The difficulty in applying it is to ensure that the curves so con-
structed vary in an open subset of VS

δ,d,pa
, so to conclude that VS

δ,d,pa
has

dimension l and not larger. A typical case is when we have a l-dimensional
family of reducible curves having δ nodes, whose general member has k ≥ 2
irreducible components, and we need to exclude that it is contained in a
(l+1)-dimensional family of curves having the same number δ of nodes and
whose general member has h < k irreducible components. This can be done
by means of a classical result, which we restate here.

Theorem 2.2.24 Let π : Y → T be a proper flat family of curves (i.e. π
is a flat projective morphism of relative dimension one), parametrized by an
irreducible scheme T . Suppose that for all closed points t ∈ T , the fibre Yt

has δ nodes and no other singularity. Then all fibres have the same number
of irreducible components.

The proof of the previous theorem can be given by reducing to the following
other classical result, whose modern proof can be found in [102].

Theorem 2.2.25 Let Y → T be a proper flat family of curves, such that
T is integral. Let A = Yη be the generic geometric fibre, t0 ∈ T be a closed
point, B = π−1(t0) such that the associated cycle z(B) =

∑s
i=1miBi, where

mi = length(OBi,zi), zi is the generic point of Bi and the indices have been
chosen so that g(Bi) > 0 if and only if 1 ≤ i ≤ r, for a suitable integer r,
0 ≤ r ≤ s. Then, the following inequality holds:

g(A) ≥
r∑

i=1

(mi g(Bi)−mi + 1).

In the case of plane curves there is also a converse ”existence theorem”.
Since we will be mainly interested in irreducible curves, we do not prove
here these results and refer the reader to the original paper.

As a direct corollary of Theorem 2.2.24 we have the following result.

Corollary 2.2.26 Let Xδ ⊂ S×VS
δ,d,pa

be the universal family. The number
of irreducible components of (Xδ)w, w a closed point of VS

δ,d,pa
, is constant

when w varies in a connected component of VS
δ,d,pa

.
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Theorem 2.2.23 gives a criterion of i-smoothability of purely geometric
nature. Using Proposition 2.2.19, we can obtain a cohomological criterion
of i-smoothability, already given in [119] when X ⊂ IPr.

Theorem 2.2.27 If H1(X,N ′
X) = (0), then both VS

δ,d,pa
and HilbSd,pa

are
smooth at [X] of dimension χ(NX/S) − δ = h0(NX/S) − δ and χ(NX/S) =
h0(NX/S), respectively, and X is i-smoothable in S.

Proof: It immediately follows from Proposition 2.2.19, Corollary 2.2.20 and
Theorem 2.2.23. 2

With such a cohomological criterion, we shall see in Theorem 3.1.1 how it
becomes easy to prove that Severi varieties of irreducible plane curves, with
only nodes as singularities, are everywhere smooth of the expected dimension
and, so, that each element of such a variety is an i-smoothable nodal curve
in IP2.

We now want to focus our attention on equisingular first-order deforma-
tions of a nodal curve X ⊂ S in the linear system to which X belongs. These
deformations sometimes do not coincide with all the first-order equisingular
deformations, but are parametrized by a smaller subscheme. As we shall
immediately see, this depends on the fact that S could or could not be a
regular surface (i.e. h1(S,OS) = 0 or 6= 0 respectively). So there is a need
to find a vector space which could ”take care” of this fact.

To this aim, let D ∈ Div(S) be an effective divisor on S. Denote by
| D | the complete linear system associated to D. Suppose that the general
element of | D | is a smooth, irreducible curve. As usual, pa(D) denotes the
(arithmetic) genus of D, i.e.

pa(D) =
D(D +KS)

2
+ 1.

By the hypothesis on its general element, it makes sense to consider the
subscheme of |D | which parametrizes all curves X ∼ D that are irreducible
and have only δ nodes as singular points. As before, such a subscheme is
functorially defined and locally closed.

Definition 2.2.28 We denote by

V|D|, δ

the locally closed subscheme of | D |, which parametrizes a universal family of
reduced and irreducible curves belonging to | D | and having exactly δ nodes
and no other singularities. The scheme V|D|, δ will be called Severi variety
of irreducible, δ-nodal curves in the given linear system. If V|D|, δ 6= ∅ and
if [X] ∈ V|D|, δ, then N will denote the scheme of nodes of X; it is a closed
zero-dimensional subscheme of S of degree δ. As usual, the geometric genus
of X will be denoted by g = pa(D)− δ.
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If we want to consider first-order equisingular deformations of [X] ∈
V|D|, δ in the given linear system |D |, we can use the fact that V|D|, δ ⊂|D |.

Since |D | is a projective space, from the theory of Zariski tangent spaces
to Grasmannians, we have

T[X](| D |) ∼= H0(OS(D))/ < X >, (2.20)

where < X > denotes the one-dimensional subspace generated by X. This
space coincides with the vector space of first-order deformations of X in
|D |. First-order equisingular deformations of X in |D | are parametrized
by its subspace

T[X](V|D|, δ).

In what follows, we describe how to give a cohomological interpretation
of T[X](V|D|, δ), as in (2.20) for T[X](| D |).

Denote by ϕ : C → X ⊂ S the normalization map of X. From the exact
sequence (2.5),

0→ TC → ϕ∗TS → Nϕ → 0,

it follows that

TC ⊗Nϕ
∼=

2∧
(ϕ∗TS).

Denoting by KS and KC a canonical divisor of S and C respectively, we
have therefore

OC(−KC)⊗Nϕ
∼= OC(ϕ∗(−KS))

which implies
Nϕ
∼= OC(ϕ∗(−KS))⊗OC(KC).

Let µ : S̃ → S be the blow-up of S at the set of nodes N , such that
B =

∑δ
i=1Ei is the µ-exceptional divisor. We have, µ∗(KS) = KS̃ − B

and µ∗(X) = C + 2B. From adjunction theory on S̃ and from the fact
that µ |C= ϕ it follows that OC(KC) ∼= OC(KS̃ + C) = OC(ϕ∗(KS) + B +
ϕ∗(X)− 2B) = OC(ϕ∗(KS +X)−B). Therefore,

Nϕ
∼= OC(ϕ∗(X)−B). (2.21)

Since X ∼ D on S, we have

H i(Nϕ) ∼= H i(OC(ϕ∗(X)−B)), i ≥ 0.

From what we have recalled about Horikawa’s theory, H0(Nϕ) parametrizes
all first-order equisingular deformations of X in S. Now, the scheme inclu-
sions N ⊂ X ⊂ S determine the following exact sequence

0→ IX/S
∼= OS(−X)→ IN/S → IN/X → 0. (2.22)

Tensoring (2.22) with OS(D), we get

0→ OS → IN/S(D)→ IN/X(D)→ 0, (2.23)
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since X ∼ D on S. Therefore, we have the following diagram of sheaves:

0 0 0
↓ ↓ ↓

0→ OS
·X−→ IN/S(D) → IN/X(D) → 0

↓ ↓ ↓
0→ OS → OS(D) → OX(D) → 0

↓ ↓ ↓
0→ 0 → ON (D) → ON (D) → 0

↓ ↓ ↓
0 0 0 .

From the first line, we observe that

T[X](V|D|, δ) ∼= H0(IN/S(D))/ < X >, (2.24)

which is the subspace of

H0(Nϕ) ∼= H0(OC(ϕ∗(X)−B))

contained in
T[X](| D |) ∼= H0(OS(D))/ < X > .

In other words, a first-order deformation X + εX ′, ε2 = 0, is in V|D|, δ if and
only if it is in | D | and N ⊂ X ′.

Remark 2.2.29 From Lemma 1.2.6 and the diagram above, we also observe
that if S is assumed to be a regular surface, then

H0(Nϕ) ∼= H0(IN/S(D))/H0(OS),

i.e.
H0(Nϕ) ∼= H0(IN/S(D))/ < X >, (2.25)

which means that all first-order equisingular deformations of X in S are in
|D |.

On the contrary, if S is an irregular surface, the left-hand space in (2.25)
properly contains the right-hand one; so first-order equisingular deforma-
tions of X in |D | are a subclass of those of X in S.

To conclude the section, observe that from the exact sequence

0→ IN/S(D)→ OS(D)→ ON (D)→ 0, (2.26)

we get
h0(IN/S(D)) = h0(OS(D))− δ + σ,

where σ = h1(IN/S(D))− h1(OS(D)) ≥ 0, since

H1(IN/S(D))→ H1(OS(D))

is surjective. Therefore, h0(IN/S(D)) ≥ h0(OS(D))− δ, so

dim(T[X](V|D|, δ)) ≥ h0(OS(D))− (δ + 1) =
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= dim(T[X](| D |))− δ = dim(| D |)− δ,

where the last equality holds since | D | is smooth at every point. The first
inequality is an equality if and only if the surjection

H1(IN/S(D))→ H1(OS(D))

is an isomorphism; this happens if and only if

H0(OS(D))→ H0(ON (D))

is surjective, i.e. if and only if the set N imposes independent conditions to
the linear system | D |. In such a case,

dim(T[X](V|D|, δ)) = dim(| D |)− δ ≥ dim[X](V|D|, δ).

For what stated in Theorem 2.2.23 (i), in general

dim[X](V|D|, δ) ≥ dim(| D |)− δ.

Thus, the obstruction space for such deformations is a subspace ofH1(S, IN (D)),
so the set of nodes N imposes independent conditions to | D | if and only if
V|D|, δ is smooth at [X] of codimension δ in | D |.

Definition 2.2.30 The Severi variety V|D|, δ is said to be regular at the
point [X], if it is smooth at [X] of dimension dim(| D |)− δ, δ the number
of nodes of X. Otherwise, the component of V|D|, δ containing [X] is said to
be a superabundant component.

In the sequel, we shall focus on vanishing conditions for the vector space
H1(S, IN/S(D)) in order to find sufficient conditions for regularity of Severi
varieties on smooth surfaces.

Remark 2.2.31 The regularity property is very strong, since, for what
stated in Theorem 2.2.27, it implies that the nodes of X can be indepen-
dently smoothed, i.e. X is i-smoothable. In this intepretation this fact
is more evident; indeed, let [X] ∈ V|D|, δ and let p ∈ N be one of the
nodes of X. Denote by M the complement of p in N . Suppose that N im-
poses independent conditions to | D |; therefore, M does the same, so that
h1(S, IN/S(D)) = h1(S, IM/S(D)). Hence, we have h0(S, IN/S(D)) + 1 =
h0(S, IM/S(D)). Any element of the vector space H0(S, IN/S(D)), not in
H0(S, IM/S(D)), defines an infinitesimal deformation of X which smooths
the node p and leaves unsmoothed all the other nodes. This means that
[X] ∈ V |D|, δ−1.

2.3 Several problems and known results concern-

ing Severi varieties on projective surfaces

This section is devoted to an overview of some of the most important results
concerning Severi varieties, or more generally parameter spaces, of singular
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curves on projective surfaces. Since there is a huge number of articles con-
cerning such topics, in order to avoid confusion, we treat separately some
of the known results in the case of IP2, in the case of other type of ratio-
nal surfaces, in the case of K3 surfaces and, finally, we shall consider some
known results which are mainly related to surfaces of general type. When
it is not too far from the scope of this work, we shall try to recall, at least
in some aspects, the basic techniques used to prove some of these results.
For what concerns the regularity problem of Severi varieties on surfaces of
general type and the moduli problem of smooth and nodal curves on such
surfaces, here we only briefly mention the known results. Indeed, since these
subjects are the core of our research, we have devoted Chapters 3, 4 and 5
to such topics, where these results will be recalled and our new results will
be proven.

As for the plane case, one may ask several questions concerning a Severi
variety V|D|,δ of irreducible, δ-nodal curves in a given linear system |D |, on
a smooth, projective surface S.

(i) the existence problem: when is such a V|D|,δ not empty?

(ii) the dimension and smoothness problem: what are the dimensions of its
components? Are they everywhere smooth?

(iii) the irreducibility problem: when V|D|,δ is irreducible?

(iv) the enumerative problem: what is the degree of V|D|,δ as a subscheme
of | D |?

(v) the moduli problem: how is the behaviour of the moduli of the elements
of | D | and of V|D|,δ?

(vi) the configuration problem: which is the configuration of points that the
nodes of the elements of V|D|,δ form in the scheme Hilbδ(S)?

One can easily understand why there is so much production of papers re-
lated to Severi varieties. However, in some cases, there are still only partial
answers. In the next chapters, we will mainly focus on points (ii) and (v),
expecially in the case of S a smooth surface of general type, case in which less
is known than what is proven in other cases of smooth, projective surfaces.

From Section 2.2, we know that the natural approach to the dimension
problem is to use equisingular deformations of nodal curves. It is easy to
see that if S is a rational surface and if [X] ∈ V|D|,δ then its set of nodes N
imposes independent conditions to | D |, hence all components are regular. A
similar argument also works for other regular surfaces like K3 and Enriques
surfaces. For surfaces of general type this approach completely fails; one way
is to use a rank-two vector bundle approach to get some vanishing criteria
involving the ideal sheaf IN/S .

Turning to the existence problem, in the plane case one takes the ad-
vantage from the fact that there are rational nodal curves of any degree d,
namely the general projections to a plane of rational normal curves of degree
d in IPd. By smoothing some of their nodes one proves the non-emptyness of
V|D|,δ, for all 0 ≤ δ ≤ (d−1)(d−2)

2 . There are also some results about the non-
emptyness of V|D|,δ in the case of Del Pezzo surfaces. The existence problem
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becomes more difficult for other surfaces, like K3’s, Enriques surfaces or
surfaces of general type.

For what concerns the irreducibility, apart from the classical case of the
plane, there are some recent results which state that, for example, on a
general surface S ⊂ IP3 of degree large enough some Severi varieties are
reducible. We shall treat this aspect in the sequel.

In recent times there has also been a lot of interest about enumerative
problem. Impulse to the subject has come from recent ideas from quan-
tum field theory leading to the definition of quantum cohomology. As a
by product, formulas enumerating rational curves on certain varieties were
derived from the properties of certain generating functions representing the
free-energy of certain topological field theory. A mathematically formal
construction of quantum cohomology came soon afterwards ([78], [79] and
[115]). Different proofs of some of the classical enumerative formulas were
provided later in [16] and [17] using different methods that could be gen-
eralized to cases (such as Hirzebruch surfaces) for which the quantum co-
homology theory did not give enumerative results. Moreover, a recursive
formula enumerating plane curves of any genus has been recently proven
using purely algebro-geometric techniques ([15]) and a generating function
exists together with a differential equation implying such a recursion ([46]).

Another important problem concerning curves in Severi varieties is the
following; given a complete linear system | D | or a family of nodal curves
V|D|,δ on S, one can be interested in studying its properties from the point
of view of moduli. This reduces to understand how is the behaviour of the
natural functorial morphism

π|D|, δ : V|D|,δ −→Mg,

where g = pa(D) − δ, for each δ ≥ 0; the problem is to determine the
dimension of its image in the moduli space. In [119], Sernesi completely
solved the case S = IP2 and also found some results on smooth irreducible
components of Hilbert schemes of smooth curves in IPr. These results were
followed by other researches of Pareschi ([106]) in IP3 and Lopez ([84]) in
IPr. We shall treat in detail this problem in the sequel.

The configuration problem deals with the study of the map

V|D|,δ −→ Hilbδ(S).

If the map is dominant, then the nodes of the elements parametrized by
V|D|,δ can be taken in general position on S. There are some interesting
results of Treger in the plane case, which we shall mention in the sequel.

We can make an overview of some results, which are known up to now,
on these subjects.

The plane case:

We have already treated the classical case of Severi in Theorem 2.1.5; here
we only want to add that there are also some classical results concerning
plane curves with nodes and cusps. For the classical approach of B. Segre
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(in [118]), we refer the reader to [138] and [144], VIII.5, where there is
a beautiful description of his results and some other results and problems
concerning necessary and sufficient conditions for existence and smoothness
of the variety parametrizing plane curves of degree n with exactly δ nodes
and κ cusps.

Among the ”non-classical” results, the first which must be recalled is the
one of Wahl, [138] (1972). Even if families of plane nodal and cuspidal curves
have been classical studied by Severi and Segre, they never considered the
problem of the existence of these families as varieties. By using flattening
stratification methods, Wahl is the first who proves the existence of a scheme
X (in his notation) and a universal family of plane curves E → X whose
fibres are curves of a given degree n with δ nodes and κ cusps, and X
is a union of locally closed subschemes of IPN , where N = n(n+3)

2 . He
also considers locally trivial embedded deformations of plane curves with
arbitrary singularities, identifies infinitesimal equisingular deformations and
obstructions as vector spaces of a generalized equisingular sheaf N ′

X/IP2 on
such a curve X and shows the existence of a formal versal deformation space
in the sense of Schlessinger.

In 1975, Arbarello, [1], generalizes some known results of B. Segre by
showing a further impossibility of extending for high values of the genus
g, precisely g > 36, the process given by Severi in studying the moduli of
curves (see Section 2.1). He proves that, in such a range of values of g and
on a rational surface, no algebraic system of general moduli curves exist,
supposing that their singularities are nodes which vary in a rational variety.
This was a proof of the impossibility to extend the procedure used by Severi
in proving the unirationality of Mg, for g ≤ 10.

In 1981, Arbarello e Cornalba, [2], gave a partial answer to Petri’s con-
jecture, which the authors restated as:

Given a divisor D on a general moduli curve C, the cup product

µ0 : H0(C,OC(D))⊗H0(C,OC(−D)⊗ ωC)→ H0(C,ωC),

is injective.

The geometric interpretation they give to Petri’s conjecture implies that
what has to be proven is that if ϕ : C → IPr is a morphism from a general
moduli curve C, then each first-order deformation of ϕ is non-obstructed,
that is H1(C,Nϕ) = 0. By using this version of the conjecture, they prove
the case r = 2; as already mentioned in Section 2.2, this was the occasion in
which they translated the beautiful results of Horikawa’s theory in a purely
Algebraic Geometry approach.

In the same year ([3]), they consider the classical problem to determine
under which conditions there exists an irreducible curve of degree n in IP2

with nodes at δ preassigned general points and no other singularity. Neces-
sary obvious conditions are

(n+ 1)(n+ 2)
2

− 1 ≥ 3δ
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and
(n− 1)(n− 2)

2
≥ δ,

the first coming from the fact that it takes three linearly independent condi-
tions to impose a nodal singularity at a preassigned general point to curves
varying in a linear system, which has no fixed component and is not com-
posed with a pencil, whereas the second condition is just the statement that
a plane curve of degree n with more than that number of nodes is reducible.
They prove that these conditions are also sufficient, with one exception. The
fundamental tool for their analysis is always Horikawa’s theory.

Theorem. ([3], Theorem (3.2)) Let p1, . . . , pδ be general points in IP2. Let
n be a positive integer such that the above inequalities hold. Then there
exists an irreducible plane curve of degree n having nodes at p1, . . . , pδ and
no other singularity, unless

n = 6, δ = 9.

In this case the only plane curve of degree n passing doubly through p1, . . . , pδ

is a smooth cubic counted twice.

They also generalize this result to rational surfaces (see [3], Proposition (3.7)
and Corollary (4.6)).

A year later, Zarisky proves in [145] his generalization of Severi’s theo-
rem. We have already discussed his results, so we refer the reader to Theo-
rem 2.1.8, in Section 2.1. Here we want just to recall that his result implies
that the general member of the locus Vn,g, of reduced irreducible curves of
degree n in IP2 and of genus g, has only δ = (n−1)(n−2)

2 − g nodes and no
other singularities (see Corollary 2.1.9).

In 1983, Arbarello and Cornalba ([4]) prove the irreducibility of V n,g,
whenever 3n ≥ 2g + 7. To understand what this bound means, we recall
that the Brill-Noether number is defined as

ρ(g, r, n) = g − (r + 1)(g − n+ r),

which, when non-negative, determines the dimension of the variety of linear
series of degree n and dimension r on a general curve of genus g.

Theorem. ([4], Theorem (1.1)) The variety V n,g is irreducible whenever
ρ(2, n, g) ≥ 1 or, which is the same, when 3n ≥ 2g + 7.

Denote by
πn, δ : Vn,δ →Mg

the morphism from the Severi variety of irreducible, δ-nodal plane curves of
degree n to the moduli space of curves of genus g = (n−1)(n−2)

2 − δ. This
morphism is defined, since the family of irreducible, plane nodal curves

X ⊂ IP2 × Vn,δ

↓
Vn,δ
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parametrized by Vn,δ can be simultaneously desingularized, i.e. there exists
a diagram of proper morphisms

C Φ−→ X ⊂ IP2 × Vn,δ

↘ ↓
Vn,δ

where the diagonal map is a proper morphism of curves and Φ is fibrewise the
normalization map. The map Φ is the blow-up of X along its singular locus
and the morphism πn, δ is functorially defined by the family f : C → Vn,δ.

With this set-up, the theorem above states that V n,g is irreducible as soon
as the general fibre of πn, δ has dimension at least 9 = 1 + dim(PGL(3,C))
(provided g > 1).

In 1984, Sernesi studied families of projective curves with good properties
from the moduli point of view (see [119]). In his paper, he investigates, for
given r, n, g the existence of a smooth irreducible open subset U of the
Hilbert scheme of IPr parametrizing irreducible (and non singular if r ≥ 3)
curves of degree n and genus g having the expected number of moduli.

Definition 2.3.1 Given the functorial morphism

π : U →Mg,

from a family of smooth curves in IPr (δ-nodal, δ ≥ 0, when r = 2) of
geometric genus g, the number of moduli of the family U is the dimension
of the image, i.e. dim(π(U)). U is said to have the expected number of
moduli if π(U) has dimension equal to

min(3g − 3, 3g − 3 + ρ(g, r, n)).

Of course, when ρ(g, r, n) ≥ 0, a family U has the expected number of
moduli 3g − 3 = dim(Mg) when every sufficiently general curve of genus g
belongs to it; in this case the family is said to have general moduli. When
ρ(g, r, n) < 0, every family U does not have general moduli, i.e. it has special
moduli and the number −ρ(g, r, n) determine the expected codimension of
π(U) inMg.

In the case of IP2, by using a detailed analysis of the parametric version of
equisingular deformation theory (i.e. the equisingular sheaves N I

X of Section
2.2) and the Brill-Noether map

µ0(D) : H0(C,OC(D))⊗H0(C,OC(−D)⊗ ωC)→ H0(C,ωC),

Sernesi proves the following result:

Theorem 2.3.2 For all n, g such that

n− 2 ≤ g ≤ (n− 1)(n− 2)
2

, n ≥ 5,

the general point of U = Vn,δ parametrizes a nodal curve Γ such that
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(1) the lines of IP2 determine a complete linear system on the normalization
C → Γ;

(2) µ0(D) has maximal rank.

Moreover, the family Vn,δ has the expected number of moduli.

Observe that,

number of moduli of Vn,δ ≤ dim(Vn,δ)− dim(Aut(IP2)) =
= 3n+ g − 9 = 3g − 3 + ρ(g, 2, n).

Thus, if ρ(g, 2, n) < 0, Vn,δ has at most the expected number of moduli. In
order for Vn,δ to exactly have the expected number of moduli, it is sufficient
that a general point of Vn,δ parametrizes a curve Γ which is birationally (but
not projectively) equivalent to only finitely many curves of the family, i.e.
the normalization C of Γ has only finitely many linear systems of degree n
and dimension 2.

In the same article, by using techniques of smoothability, he proves the ex-
istence of a component of the Hilbert scheme, parametrizing smooth curves
in IPr, r ≥ 3, of given degree and genus, which has the expected number of
moduli. These results were improved later by Pareschi ([106]) in the case of
IP3 and by Lopez ([84]) for r ≥ 4.

In 1986, we have contemporairly two different proofs of Severi’s state-
ment of the irreducibility of V n,g, whose proof was incorrect (we have already
mentioned these facts in Section 2.1). Ran, in [108], proves it by degenerat-
ing IP2 to S = ˜IP2

1 ∪ . . . ∪ ˜IP2
n−1 ∪ ˜IP2

n, where ˜IP2
i is the blow-up of IP2 at

a point and ˜IP2
i ∩ ˜IP2

i+1 is exceptional on ˜IP2
i and a general line in ˜IP2

i+1,
for 1 ≤ i ≤ n − 1. Considering the resulting degeneration of an arbitrary
component V of Vn,g, he shows, by an inductive argument, that the limit of
V contains a curve of the form

∑
1≤i≤j≤nMij , where Mij ⊂ ˜IP2

i; Mii is a
general line and Mij for i < j is a ruling. By analyzing the local structure
of the limit of V along

∑
1≤i≤j≤nMij , he proves the irreducibility of V n,g.

On the other hand we have the procedure of good degenerations of Harris,
[58], which we have already discussed in Section 2.1; the reader is referred
there and to the original article.

A year later, Nobile took in exam the problem of determining the possible
variation of the geometric genus of a projective curve varying in a family
(see [102]). He gives a numerical characterization of the boundary points of
Severi varieties of irreducible plane curves having degree n and δ nodes. We
refer the reader to Theorem 2.2.25, where we have already stated his result.

In the same year, Treger ([133]) described the configuration of nodes
of the nodal curves in Vn,δ. In this paper, by using Harris result of the
irreducibility of Severi varieties in the plane, he proves that the map

pδ : Vn,δ → Symδ(IP2),

which maps a nodal curve to the set of its nodes, is a birational morphism
onto its image; more precisely, he proves:
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Theorem. (i) If n(n+3)/6 ≤ δ ≤ (n−1)(n−2)/2 and (n, d) 6= (6, 9), then
pd : Vn,δ → Symδ(IP2) is a birational morphism onto its image.

(ii) If δ ≤ min(n(n + 3)/6, (n − 1)(n − 2)/2) and (n, d) 6= (6, 9) then for
a general element in Symδ(IP2), (p1, . . . , pδ), there exists a curve in Vn,δ

having nodes in (p1, . . . , pδ).

A year later, he reproved the irreducibility of V n,g via a different ap-
proach from the ones of Harris and Ran (see [134]). Moreover, in [135], he
gives another proof of the theorem above without using Harris result but
with the machinery of stratification of Hilbδ(IP2) with respect to the Hilbert
function.

In [38], Diaz and Harris proved that Vn,δ are affine varieties, for each
n and δ. So, for example, each family F of curves of degree n, which is
parametrized by a projective curve, cannot contain only δ-nodal curves of
the given degree; thus, if the general element of F belongs to Vn,δ, this family
must contain some curves with further and/or more complicated singulari-
ties.

In 1989, Ran was concerned with a range of enumerative problems in the
plane ([109]). He developed a recursive procedure for counting the number
of plane curves of degree d in IP2, with δ nodes, passing through d2+2d−1

2 − δ
general points. The recursion is based on suitable degenerations of the blow-
up of IP2 in a point, say S, to a surface S0 = S1 ∪ S2 (called fan), where
Si
∼= S, i = 1, 2. Unfortunatly, his formula was not correct. He solved the

problem in a later paper ([110]).

In the same year, Greuel and Karras ([50]) generalized the existence
results of Wahl in the plane to other fixed type of analytic singularities.
Their analysis makes use of some vanishing theorems they prove for arbitrary
rank-one sheaves on reduced curves.

In [129] Shustin studies the asymptotical behaviour of the variety V (n, δ, κ)
parametrizing irreducible plane curves of degree n with δ nodes and κ cusps
as their only singularities. Hirzebruch ([66]) showed that V (n, δ, κ) = ∅ if

9
8
δ + 2κ >

5
8
n2;

Shustin proves that, on the other hand, V (n, δ, κ) 6= ∅, when

δ + 2κ ≤ 1
2
n2 +O(n).

Moreover,

(i) if δ + 2κ ≤ α0n
2, where

α0 =
7−
√

13
81

,

then V (n, δ, κ) is non-empty, non singular and regular of dimension 1
2n(n+

3)− δ − 2κ;

(ii) if δ + 2κ ≤ α1n
2, where

α1 =
2

225
,
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then V (n, δ, κ) is irreducible.

In 1995, Greuel and Lossen ([51]) generalized the results in [50], extended
their analysis also to topological type of singularities and not only analytic
type. Moreover, they defined the equisingular sheaf which takes care of
such kind of singularities and proved some vanishing results, in terms of
topological or analytic tools as Tjurina number, Milnor number, etc., in
order to find sufficient conditions for the smoothness and the dimension
problem of families of such curves in IP2.

In [62], Harris and Pandharipande compute, with a new approach, the
degree of V d,δ, as a subvariety of IP(H0(OIP2(d)), in cases δ = 1, 2, and
3. The formulas they find are classical; what is new is the method, which
involves the Bott residue formula. Another method to obtain formulas in
higher cogenus, i.e. δ = 4, 5 and 6, is the one of Vainsencher [136].

As we have already mentioned, interest and enthusiasm for these enu-
merative problems are revived by ideas from quantum field theory which
lead to various enumerative predictions of rational curves on varieties. It
was proposed by Gromov and Witten (see [140]) to study a new series of
invariants on a variety V by using intersection theory on the moduli space
Mg,n (see Section 1.5 for notation). These invariants, called Gromov-Witten
invariants, depend on the geometry of curves lying on V . For certain vari-
eties (such as projective spaces) a subclass of these invariants corresponds to
enumerative invariants. In the case of curves of genus 0, it is proven that the
Gromov-Witten invariants satisfy a series of properties; the most important
of them is the so called splitting principle or composition law, which gives a
way of computing these invariants recursively. In [78], Kontsevich derived
a formula for rational curves in the plane, assuming the associativity of the
quantum product for IP2 (not yet proven at that time). This allows one to
compute degrees of all Severi varieties of rational curves in the plane.

Between 1994 and 1995, complete proofs of Kontsevich formulas are
given indipendently by Kontsevich and Manin ([78] and [79]) and by Ruan
and Tian ([115]). In both cases the goal is to give a rigorous definition of
the Gromov-Witten invariants, so that they satisfy the necessary properties.
In [115], this is done using symplectic topology and the Gromov theory of
pseudo-holomorphic curves. In [79] the authors follow an algebro-geometric
approach and use the existence of a good compactification of the moduli
space of maps from IP1 to V (constructed in the later paper [78]).

Finally, in 1996, Caporaso and Harris computed the degrees of Severi
varieties in the plane of curves of any genus (see [15]). By studying the
geometry of Severi varieties V d,δ, for any d and any g = (d−1)(d−2)

2 − δ,
they derive a recursive formula for their degrees. The approach is a purely
algebro-geometric one. Indeed, for each p ∈ IP2, they consider the hyper-
plane Hp ⊂ IP(H0(OIP2(d))) of curves containing the point and then they
study the geometry of intersections of the variety V d,δ with a succession of
hyperplanes of the formHpi , where the points pi are general points on a fixed
line L ⊂ IP2. At each stage they describe the irreducible components of the
intersection and these all belong to specific collection of varieties, which are
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called generalized Severi varieties. They express the intersection of a gener-
alized Severi variety with a hyperplane Hp corresponding to a general point
p ∈ L as a union of generalized Severi varieties of dimension one less. This
is the key point in order to derive the recursive formula for their degrees.
Their computations agree, in a certain sense, with a result of Getzler ([46]),
who describes a generating function having the degrees of the generalized
Severi varieties as coefficients.

Recently, Greuel, Lossen and Shustin ([54]) have derived new sufficient
conditions in order that a variety V , parametrizing curves in IP2, of degree
d, having exactly r singular points of given topological or analytic singular-
ities, is smooth of the expected dimension. The technical tool is to study
Castelnuovo function of suitable zero-dimensional schemes associated to the
r-tuples of singular points (clusters).

Among papers concerned with plane singular curves (not necessarily only
nodal), we have to mention the papers of Gradolato and Mezzetti ([48]) and
of Lindner ([82]), in which the cases of singular curves with nodes and cusps
and also triple points are treated. The case of higher singularities are treated
in [101]. There are also recent papers of Ciliberto and Miranda, [29] and
[30], where they pose the problem of studying the dimension of the space
of plane curves of degree d, having multiplicities mi in n general points pi.
In some cases they compute the dimensions of such linear systems and they
make a list of those systems which have unexpected dimension.

Rational surfaces:

For what concerns Severi varieties of nodal curves in smooth, rational sur-
faces, the first papers which must be recalled are those of Tannenbaum,
[130] and [131] (1979-1980). In the first paper, he treats the problem of de-
termining the possible geometric genera of curves lying on smooth rational
surfaces; in the second, he generalizes Severi’s proof in the plane to the case
of smooth rational surfaces S in order to determine existence conditions of
Severi varieties on S (see Corollary (2.14) in [131]).

In 1984, Nobile ([101]) studied families of reduced, singular curves on
smooth rational surfaces, such that the singularities vary in an equisingu-
lar fashion. He generalizes the results of Zariski in the plane case ([145])
and of Tannenbaum on nodal curves on rational surfaces ([131]). Indeed,
given a reduced curve C in a smooth surface S, he studies the functor of
the first infinitesimal deformations of C, inside S, which preserves the sin-
gularities, in the sense of the theory developed by Wahl and Zarisky ([138]
and [145]). His main result is the analogous of what Zarisky proves in the
case of S = IP2. Indeed, in the case where all the singularities are nodes,
he shows that this functor is smooth and that its Zariski tangent space has
dimension h0(NC/S) − δ; moreover, under slightly stronger conditions (see
Theorem (3.2), [101]) the converse is also true, i.e. the equality sign forces
the singularities to be nodes.

In more generality, Gradolato and Mezzetti ([49]) study the varieties
of curves with ordinary singular points, even of high order, on regular (in
particular rational) surfaces. They analyze the process of weakening sin-
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gularities, in order to construct irreducible curves starting from reducible
ones.

In 1995 Caporaso and Harris, ([17]), focused on enumeration problems of
families of rational curves on smooth, rational surfaces. Given S a smooth,
rational surface and D an effective divisor on it, they denote by V (D) ⊂|D |
the closure of the locus of irreducible, rational curves in | D |. Let r(D)
be the dimension of V (D); if D has non-negative self-intersection and if
V (D) is non-empty, then r(D) = −KSD − 1 (see [77]). The particular
aspect of the geometry of V (D) is that it gives information on its degree,
denoted by N(D). This degree can be directly characterized as the number
of irreducible, rational curves which are linearly equivalent to D and pass
through r(D) general points of S. They compute this N(D) in some cases of
rational surfaces via the cross-ratio method, which is based on the analysis
of a one-parameter family of rational, irreducible curves in | D | passing
through r(D) − 1 general points of S. In some cases, as IP2, IP1 × IP1,
blow-ups of IP2 at general points and IFn = IP(OIP1 ⊕ OIP1(n) (Hirzebruch
surfaces), n ≤ 2, this approach is succesful. For IFn, n ≥ 3, the situation is
more complicated.

For what concerns smoothness and irreducibility problems in the case of
rational surfaces, we must also recall a recent paper of Greuel, Lossen and
Shustin. In [52], the case of nodal curves on the projective plane blown-
up at r generic point is studied. More precisely, denoting by IP2

r such a
blow-up, let E0, . . . , Er be the strict trasform of a generic line in IP2 and
the exceptional divisors of the blown-up points, respectively. Then, the au-
thors give asymptotical sufficient conditions for the smoothness, irreducibil-
ity and non-emptyness of the variety Virr(d; d1, d2, . . . , dr; δ) parametrizing
irreducible curves C ∈ | dE0 −

∑r
i=1 diEi | with δ nodes as the only sin-

gularities. Moreover, they extend their conditions for the smoothness and
for the irreducibility to families of reducible curves on IP2

r and, for r ≤ 9,
they give a complete answer concerning the existence of nodal curves in
Virr(d; d1, d2, . . . , dr; δ).

Another paper of Caporaso and Harris, devoted to enumerative problems
in the case of rational surfaces, is [16] where the authors introduced another
method for such computations: the rational fibration method. This has been
done to give answers to some cases which could not be treated in [17] with
the cross-ratio method (mentioned above). In fact, in cases IFn, n ≥ 3, the
number N(D) deals with other terms of the degrees of some generalized
Severi varieties parametrizing curves with a point of k-fold tangency with
a fixed curve E ⊂ S. This method determines a computational technique
which always involves an analysis of one-parameter families of rational curves
passing through r(D)− 1 general points of S and their limits, but extracts
more information from it. The main advantage is that it allows the authors
to compute the degrees of the tangential loci involved in the cases they
study: IP2, IF2 and IF3.

Similar results, but with different methods, are obtained by Ran in [111]
and [112]. In the first article, he uses Mori’s bend-and-break technique
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to solve enumerative problem of rational curves, on a rational surface S,
which are not assumed to form the family of ”all” rational curves of a given
homology class in S. It is required that they vary at least in a three-
dimensional family. Mori’s techniques is based on the fact that, once a
rational curve ’bends’ sufficiently (in a surface this means moving in a 3-
parameter family) it will ’break’, i.e. it admit a reducible limit. In [112],
he uses the same considerations to obtain enumerative formulas for rational
and elliptic curves with some nodes and cusps.

K3 surfaces:

The classification theory of (algebraic) surfaces shows that there are at most
countably many rational curves on a K3 surface. Asking whether there are
any rational curves at all on a general K3 surface has an affirmative answer
for what Mori and Mukai have proven in [97]. This can be viewed as a first
step for non-emptyness results of some Severi varieties on a K3 surface.

Tannenbaum generalized Severi’s results to the case of a K3 surface
([132]). For what concerns reducible nodal curves on a K3-surface, he also
showed that this case is completely different from what Nobile ([101]) proved
in the case of a rational surface (see also in this section the part devoted
to rational surfaces). Indeed, he proves that if S is a smooth K3-surface
and if [Y ] ∈| C | corresponds to a reduced, reducible curve with exactly δ

nodes as singularities and with r irreducible components, then the closure of
the scheme parametrizing such curves is smooth at [Y ] of dimension dim(|
C |) − δ + (r − 1). So the expected dimension is never reached at points
corresponding to reducible curves, nevertheless, these points are smooth for
such a closed scheme.

Yau and Zaslow, [142], compute the number of rational curves in |OS(1) |,
when S is a general K3 surface in IPg. Since their computations involve com-
pactified Jacobians of the rational curves (see [11] for a detailed exposition),
this Jacobians are not very well-understood if the singularities are other
than nodes. Hence, the only gap left in this enumerative problem is the
hypothesis that all rational curves in | OS(1) | on a general K3 surface are
nodal. In this way, it has been posed the following:

Conjecture: For g ≥ 3, all rational curves in the linear system | OS(1) |
on a general K3 surface in IPg are nodal.

A partial affirmative answer to this conjecture is given by Chen in [22].
He uses techniques of degeneration applied to a general K3, degenerating
it to a trigonal K3 surface, formed by the union of scrolls; such surface
lies on the boundary of a complete family of genus g K3 surfaces. As a
corollary of his main theorem, which we will state below, he proves that for
g ≤ 9 and g = 11 the conjecture is true and so he justifies Yau-Zaslow’s
computations, at least, for these cases. Moreover, the author extends the
existence of irreducible rational curves to every complete linear system on a
general K3 surface; indeed, he proves the following result.

Theorem.([22]) For any integer g ≥ 3 and d > 0, the linear system |OS(d)|,
on a general K3 surface S in IPg contains an irreducible, rational and nodal
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curve.

Even if it is already considered known, no complete proof of this result has
appeared in the literature before the one of Chen. This implies also that
Severi varieties on a general K3 of curves in | OS(d) | are always non-
empty. Moreover, since a rational nodal curve on a K3 surface is a regular
component of the reducible Severi variety V|OS(d)|, dim(|OS(d)|), by using the
i-smoothability property one has also the following fundamental result.

Theorem. If S ⊂ IPg is a general K3 surface, g ≥ 3, then, for each d > 0
and for each 0 ≤ δ ≤ dim(| OS(d) |), the Severi variety V|OS(d)|, δ contains
regular irreducible components.

In [23], the same author completely solved the above conjecture by show-
ing that, for all g ≥ 3, all rational curves in | OS(1) |, on a general primitive
K3 surface S in IPg, are nodal.

In [24], Chiantini and Ciliberto use Chen’s method to study Severi va-
rieties of nodal curves on a general quartic surface in IP3. Put N(4, n) :=
dim | OS(n) |, where S is such a general quartic. Then, N(4, n) = 2n2 +1 =
pa(nH). Since the behaviour of K3 surfaces, with respect to regularity of
Severi varieties, is very similar to the one of the plane or of smooth, ra-
tional surfaces (see Theorem 3.1.1 and Remark 3.1.2), from Chen’s result
(for which V|nH|,pa(nH) 6= ∅) and from the regularity and the i-smoothability
property, we get V|nH|,δ regular and non-empty, for each δ ≤ N(4, n). More-
over, if one looks at the universal Severi variety Vn,δ, Chen’s result also
implies that this universal variety, for δ = N(4, n), has a component which
dominates the projective space | OIP3(4) |. By degenerating a general quar-
tic to a surface S0 which is union of two quadrics, they prove the following
result (see Theorem 2.2., [24]).

Theorem. On a general quartic in IP3, for all δ ≤ N(4, n), there is an
irreducible component of the Severi variety V|nH|,δ such that, for C general
in this component, G(C,S) = Sym(4n), i.e. the monodromy group of the
covering coincides with the full symmetric group.

A part from the importance of this result by itself, it is fundamental for fur-
ther analysis that Ciliberto and Chiantini do on Severi varieties of smooth,
projective surfaces of degree d ≥ 5 in IP3 in order to prove reducibility of
some Severi varieties of surfaces of general type. We shall give more details
when we consider the part devoted to such surfaces.

We conclude by recalling a recent result of Knutsen, [73], where he stud-
ies necessary and sufficient conditions for the existence of pairs (S,C), where
S is a K3 surface of degree 2n in IPn+1 and C is a smooth (reducible or ir-
reducible) curve of degree d and genus g ≥ 0.

Surfaces of general type:

For what concerns surfaces of general type, in Section 2.1 we have already
recalled Clemens result on the non-existence of curves of genus g ≤ 1

2d(d−5)
on a general surface of degree d ≥ 5 in IP3 (see Theorem 2.1.2).

Clemens argument was extended by Ein ([39], [40]) to the case of com-
plete intersections in higher dimensional varieties. In fact, in general, if M
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denotes a (smooth) projective n-fold and X ⊂ M is a generic complete in-
tersection of type (m1, . . . ,mk), then put m = m1 + · · · + mk. Ein proves
that if m ≥ 2n − k + 1 (resp. m ≥ 2n − k), then all subvarieties of X are
of general type (resp. every subvariety of X is non-rational). If X is, for
example, a complete intersection of type (2, 2, 2) in IP5, then X is a K3
surface and X contains a rational curve. So this result is sharp at least for
complete intersection surfaces.

The above results imply the emptyness of some Severi varieties on com-
plete intersection surfaces of general type.

In 1993, Chang and Ran, [20], consider generic hypersurfaces of degree
at least 5 in IP3 and IP4 and reduced, irreducible but arbitrarily singular
divisors upon them. They prove that such divisors cannot admit desingu-
larizations having numerically effective anticanonical class. This gives, in
some way, an assertion of numerical positivity of the canonical bundle on
these desingularizations. This was the first step to prove the conjectures
of Clemens and Harris, which stated that the generic quintic 3-fold in IP4

cannot be birationally ruled and that the generic surface of degree d ≥ 5 in
IP3 can contain neither rational nor elliptic curves.

We have already mentioned that, in 1994, Geng Xu ([143]) improved
Clemens result on surfaces in IP3 and completely proved Harris conjecture
(see Theorem 2.1.3, in Section 2.1). Indeed, he shows that on a generic
surface of degree d ≥ 5 in IP3, there is no curve with geometric genus g ≤
1
2d(d− 3)− 3 and that this sharp bound can be achieved only by 3-tangent
hyperplane sections if d ≥ 6.

In 1997 Chiantini and Sernesi ([27]) considered regularity properties for
some Severi varieties on surfaces of general type; the methods they used
involve Bogomolov’s theory of unstable vector bundles on surfaces. Since
this will be one of the main subject of the next chapter, we shall precisely
mention their results in Section 3.1, before proving the main theorem of
Chapter 3. Chiantini and Sernesi’s approach was later generalized, in [53], to
curves on surfaces of general type with arbitrary fixed analytic or topological
singularities. Since, in the case of nodes, our result generalizes also Greuel-
Lossen-Shustin’s statement, we shall give details in Section 3.1.

Chiantini and Ciliberto, [24], mainly consider Severi varieties of surfaces
of degree d ≥ 5 in IP3 by focusing on existence and dimensional problems.
They give examples of superabundant components of Severi varieties V|nH|,δ
on surfaces of sufficiently high degree. One can easily determine first ex-
amples of regular components of some Severi varieties. Indeed, results in
classical Enumerative Geometry ensure that there exists a finite number
(bigger than one) of 3-tangent planes to a general smooth surface Sd ⊂ IP3,
d = deg(S) (see, for example, [136]). So, given a general Sd ⊂ IP3, each
3-nodal curve, which is a section of Sd by a 3-tangent plane, is an element
of V|H|, 3 and also an irreducible, regular component of such a Severi variety.

More generally, Chiantini and Ciliberto prove that, for any d ≥ 5 and for
any 0 ≤ δ ≤ dim | D |, there exist regular components of V|nH|,δ; the proof
is by induction, and the first step is Chen’s result for d = 4, a K3 surface.
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Firstly, they use degeneration techniques to prove the existence of surfaces
of degree d which split into a general surface of degree d− 1 plus a general
tangent plane of it (suitable good surfaces). Their next step consists in
showing that on such reducible surfaces there exist limit nodal curves with
good properties with respect to monodromy point of view (we have already
mentioned to the aspect of monodromy, in the part devoted to K3 surfaces).
By partially smoothing these curves they finally prove the following result,
which generalizes the trivial case of 0-dimensional Severi variety V|H|,3.

Theorem 2.3.3 (see Theorem 3.1., [24]) Let S be a general surface in IP3,
of degree d ≥ 4. For all n ≥ d and δ ≤ N(d, n) there is an irreducible,
regular component of V|nH|,δ.

On the other hand, one can consider some examples of superabundant com-
ponents of such Severi varieties. To this aim, put N(d, n) = dim(| OS(n) |),
where S is a smooth surface of degree d ≥ 5 in IP3. We can construct two
different types of superabundant components of Severi varieties. The first
occur when we consider, for example d ≥ 20, n = 3 and δ ≥ 20. Since
N(d, 3) = 19, the expected dimension of V|3H|,δ is negative, so we expect
an empty Severi variety. However, if we denote by C the intersection of S
with a general cone over a singular plane cubic and by L a line in the cone,
then C ∼ dH on the cone so CL = dHL = d ≥ 20. Since the generatrix
of the cone passing through the node of the plane cubic is a double line, we
have that V|3H|,δ is non-empty. One can also give examples of superabun-
dant components even in the range of values δ ≤ N(d, n). Indeed, take a
smooth surface of degree d ≥ 8 and take n an even, positive integer such that
n >> d. On a general plane, embedded in IP3, by Severi’s result (Theorem
2.1.5), there is a family of dimension (nd − n − 2)/2 of irreducible nodal
curves of degree n with

α =
n2 − 5n+ 2− nd

2

nodes. Fixing a general point p ∈ IP3, we have a family of cones with
vertex at p over these nodal plane curves. Such cones have α double lines;
intersecting these cones with S, we get a family of nodal curves, which is
contained in V|nH|,δ, with δ = dα. Therefore, the dimension of V|nH|,δ is, at
least, (nd−n−2)/2, since two cones cannot intersect S in the same curve C
because C and p uniquely determine the cone. If we compute the expected
dimension of V|nH|,δ, we get

N(d, n)− dα =
d3 − 12d2 + 11d− 6

6
.

This becomes strictly smaller that (nd− n− 2)/2 as soon as n < d(d−11)
3 .

Putting together Theorem 2.3.3 and the previous examples of super-
abundant components, one immediately deduces the following:

Proposition. On a general surface in IP3 of general type some Severi va-
rieties are reducible.
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Apart from the trivial case of 0-dimensional Severi varieties, they con-
jectured that for S general surface of degree d ≥ 5 in IP3 and for all
0 ≤ δ ≤ N(d, n), there is only one regular, irreducible component of the
corresponding Severi variety.

In [25], Chiantini and Lopez translate Xu’s local analysis approach with
a global study of the focal locus of a family of curves to consider the problem
of bounding geometric genera of curves on surfaces in IP3, which are general
elements in a given component of the Noether-Lefschetz locus of surfaces in
IP3. They prove the following result.

Theorem 2.3.4 (see Theorem (1.3) in [25]) Let D be a reduced curve in
IP3 and s, d be two integers such that d ≥ s+ 4. Moreover, suppose that:

(i) there exists a surface Y ⊂ IP3 of degree s which contains D;

(ii) the general element of the linear system | OY (dH −D) | is smooth and
irreducible.

Denote by S a general surface of IP3, of degree d, containing D. Thus,
S does not contain reduced, irreducible curves C 6= D of geometric genus
g < 1 + deg(C) (d−s−5)

2 .

With the same approach, they consider also surfaces in IP4 which are pro-
jectively Cohen-Macaulay (see Theorem (1.4) in [25])

Enumerative problems are recently considered by Kleiman and Piene
([72]). They enumerate the singular curves in a complete linear system on
a smooth projective surface S. The divisor must be suitably ample and
the curves may have up to 8 nodes, or a triple point and up to 3 nodes.
The curves must obviously pass through appropriately many general points
on S. The number of curves is given by a universal polynomial in some
basic Chern numbers. More precisely, limiting ourselves to the nodal case,
consider a n-dimensional linear system | D | on S, where D is an effective
divisor on S. Assume that V|D|,δ is non-empty. The goal is to compute how
many δ-nodal curves pass through n − δ general points on S. At least for
δ ≤ 8, they compute the number Nδ of such δ-nodal curves, in terms of a
polynomial Pδ in the following Chern numbers:

d = D2, k = DKS , s = K2
S , x = c2(S).

Denote by L = OS(D) the line bundle associated to D and assume that
L ∼= M⊗m ⊗ N , where M is a very ample line bundle and N is globally
generated. If δ ≤ 8 and if m ≥ 3δ, then

Nδ = Pδ(d, k, s, x)/(δ!).

Such a formula coincides with classical results as, for example, the Zeuthen-
Segre formula, N1 = 3d+ 2k + x, which gives the number of 1-nodal curves
in a general pencil and extends some results of Vainsencher [136].

Finally, for what concerns families of curves on surfaces of general type,
we have already recalled in Section 2.1 the paper of Bogomolov ([13]) and
its generalizations by Lu and Miyaoka ([85] and [86]).
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To conclude this overview, we only want to mention the papers of Chang
and Ran, [21], and of Ballico and Chiantini, [6]. Both are concerned with
nodal curves in projective spaces. The first consider families of nodal, re-
ducible curves in IPr, whose general element is a curve C = C1∪C2 which is
the union of two smooth curves meeting transversely. They study the prob-
lem of relating the smoothability property of C with the ones of C1 and C2.
This is a generalization of what Sernesi studied in [119]. On the other hand,
Ballico and Chiantini show some non-emptyness results of Severi varieties
of nodal curves in IPr, r > 2, with fixed geometric genus. For r = 3, they
also consider the variety Vδ(E), where E is a rank two vector bundle on IP3,
parametrizing sections of E whose zero-locus is nodal, with fixed geometric
genus. They determine non-obstructedness results for these varieties.
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Chapter 3

Regularity for Severi

Varieties on Projective

Surfaces

In this chapter we consider the problem of regularity of Severi varieties on
a smooth, projective surface. In our analysis, we shall be mainly interested
in smooth, projective surfaces of general type, which are the main subject
of our thesis since, for such surfaces, less is proven than for other classes of
surfaces (see Section 2.3).

We have already stated in Definition 2.2.28 that, for a given linear system
| D | on a smooth, projective surface S, whose general member is a smooth,
irreducible curve, we denote by V|D|,δ the locally closed subscheme of | D |
which parametrizes irreducible curves with only δ nodes as singularities and,
with abuse of language, we use the word Severi variety to name such a locally
closed subscheme.

Section 3.1 is devoted to the explanation of the technical tools which
inspired us and that are used to prove the main theorem of the chapter;
therefore, we will briefly recall the approach to the problem of regularity of
Severi varieties on a surface S of general type, which was first considered by
Chiantini and Sernesi ([27]). It is based on the study of a rank-two vector
bundle on S, associated with the set of nodes of an irreducible, nodal curve
X on S, which is numerically equivalent to pKS on S, where p ∈ Q+, p ≥ 2.
They find an upper-bound on δ, ensuring that the Severi variety V|D|, δ is
smooth of codimension δ in | D |. This approach was slightly generalized in
[53], by enlarging the class of considered divisors to some ample divisors on
S.

In Section 3.2, we shall state and prove the main new result of the
chapter, which gives purely numerical conditions on the class of divisors
and upper-bounds on the number of nodes, ensuring that the corresponding
Severi variety is regular (i.e. smooth of the expected dimension, as in Defini-
tion 2.2.30). Our result generalizes what is proven in [27] and [53] as it will
be clear from the study of some examples of blown-up surfaces or surfaces
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which belong to a component of the Noether-Lefschetz locus of surfaces in
IP3 (see Definition 2.1.1).

To conclude the chapter, in Section 3.3 we shall also consider the problem
to determine the sufficient conditions for the regularity of Severi varieties on
surfaces of general type in IP3 which contain a fixed divisor as, for example,
a line. This is related to some results contained in [25], where the question
of algebraic hyperbolicity for surfaces S in IP3 and in IP4 is treated.

3.1 Some known results on the regularity problem

of Severi varieties on surfaces of general type

As we already stated in Section 2.1, in [125] - Anhang F, Severi studied
some properties of the variety V d, g, defined as the closure of the locus Vd, g

consisting of reduced and irreducible plane curves, of geometric genus g, in
the projective space parametrizing plane curves of degree d. Vd, g contains,
as an open dense subscheme, the locus Vd, δ parametrizing irreducible curves
having only δ nodes as singularities. We can restate his result in the case of

irreducible curves. He proved that, for every d ≥ 3 and 0 ≤ δ ≤
(
d− 1

2

)
,

V|dL|, δ is non-empty and everywhere smooth of codimension δ in | dL |,
where L denotes a line in IP2.

In a modern language, a natural approach to dimension and regularity
problems is to use deformation theory of nodal curves. Severi’s classical
result can be easily extended to rational or ruled surfaces, to K3 surfaces as
well as to Enriques surfaces. We shall briefly recall the procedure for these
cases since it contains the key point for which we cannot expect to extend
the same procedure to smooth surfaces of general type.

Let S be a smooth, projective surface and let |D | be a complete linear
system on S whose general member is a smooth, irreducible curve. Let
pa(D) = D(D+KS)

2 + 1 be its genus. For δ ≥ 1, suppose that the Severi
variety V|D|, δ is non-empty. Let [X] ∈ V|D|, δ and let N be the set of δ nodes
of X. Thus, the geometric genus of X is g = pg(X) = pa(X)− δ.

From (2.20) and (2.24) in Section 2.2, we know that the Zariski tangent
space to | D | at [X] is isomorphic to

H0(S,OS(D))/ < X >,

whereas the Zariski tangent space to V|D|, δ at [X] is

T[X](V|D|, δ) ∼= H0(S, IN (D))/ < X >,

where IN ⊂ OS denotes the ideal sheaf of the 0-dimensional subscheme N
of S. We observed that N imposes independent conditions to | D | if and
only if

dim(V|D|, δ) = dim T[X](V|D|, δ) = dim | D | −δ

at [X]. In this case, V|D|, δ is regular at [X] (see Definition 2.2.30).
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Recall that the regularity property is very strong since it implies that
the nodes of X can be independently smoothed (see Remark 2.2.31).

We now consider, via modern techniques, the proof of Severi’s theorem
for irreducible, plane nodal curves (see, for example, [27] or [131]).

Theorem 3.1.1 (Severi) Let S = IP2, d ≥ 3 and D be any irreducible
divisor of degree d. Let δ ≥ 1 be such that δ ≤ pa(D) = (d − 1)(d − 2)/2.
Then the Severi variety V|D|, δ is non-empty and smooth of pure dimension

dim(| D |)− δ = d(d+ 3)/2− δ.

Proof: Suppose that [X] ∈ V|D|, δ and let N be the scheme of nodes of X.
In view of the exact sequence

0→ IN (d)→ OIP2(d)→ ON (d)→ 0

and of the fact that H1(IP2, OIP2(d)) = 0, to prove the regularity of V|D|, δ

at [X] it is necessary and sufficient to prove that h1(IP2, IN (d)) = 0.

Let σ := h1(IP2, IN (d)). Since h0(N, ON (d)) = δ, from the above
sequence we deduce that

h0(IN (d)) = h0(OIP2(d))− δ + σ =

(
d+ 2

2

)
− δ + σ.

Let ϕ : C → X ⊂ IP2 be the normalization map of X and let Ñ be the
pullback of N to C, such that deg(Ñ) = 2δ. If µ : S̃ → IP2 denotes
the blow-up of IP2 in N and B =

∑δ
i=1Ei the µ-exceptional divisor in S̃,

C = µ∗(X)− 2B is irreducible in S̃. Tensoring the exact sequence defining
C with OS̃(µ∗(X)−B) gives us

0→ OS̃(B)→ OS̃(µ∗(X)−B)→ OC(µ∗(X)−B) ∼= ϕ∗(O(d))(−Ñ)→ 0,

with CB = 2δ. Since B is µ-exceptional, h0(OS̃(B)) = 1. We therefore have
an injective map

H0(OS̃(µ∗(X)−B))
H0(OS̃(B))

∼=
H0(IP2, IN (d))

< X >
→ H0(C, ϕ∗(O(d))(−Ñ)).

Since ϕ∗(O(d))(−Ñ) has degree d2 − 2δ = 2g − 2 + 3d = deg(KC) + 3d, it
is a non-special divisor on the smooth curve C. By Riemann-Roch on C, it
follows that

h0(S, IN (d))− 1 ≤ h0(C, ϕ∗(O(d))(−Ñ)) = d2 − 2δ + 1− g

= (d2 + 3d)/2− δ =

(
d+ 2

2

)
− δ − 1.

In conclusion h0(IN (d)) ≤
(
d+ 2

2

)
− δ, hence σ = 0.

To prove that V|D|, δ 6= ∅ for all δ ≥ 1 we start from the case δ = pa(D),
i.e. g = 0. The family V|D|, pa(D) is not empty because it contains any
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general projection of a rational normal curve in IPd. Let [X] ∈ V|D|, pa(D)

and let N denote the scheme of nodes of X. Fix p ∈ N and denote by M

the complement of {p} in N . Since h1(IN (d)) = h1(IM (d)), we have

h0(IM (d)) = h0(IN (d)) + 1.

Any element of the vector space H0(IM (d)) not in H0(IN (d)) defines a first-
order deformation of X which smooths the node p and leaves unsmoothed all
the other nodes. This means that X belongs to the closure of V|D|, pa(D)−1;
therefore V|D|, pa(D)−1 6= ∅. By descending induction on δ one proves that
V|D|, δ 6= ∅, for all 1 ≤ δ ≤ pa(D). 2

Remark 3.1.2 For what stated in Theorem 2.2.27, the regularity of Severi
varieties of irreducible plane curves implies that such curves are i-smoothable
in IP2 (in the sense of Definition 2.2.22). We emphasize that the reason why
the proof of Theorem 3.1.1 works is because

ϕ∗(O(d))(−Ñ) = ϕ∗(O(d− 3))(−Ñ)⊗ ϕ∗O(3) ∼= OC(KC)⊗ ϕ∗O(3),

so it is a non-special line bundle on C. It is then clear that if we consider
any smooth rational or ruled surface S and any smooth, irreducible curve
X on S, such that | D | is base point free (where D smooth and D ∼ X on
S) and KSX < 0, then the first part of the proof can be repeated for these
cases with no change. This holds in particular for any Del Pezzo surface1.
Therefore we get the following more general statement:

Theorem. Let S be a rational or ruled surface and let D ⊂ S be a smooth,
irreducible curve such that | D | is base point free and DKS < 0. If for some
δ ≤ pa(D) we have that V|D|, δ 6= ∅, then V|D|, δ is smooth of codimension δ

in | D |.

Remark 3.1.3 Another important case is when S is a K3 surface (see, also,
[132]) and D a smooth, irreducible curve such that pa(D) ≥ 2. Then | D |
is base point free (see [88]). Since OS(KS) ∼= OS , from Serre duality we
get h1(OS(D)) = h1(OS(−D)); in addition h0(OS(−D)) = 0 because −D is
not effective. Furthermore, since h1(OS) = 0 and h0(OS) = h0(OD), then
h1(OS(−D)) = 0; so that

h0(OS(D)) = h0(OD(D)) + 1.

From adjunction formula and the fact that S is a K3 surface, we get ωD =
OD(D), i.e. h0(OD(D)) = pa(D) = pg(D), which means that dim(| D |) =
pa(D). In this case, for each 1 ≤ δ ≤ pa(D) and for any [X] ∈ V|D|, δ we
have

h0(S, IN (X))− 1 = pa(X)− δ + h1(S, IN (X)) ≤ h0(C, ϕ∗(O(X))(−Ñ))

1For this result, we also refer the reader to [101] and [131].
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= h0(C, O(KC)) = pa(X)− δ.

It follows that H1(S, IN (X)) = (0) and therefore V|D|, δ is smooth of codi-
mension δ in | D | at [X]. Note that, in particular, there are only finitely
many nodal rational curves in | D |.

As recalled in Section 2.3, existence problems in the case of a K3 surface
are treated, for example, in [22] or in [97], where conditions which imply
V|D|, δ 6= ∅ are studied.

Remark 3.1.4 The last case we want to treat is the one with S an Enriques
surface; this means h1(OS) = h2(OS) = 0 and ω⊗2

S = OS . Let D be a
smooth, irreducible curve on S. From the standard exact sequence

0→ OS → OS(D)→ OD(D)→ 0,

we get dim(|D |) = h0(OD(D)). From adjunction formula, 4pg(D) − 4 =
2D(D + KS) = 2D2; thus deg(OD(D)) = deg(KD). On the other hand
ωD = OD(D+KS) is not isomorphic to OD(D). Therefore, from Riemann-
Roch and Serre duality on D, h0(OD(D)) = pg(D)−1+h0(ωD⊗OD(−D)) =
pg(D) − 1, since ωD ⊗ OD(−D) is a line bundle in Pic0(D) which is not
isomorphic to the trivial bundle. We deduce that dim | D |= pg(D)− 1, so
we shall consider 1 ≤ δ ≤ pg(D)− 1. Now, suppose that V|D|, δ is not empty
and let [X] ∈ V|D|, δ. By using the same procedure of Theorem 3.1.1 and
Serre duality on C, we obtain

h1(C, ϕ∗(O(X))(−Ñ)) = h0(C,OC(ϕ∗(KS))).

SinceOC(ϕ∗(KS)) is a non-trivial line bundle in Pic0(C), h0(OC(ϕ∗(KS))) =
0 so that | ϕ∗(O(X))(−Ñ) | is a non-special linear system on C. Therefore,
h0(C,ϕ∗(OX(X))(−Ñ)) = X2 − 2δ − pg(C) + 1 = X2 − δ − pa(X) + 1,
so h0(S, IN (X)) ≤ X2 − δ − pa(X) + 2. Since h0(S, IN (X)) = pa(X) −
δ + h1(S, IN (X)), it follows that h1(S, IN (X)) ≤ X2 − 2pa(X) + 2 =
X2 − (X2 + XKS) = −XKS . In conclusion, if D is a smooth, irreducible
divisor such that DKS = XKS ≥ 0, then V|D|, δ is regular.

If S is a smooth surface of general type, we cannot expect that Theorem
3.1.1 extends without changes to linear systems on S. Indeed, consider
for example a very ample divisor D on a smooth, minimal surface S of
general type. Thus KSD > 0, since D is very ample and KS is big and
nef (see Proposition 1.3.2 and Remark 1.3.3). We get that D2 < deg(KD),
which means that the characteristic linear system |OD(D) | is special. Since
KSD > 0 on S, then h0(OD(D)) = h1(ωD ⊗ OD(−D)) < g = pa(D) =
h1(OD). Thus, from the exact sequence

0→ OS → OS(D)→ OD(D)→ 0,

we deduce that dim(| D |) ≤ pa(D) − 1; therefore V|D|, pa(D), for example,
cannot have the expected codimension and we should in fact expect that
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V|D|, pa(D) = ∅ (except the fact that there could exist superabundant com-
ponents). The next step is to understand for which values of δ, V|D|, δ is
smooth of the expected dimension (having supposed its non-emptyness).

Information about regularity of a Severi variety V|D|, δ on a smooth sur-
face S of general type can be obtained by studying suitable rank-two vector
bundles on S. The first who used such approach were Chiantini and Sernesi.

Remark 3.1.5 Let N be a set of δ points in S. If N does not impose
independent conditions to a linear system | D | on S, then, from the exact
sequence

0→ IN (D)→ OS(D)→ ON (D)→ 0,

we have that the restriction map H0(OS(D)) → H0(ON (D)) is not sur-
jective. Let N0 ⊂ N be a minimal subset for which the composition
H0(OS(D)) → H0(ON (D)) → H0(ON0(D)) does not surject; this means
that H1(S, IN0(D)) 6= 0 and that N0 satisfies the Cayley-Bacharach condi-
tion (see [56] and [80]). From Serre duality, we have

H1(S, IN0(D)) ∼= Ext2−1(OS(D)⊗IN0 , ωS)∨ ∼= Ext1(OS(D−KS)⊗IN0 ,OS)∨.

Thus, a non-zero element of H1(IN0(D)) corresponds to a non-trivial rank-
two vector bundle fitting in the following exact sequence

0→ OS → E → IN0(D −KS)→ 0. (3.1)

For what stated in Proposition 1.2.3, we get

c1(E) = c1(OS) + c1(OS(D −KS)) = D −KS ,

c2(E) = c1(OS)c1(OS(D −KS)) + deg(N0) = deg(N0) := δ0,

with δ0 > 0 since N0 cannot be empty.

Before stating the main result of Chiantini and Sernesi, we recall that
NS(S) denotes the Neron-Severi group of S whereas the symbol ≡ denotes
the numerical equivalence of divisors on S (see Definitions 1.1.20 and 1.1.25).

Theorem 3.1.6 (see Theorem 2.2. in [27]) Let S be a smooth surface with
KS an ample divisor and let C be an irreducible curve on S such that | C |
contains smooth elements and such that

C ≡ pKS , p ≥ 2, p ∈ Q+.

Suppose that C has δ ≥ 1 nodes and no other singularities and assume either

δ <
p(p− 2)

4
K2

S

or

δ <
(p− 1)2

4
K2

S p ∈ Z odd and NS(S) ∼= Z[KS ].

Then the nodes of C impose independent conditions to | C |. In particular
the Severi variety V|C|, δ is smooth of codimension δ at [C].
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Proof: For details, the reader is referred to the original paper. 2

This general result gives, for example, information on regularity of Severi
varieties on smooth surfaces in IP3 of degree d ≥ 5, i.e. surfaces of general
type. Indeed, since KS = (d − 4)H, where H is a plane section of S, then
KS is very ample; so the previous result applies to any nodal curve C ∼ nH,
for n ≥ 2(d− 4), getting:

Proposition 3.1.7 (see Proposition 2.4. in [27]) Let S be a smooth surface
of degree d ≥ 5 in IP3 with plane section H. If C ∼ nH, n ≥ 2d − 8, has
δ nodes and no other singularities, and if δ < nd(n − 2d + 8)/4, then C

corresponds to a regular point of a component of the Severi variety V|nH|, δ

(in the sense of Definition 2.2.28).

When S is a general quintic surface in IP3 and C ∼ pKS = pH, p an odd
integer, Theorem 3.1.6 gives:

Proposition 3.1.8 (see Proposition 2.5. in [27]) Let S be a smooth surface
of degree 5 in IP3 with plane section H and Picard group isomorphic to Z. If
C ∼ pH (p ≥ 3 odd) has δ nodes and no other singularities and δ < 5(p−1)2

4 ,
then the Severi variety V|pH|, δ is regular at [C].

Remark 3.1.9 One can apply Bogomolov-unstable vector bundle proce-
dure also to K3 or rational surfaces and get estimates on δ which imply
that V|C|, δ is smooth of the expected dimension. However, for these surfaces
one obtains statements which are weaker than Theorem 3.1.1 or Remarks
3.1.2 and 3.1.3. On the other hand, Chiantini and Sernesi provided exam-
ples which show that their numerical bounds on δ are sharp at least for a
general quintic surface in IP3. We shall see, in Section 4.3, that our result
(Theorem 3.2.3), which generalizes Theorem 3.1.6, is sharp for a larger class
of projective surfaces: at least for general ”canonical” complete intersections
in IPr.

An improvement of Theorem 3.1.6 is given in [53]. The authors gen-
eralized Chiantini and Sernesi’s approach in two directions. In fact, they
allowed arbitrary singularities and they weakened the assumption of KS be-
ing ample, so that S = IP2 is included. They consider V as the variety
of irreducible curves, with fixed (topological or analytic) singularity types,
on a smooth projective surface S. They give sufficient conditions for the
smoothness of V and, in the case of simple singularities, they prove that
these conditions are optimal with respect to the asymptotical behaviour.
Before stating their result, we have to recall some of their notation.

Let D be a non-singular curve on a smooth, projective surface S and
denote by V = V (S1, . . . , Sr) the variety of irreducible (reduced) curves
C ∈| D | having exactly r singularities of topological (or analytic) types
S1, . . . , Sr. V has the T − property at [C] ∈ V if the conditions imposed
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by the individual singularities of C are independent, i.e. V is smooth at [C]
with the expected codimension.

The authors denote by

Iea(C, z) = (f, fx, fy)OS,z

the Tjurina ideal of (C, z), where f is a local equation for the germ (C, z),
and

Ies(C, z) := {g ∈ OS,z | f + εg equisingular over Spec(C[ε]/(ε2))},

which is the equisingularity ideal of (C, z) (see [50] and [139]). The schemes
Xes(C) andXea(C), concentrated at the singular points z1, . . . , zr of C, are
defined by the ideal Ies(C, z) and Iea(C, z), respectively. The correspond-
ing ideal sheaves on S are denoted by IXes(C) and IXea(C). The topological
case is the ”es”-case, whereas the ”ea”-case reflects the analytic singulari-
ties. Since they treat simultaneously the analytic and the topological case,
for brevity they denote by X ′(C) both cases.

For a singular type Si, τ ′(Si) denotes the codimension of the correspond-
ing equisingularity (resp. Tjurina) ideal, whereas k(Si) is used for the in-
tersection multiplicity of type Si with a corresponding generic polar, that is
k(Si) = µ(Si) +mt(Si) − 1, where µ denotes the Milnor number of Si (see
[8], pag. 62) and mt its multiplicity. Since we are interested only in the
case of ordinary double points, we do not go deeper into detail and refer
the reader to the original article. We only want to point out that, in the
case we are interested in, each singular point zi is an ordinary double point,
so Si = Sj for 1 ≤ i 6= j ≤ r = δ; moreover, if p is a node, τ ′(p) = 1
and k(p) = 1 + 2 − 1 = 2. In [50] and [51] it is proven that the variety
V (S1, . . . , Sr) has the T-property at [C] if and only if

h1(S, IXes(C)(C)) = 0 (resp. h1(S, IXea(C)(C)) = 0.

Theorem 3.1.10 (see Theorem 1 in [53]) Let S be a smooth projective
surface and let C ⊂ S be an irreducible curve with precisely r singularities
at z1, . . . , zr of topological (resp. analytical) types S1, . . . , Sr, such that:

1. C is ample;

2. C −KS is ample;

3. C2 ≥ K2
S.

If

(i)
∑r

i=1 τ
′(Si) <

(C−KS)2

4 ,
∑r

i=1 k(Si) <
C(C−KS)

2 ;

(ii)
(
∑r

i=1
(τ ′(Si)+1))2

C2 < (
∑r

i=1(1− CKS
C2 (τ ′(Si) + 1)))− (CKS)2−C2K2

S
4C2 ;

(iii)
(
∑r

i=1
k(Si))

2

C2 < (
∑r

i=1(k(Si)(1− CKS
C2 )− τ ′(Si)))−

(CKS)2−C2K2
S

4C2 .
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Then, V (S1, . . . , Sr) has the T-property at [C], i.e. it is smooth of
codimension

∑r
i=1 τ

′(Si) at [C].

Proof: The methods of the proof are based on the Chiantini and Sernesi
idea, involving Bogomolov’s theory of unstable vector bundles on surfaces,
on local analysis of singularities and on suitable H1-vanishing criteria. For
details, the reader is referred to the original paper. 2

We only want to remark that, in the case of r = δ nodes, then formulas
(i), (ii) and (iii) above become

(i) δ < (C−KS)2

4 , 2δ < C(C−KS)
2 , i.e. δ < min( (C−KS)2

4 , C(C−KS)
4 );

(ii) = (iii) 16δ2 − 4δC(C − 2KS) + ((CKS)2 − C2K2
S) < 0.

In the case of nodes, condition (ii) = (iii) is fundamental to the aim of
finding a positive real upper-bound for δ; thus, there is an implicit request
that the discriminant of the inequality is positive. Since such a discriminant
is 16C2(C−2KS)2, these numerical hypotheses imply also that (C−2KS)2 >
0, otherwise condition (ii) = (iii) would not hold.

As corollaries of the previous results, the authors find suitable sufficient
conditions to deduce that V (S1, . . . , Sr) has the T-property when S is:
IP2, a surface with trivial canonical divisor (e.g. a K3-surface, an abelian
surface), a smooth surface of degree d ≥ 5 in IP3. For details, we refer the
reader to the original paper.

3.2 The main theorem

In the previous section we have recalled what is already proven with respect
to the problem of finding sufficient conditions which imply the regularity of
a Severi variety of nodal curves on S, expecially in the case of S a smooth
surface of general type. Before stating and proving our main result, we
briefly recall and make further necessary definitions.

In Definition 1.1.28 we stated that, if S is a smooth, projective surface,
C is a nef divisor on S if CF ≥ 0, for each effective divisor F on S; by
Kleiman’s criterion (see Remark 1.1.31), this corresponds to the fact that C
is in the closure of the ample divisor cone of S.

Definition 3.2.1 Let S be a smooth, projective surface and C ∈ Div(S).
We shall denote by H(C,KS) the Hodge number of C and S, defined by

H(C,KS) := (CKS)2 − C2K2
S .

The Algebraic index theorem (Theorem 1.1.24) ensures us that this number
is non-negative when C (or KS) is a nef divisor. Indeed, by Kleiman’s
criterion, if C is nef then C2 ≥ 0. Thus,

(a) if C2 = 0, then H(C,KS) = (CKS)2 ≥ 0;
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(b) if KS ∼ 0, then one trivially has H(C,KS) = 0;

(c) if C2 > 0 and KS a non-zero divisor then, either CKS = 0, so K2
S < 0

(by the Algebraic index theorem), or CKS 6= 0, then H(C,KS) ≥ 0.

Since it will be used in the proof of our main theorem, we recall the
following simple result.

Lemma 3.2.2 Let S be a smooth surface and let C be an effective, reduced
and irreducible divisor on S. Assume that C2 > 0. Then C is a nef divisor.

Proof: Suppose there exists a divisor D on S such that CD < 0. Since C
is irreducible, the only possibility is that C is a component of D. Let α ∈ IN
be the multiplicity of C in D, so that

D = D′ + αC,

with D′ an effective divisor which does not contain C. Then, 0 > CD =
αC2 +D′C. Since α > 0 and D′C ≥ 0, this would imply C2 < 0. Thus, for
each effective divisor D, CD ≥ 0, i.e. C is nef. 2

We are now able to prove our result.

Theorem 3.2.3 Let S be a smooth, projective surface and let C be a smooth,
irreducible divisor on S. Suppose that:

1. (C − 2KS)2 > 0 and C(C − 2KS) > 0;

2. either

(i) K2
S > −4 if C(C − 2KS) ≥ 8,

or

(ii) K2
S ≥ 0 if 0 < C(C − 2KS) < 8.

3. CKS ≥ 0;

4. H(C,KS) < 4(C(C−2KS)−4), where H(C,KS) is the Hodge number
of C and S (Definition 3.2.1);

5. either

(i) δ ≤ C(C−2KS)
4 − 1 if C(C − 2KS) ≥ 8,

or

(ii) δ <
C(C−2KS)+

√
C2(C−2KS)2

8 if 0 < C(C − 2KS) < 8.

Then, if [C ′] ∈ | C | parametrizes a reduced, irreducible curve with only δ

nodes as singular points and if N denotes the 0-dimensional scheme of nodes
in C ′, in the above hypotheses N imposes independent conditions to | C |,
i.e. the Severi variety V|C|, δ is smooth of codimension δ (i.e. regular) at
[C ′].
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Proof: For simplicity we will write K, instead of KS , to denote a canonical
divisor of S. By contradiction, assume that N does not impose independent
conditions to | C |. Let N0 ⊂ N be a minimal 0-dimensional subscheme of
N for which this property holds and let δ0 =| N0 |. As already mentioned in
Remark 3.1.5, this means thatH1(S, IN0(C)) 6= (0) and thatN0 satisfies the
Cayley-Bacharach condition. Therefore, a non-zero element of H1(IN0(C))
corresponds to a non-trivial rank-two vector bundle E ∈ Ext1(IN0(C −
K),OS); so, one can consider the obvious exact sequence

0→ OS → E → IN0(C −K)→ 0. (3.2)

This implies that

c1(E) = C −K, c2(E) = δ0 ≤ δ,

so
c1(E)2 − 4c2(E) = (C −K)2 − 4δ0. (3.3)

Observe also that, from hypotheses 1. and 3., it immediately follows that
C(C −K) > 0 and C2 > 0. Indeed, C(C −K) = C(C − 2K) +CK > 0 and
C2 > CK ≥ 0. Since C is irreducible, from Lemma 3.2.2, then C is a nef
divisor.

We now want to compute (3.3) in cases 5.(i) and 5.(ii).

In the first one,

(C−K)2−4δ0 ≥ (C−K)2−4δ = C2−2CK−4+4+K2−4δ ≥ K2 +4 > 0,

by 2(i).

In the other case, using 5.(ii) and the Index Theorem,

(C −K)2 − 4δ0 ≥ (C −K)2 − 4δ = C2 − 2CK +K2 − 4δ > K2 ≥ 0,

since we supposed 2(ii).

In both cases, the vector bundle E is Bogomolov-unstable (see Theo-
rem 1.2.13), so there exist M, B ∈ Div(S) and a 0-dimensional scheme Z
(possibly empty) such that

0→ OS(M)→ E → IZ(B)→ 0 (3.4)

holds and (M −B) in the ample divisor cone of S, N(S)+. This means that

(M −B)2 > 0,

(3.5)

(M −B)H > 0, ∀ H ample divisor.

The exact sequence (3.4) ensures us that H0(E(−M)) 6= 0. If we consider
the tensor product of the exact sequence (3.2) by OS(−M), we get

0→ OS(−M)→ E(−M)→ IN0(C −K −M)→ 0. (3.6)
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We state that H0(OS(−M)) = 0; otherwise, −M would be an effective
divisor, therefore −MH > 0 for each ample divisor H. But, from (3.4), it
follows that c1(E) = M +B, so, by (3.2) and (3.4),

M −B = 2M − C +K ∈ N(S)+. (3.7)

Thus, for every ample divisor H,

MH >
(C −K)H

2
; (3.8)

from (3.8) and from Kleiman’s criterion, we get

MC ≥ (C −K)C
2

. (3.9)

It follows that −MC < 0 so, since C is nef, −M cannot be effective.

If we consider the cohomological exact sequence associated to (3.6), we
deduce that there exists a divisor ∆ in | C −K −M | such that N0 ⊂ ∆. If
the irreducible nodal curve C ′ ∼ C, whose set of nodes is N , were component
of ∆, then −M −K would be an effective divisor. By applying (3.9) and by
using the fact that C(C −K) > 0 and hypothesis 3., one determines

C ′(−M −K) = C(−M −K) = −CK − CM ≤ −CK − (C −K)C
2

=

= −(C +K)C
2

= −KC
2
− C2

2
< −CK ≤ 0,

which contradicts the effectiveness of −M −K, since C is nef.

Bezout’s theorem implies that

C ′∆ = C ′(C −K −M) ≥ 2δ0. (3.10)

On the other hand, taking M maximal, we may further assume that the
general section of E(−M) vanishes in a 2-codimensional locus Z of S. Thus,
c2(E(−M)) = deg(Z) ≥ 0. From computations in Proposition 1.2.2, we
obtain

c2(E(−M)) = c2(E) +M2 + c1(E)(−M) = δ0 +M2 −M(C −K),

which implies
δ0 ≥M(C −K −M). (3.11)

By applying the Algebraic index theorem to the divisor pair (C, 2M −
C +K), we get

C2(2M − C +K)2 ≤ (C(C −K)− 2C(C −K −M))2. (3.12)

From (3.10) and from the fact that C(C −K) is positive, it follows that

C(C −K)− 2C(C −K −M) ≤ C(C −K)− 4δ0. (3.13)
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We observe that the left side member of (3.13) is non-negative, since C(C−
K)−2C(C−K−M) = C(2M −C+K), where C is effective and, by (3.7),
2M − C + K ∈ N(S)+. Thus, (3.13) still holds when we square both its
members and, together with (3.12), this gives

C2(2M − C +K)2 ≤ (C(C −K)− 4δ0)2. (3.14)

On the other hand, by using (3.11), we get

(2M − C +K)2 = 4(M − (C −K)
2

)2 =

= (C −K)2 − 4(C −K −M)M ≥ (C −K)2 − 4δ0,

i.e.
(2M − C +K)2 ≥ (C −K)2 − 4δ0. (3.15)

Putting together (3.14) and (3.15), we get

F (δ0) := 16δ20 − 4C(C − 2K)δ0 + (CK)2 − C2K2 ≥ 0. (3.16)

Summarizing, the assumption on N , stated at the beginning, implies (3.16)2.
We want to show that our numerical hypotheses hold if and only if the
opposite inequality is satisfied. To this aim, observe that the discriminant
of the equation F (δ0) = 0 is 16C2(C − 2K)2, so, by hypotheses 1. and 3., it
is positive. The inequality F (δ0) < 0 is verified iff δ0 ∈ (α(C,K), β(C, K)),
where

α(C,K) =
C(C − 2K)−

√
C2(C − 2K)2

8
∈ IR and

β(C,K) =
C(C − 2K) +

√
C2(C − 2K)2

8
∈ IR ;

we have to show that, with our numerical hypotheses, δ0 ∈ (α(C,K), β(C, K)).

From 5., it immediately follows that δ0 < β(C,K), since, as we shall see
in the sequel, the bound in 5.(i) is smaller than β(C,K). Note also that
α(C,K) ≥ 0. Indeed, if α(C,K) < 0, then C(C − 2K) <

√
C2(C − 2K)2,

which contradicts the Algebraic index theorem, since C(C − 2K) > 0.

Observe that α(C,K) < 1 if and only if

C(C − 2K)− 8 <
√
C2(C − 2K)2 (3.17)

To simplify the notation, we put t = C(C − 2K) so that (3.17) becomes

t− 8 <
√
t2 − 4H(C,K). (3.18)

Two cases can occur.
2We remark that, in the case of nodes, this condition is the same of [53]; moreover,

their hypotheses (ii) and (iii) (see Theorem 3.1.10) coincide in the case of nodes and

become F (δ0) < 0.
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If t − 8 < 0, there is nothing to prove since the right side member of
(3.18) is always positive.

Note, before proceeding to consider the other case, that in this situation we
want that β(C,K) > 1 in order to have at least a positive integral value
for the number of nodes; but β(C,K) > 1 if and only if (0 <)8 − t <√
t2 − 4H(C,K). By squaring both members of the previous inequality, we

get 4H(C,K) < 16t − 64, which is our hypothesis 4.; so the upper-bound
for δ is surely greater than 1. Moreover, the expression for such bound is
the one in 5.(ii) and it can not be written in a better non-trivial form.

On the other hand, if t− 8 ≥ 0, by squaring both members of (3.18), we
get H(C,K) < 4(C(C − 2K) − 4), which is our hypothesis 4.. Therefore,
α(C,K) < 1; moreover, the condition β(C,K) > 1 is trivially satisfied, since
it is equivalent to t− 8 > −

√
C2(C − 2K)2. From (3.17), we can write

C(C − 2K) + C(C − 2K)− 8
8

<
C(C − 2K) +

√
C2(C − 2K)2

8
,

so we can replace the bound δ < β(C,K) with the more ”accessible” one
δ ≤ C(C−2K)

4 − 1, which is the bound in 5.(i).

Observe that

C(C − 2K) + C(C − 2K)− 8
8

<
C(C − 2K) +

√
C2(C − 2K)2

8

≤ C(C − 2K)
4

,

so, it is not correct to directly write δ < C(C−2K)
4 . Therefore, 5.(i) is the

right approximation.

In conclusion, our numerical hypotheses contradict (3.16), therefore the
assumption h1(IN (C)) 6= 0 leads to a contradiction. 2

Remark 3.2.4 (1) The previous theorem gives purely numerical conditions
to deduce some information about Severi varieties of smooth projective sur-
faces. In the next section, we shall discuss a class of interesting examples
of projective surfaces to which our theorem easily applies. Indeed, we will
consider smooth surfaces in IP3 which are elements of a component of the
Noether-Lefschetz locus; more precisely, surfaces of general type, of degree
d ≥ 5, which contain a line.

(2) Our result obviously generalizes the one of Chiantini and Sernesi. In
their case, since C ≡ pKS , p ∈ Q and p ≥ 2, we always have α(C,KS) = 0
and β(C,KS) = p(p−2)

4 K2
S ; this depends on the fact that H(pKS ,KS) = 0,

for every p. We recall that, with the further hypotheses that p ∈ Z+, p odd,
and that the Neron-Severi group of S is NS(S) ∼= Z[KS ], they proved that
one can take δ < (p−1)2

4 K2
S . These bounds are sharp, at least for a general

quintic surface in IP3.

Furthermore, as recalled in Remark 1.2 in [27], in the case of rational or
ruled surfaces (for which CKS < 0) or K3 surfaces (for which CKS =
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0) if | C | is base-point-free the argument for S = IP2 can be repeated
without changes, since the normal bundle to the normalization map ϕ :
C̃ ′ → C ′ ⊂ S, Nϕ, is non-special on C̃ ′. Observe that, such a line bundle
equals ϕ∗(OC′(C ′))(−Ñ), where Ñ is the pullback of the set of nodes N to
C̃ ′. Our result focuses on cases in which CKS ≥ 0 (see hypothesis 3.), where
the previous approach fails.

(3) One can immediately deduce that when the Hodge number is zero, i.e.
when we are considering a divisor pair such that (CK)2 = C2K2 then, in
the previous proof, we find α(C,K) = 0 and β(C,K) = C(C−2K)

4 . So, for
example, we obtain once again what stated for the cases of K3 surfaces or
abelian surfaces (see [27] and [53]).

(4) Theorem 3.2.3 also generalizes, in the case of nodes, the result in [53] (i.e.
Theorem 3.1.10). This will be clear after having considered the following
examples.

Examples:

1) Let S ⊂ IP3 be a smooth general quartic. We have, OS(KS) ∼= OS . Let
H denote the plane section of S and let D be a general element of | 2H |.
From Bertini’s theorems, it follows that D is smooth and irreducible. If
π : S̃ → S denotes the blow-up of S at a smooth point p ∈ S and E the
associated π-exceptional divisor, then KS̃ ∼ E, i.e. the canonical divisor of
the blown-up surface is linearly equivalent to the exceptional divisor. Thus,
the results in [27] cannot be applied, since KS is not ample. Moreover, also
C ∼ 2π∗(H) is not ample, since CKS̃ = 0; so, the first hypothesis in 3.1.10
does not hold.

Nevertheless, observe that the generic element of | C | is smooth and
irreducible. Moreover, C − 2KS̃ ∼ 2π∗(H) − 2E so that (C − 2KS̃)2 =
16 − 4 = 12, C(C − 2KS̃) = 16, CKS̃ = 0, K2

S̃
= −1 > −4, H(C,KS̃) =

0 − 16(−1) = 16 and 4(C(C − 2KS̃) − 4) = 4(12) = 48. Since we are in
situation 5.(i), i.e. C(C − 2KS̃) ≥ 8, we get δ ≤ 16

4 − 1 = 3. Therefore, if
V|2π∗(H)|,δ 6= ∅ on S̃ and if δ ≤ 3, then it is everywhere regular.

2) Let S be a smooth quintic surface in IP3 which contains a line L. Denote
by Γ ⊂ S a plane quartic which is coplanar to L, so that Γ ∼ H − L (H
denotes the plane section of S). Thus,

H2 = 5, HL = 1, L2 = −3, HΓ = 4, Γ2 = 0 and ΓL = 4.

Choose C ∼ 3H + L, so that | C | contains curves which are residue to Γ
in the complete intersection of S with the smooth quartic surfaces in IP3

containing Γ. | 3H +L | is base-point-free and not composed with a pencil.
Indeed, if we consider the minimal linear series Λ =| 3H | +L, such that
Λ ⊂| 3H + L |, each element of Λ has L as a fixed divisor. This means
that the possibly fixed locus of | 3H + L | should be contained in L, but
(3H + L)L = 0. Moreover, if | 3H + L | had been composed with a pencil,
then each curve C ∼ 3H + L would be. This cannot happen, since 3H is
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an ample divisor. Once again, by Bertini’s theorems, its general member is
smooth and irreducible; but C and C −KS cannot be both either ample or,
even, nef divisors. In fact, CL = 3− 3 = 0 and (C −KS)L = (2H + L)L =
2− 3 = −1. Therefore, the result in 3.1.10 cannot be applied.

Neverthless, CKS = C(C − 2KS) = H(C,KS) = 16, (C − 2KS)2 = 4,
K2

S = 5, 4(C(C−2KS)−4) = 48 and, since C(C−2KS) > 8, δ ≤ 16
4 −1 = 3.

Thus, if | 3H + L | contains some nodal, irreducible curves, then, if δ ≤ 3,
V|3H+L|,δ is everywhere regular.

3.3 Regularity results for Severi varieties on smooth

surfaces in IP3, of degree d ≥ 5, which contain

a line

We now consider a class of examples to which our result easily applies.
We shall focus on surfaces of IP3 containing a line. Such approach can
be generalized to surfaces belonging to other components of the Noether-
Lefschetz locus.

To start with, let S ⊂ IP3 be a smooth quintic and L ⊂ S be a fixed line.
Since pa(L) = pg(L) = 0, by the adjunction formula and by the fact that
KS ∼ H we get L2 = −3. As before,

K2
S = 5, LH = 1, L2 = −3.

Examples: (1) Consider C ∼ 7H + 2L on S, so C is not numerically
equivalent to a rational multiple of KS . Moreover, we immediately find that
C − KS cannot be ample. Indeed, C − KS ∼ 7H + 2L so (C − KS)L =
7LH + 2L2 = 0, with L an effective divisor. This contradicts the Nakai-
Moishezon criterion for the ampleness of an effective divisor (see Theorem
1.1.27). Once again, Theorems 3.1.6 and 3.1.10 cannot be applied.

By simple computations, we get (C − 2KS)2 = 133, C(C − 2KS) = 187,
K2

S = 5, CKS = 37, H(C,KS) = 1369−1305 = 64 and 4(C(C−2KS)−4) =
732. We have to prove that the general element in | 7H + 2L | is smooth
and irreducible. This directly follows from Bertini’s theorems:

For the smoothness, we have to show that | 7H+2L | is base point free. It is
sufficient to prove that there are no base points on L. To this aim, consider
the exact sequence

0→ OS(7H + L)→ OS(7H + 2L)→ OL(7H + 2L) ∼= OIP1(1)→ 0.

| OIP1(1) | is base point free, since deg(OIP1(1)) = 1 > 0. It is sufficient to
show that the restriction map

H0(OS(7H + 2L))→ H0(OIP1(1))

is surjective, equivalently that H1(OS(7H + L)) = 0. Thus, take the exact
sequence

0→ OS(7H − L)→ OS(7H)→ OL(7H) ∼= OIP1(7)→ 0
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and consider its tensor product with OS(L). We get:

· · · → H1(OS(7H))→ H1(OS(7H + L))→ H1(OIP1(4))→ · · · .

We immediately conclude by observing that H1(OS(7H)) = 0, since S is a
smooth surface in IP3, and H1(OIP1(4)) = 0, by Serre duality and by the
fact that ωIP1

∼= OIP1(−2).

For the irreducibility, we have only to show that | 7H+2L | is not composed
with a pencil. This immediately follows from the fact that (7H + 2L)L =
1, i.e. each element in | 7H + 2L | has only one point on L, and that
deg(7H + 2L) = 37.

In conclusion, if δ ≤ 45 and if V|7H+2L|, δ 6= ∅, then V|7H+2L|, δ is every-
where regular.

(2) The previous example deals with a particular equivalence class of divisor
on a smooth quintic in IP3. We are now interested in some more general
results of regularity for Severi varieties of curves, on a smooth quintic S ⊂
IP3, which are residue to the line L in the complete intersection of S with a
general surface of degree a passing through the line. Thus C ∼ aH − L on
S. By straightforward computations, we get

deg(C) = (aH − L)H = 5a− 1,

pa(C) =
5a2 + 3a

2
− 1.

We want to find conditions on a in order to apply our main result.

(i) | C | has a smooth and irreducible general member.

For the smoothness, we have to prove that | aH −L | is base point free and
not composed with a pencil. Since a ≥ 1, aH − L = (a − 1)H +H − L. If
a ≥ 2, the linear system | (a − 1)H | can not have fixed intersection points
on L. We can restrict ourselves to consider the behaviour of | H − L | on
L. If | H − L | admitted fixed points on L, each of those points should be
a tangent point between S and the general plane of IP3 passing through the
line. This would imply that S is a singular surface in such points, which
contradict the hypothesis. Moreover, | H −L | can not be composed with a
pencil, since | H − L | +L ⊂| H |.

For the irreducibility, we can use the fact that C and L are directly
geometrically linked in IP3, i.e. C 1g L as in Definition 1.1.12. For what
proven in Propositions 1.1.11 and 1.1.15, this implies that C is projectively
normal in IP3, so H1(IC/IP3(ρ)) = 0 for each ρ ∈ Z. By choosing ρ = 0, from
the exact sequence

0→ IC/IP3 → OIP3 → OC → 0,

we get H0(IC/IP3) = H1(IC/IP3) = 0 so H0(OC) ∼= H0(OIP3). This proves
that C is a connected curve; since we have already proven its smoothness,
then the general member is also irreducible.

(ii) Numerical hypotheses.
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As before, K2
S = H2 = 5. Then, (C − 2KS)2 = 5a2 − 22a+ 21 > 0 if a ≤ 1

and a ≥ 3. On the other hand, C(C−2KS) = 5a2−12a−1, which is positive
if a ≥ 3. CKS = 5a − 1, which is positive if a ≥ 1. The last condition to
verify is that

(∗) H(C,KS) < 4(C(C − 2KS)− 4).

On the one hand, we have H(C,KS) = 16; on the other one, C(C − 2KS)−
4 = 5a2−12a−5. Therefore, condition (∗) becomes 20a2−48a−36 > 0, which
is satisfied if a > 3. Thus, one observes that all the numerical conditions
in Theorem 3.2.3 simultaneously hold if a ≥ 4. Moreover, C(C − 2KS) =
5a2 − 12a − 1 ≥ 8 if and only if 5a2 − 12a − 9 ≥ 0 which is satisfied when
a ≥ 3. This means that, in this case, if we look for an upper-bound for the
number of nodes of an irreducible curve in | aH − L |, a ≥ 4, ensuring that
the corresponding point is a regular point of V|aH−L|,δ, we have to use the
formula 5.(i) in Theorem 3.2.3.

Before generalizing example (2) to surfaces in IP3, of degree d ≥ 6, which
contain a line, we want to observe what happens in the case a = 1, where
our sufficient numerical conditions do not hold. Thus, if a = 1, we are
considering a pencil of planes through the chosen line L; since a general
element in H −L is a plane quartic on S, then pa(H −L) = 3. A priori, we
could impose at most 3 nodes to the linear system | H−L |. Since | H−L | is
a pencil and since a single node obviously imposes one independent condition
to the pencil, then V|H−L|, 1 is smooth and 0-dimensional, as expected. If
δ = 2, 3, a dimensional computation gives that V|H−L|; δ should be empty,
but, a priori, there could be superabundant components. Since S is a smooth
surface of general type with Pic(S) ∼= Zn, n ≥ 2, it is not projectively ruled
(we recall that a projectively ruled surface must contain an infinite number
of lines). As a consequence of a result of Kronecher and Castelnuovo (see
[32], pag. 270), the tangent plane to a smooth point of S is not tangent
to S in any other point, so the Severi varieties for δ = 2, 3 are empty as
expected.

As we have already mentioned above, we can completely generalize our
numerical procedure in Example (2) to the case of a smooth surface of degree
d ≥ 6 which contains a line L. Let S ⊂ IP3 be such a surface and C ∼ aH−L,
so that

deg(C) = ad− 1,

pa(C) =
ad(a+ d)− 2a− d(4a+ 1) + 3

2
.

Moreover, L2 = 2− d, since KS ∼ (d− 4)H and LH = 1.

For the smoothness and the irreducibility of the general member of | C | one
can use the same argument for d = 5.

Now, K2
S = (d− 4)2d ≥ 24, since d ≥ 6, and C − 2KS = (a− 2d+ 8)H −L.

Numerical hypotheses.

1. (C − 2KS)2 = (a− 2d+ 8)2d− 2(a− 2d+ 8) + 2− d = a2d− 2a(2d2−
8d+1)+4d3−32d2 +67d−14 > 0 when a > 2d−7 and a < 2d−9− 2

d ;
thus we will consider a ≥ 2d− 6 and a ≤ 2d− 9, since 0 < 2

d ≤
1
3 .
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2. C(C−2KS) = a2d−2a(d2−4d+1)+d−6 > 0; the associated equation
has solutions given by

a = d− 4 +
1
d
±
√

(d− 4 +
1
d
)2 − 1 +

6
d
.

We have to consider two different cases:

(i) −1+ 6
d < 0, which implies d > 6. In these cases the inequality gives

us

a < d− 4 +
1
d
−
√

(d− 4 +
1
d
)2 − 1 +

6
d
∈ IR+

and

a > d− 4 +
1
d

+
√

(d− 4 +
1
d
)2 − 1 +

6
d
∈ IR+,

since −1 < −1 + 6
d < 0. Therefore, the first of these two inequalities

determines an upper-bound for a which is a real number in the open
interval (0 , 1). The second one can be approximated by a ≥ 2d−8+ 2

d ,
since −1 + 6

d < 0. From point 1., we already have that a ≥ 2d− 6; so
with this bound both these first conditions are satisfied in cases d > 6.

(ii) −1 + 6
d ≥ 0, which gives d ≤ 6. Since we are considering the cases

d ≥ 6, this happens only when d = 6. Thus, the inequality gives a < 0
or a > 4 + 1

3 = 2d − 8 + 2
d . As before, we conclude by using the fact

that in the previous item we have a ≥ 2d− 6 = 6.

3. CKS = (d− 4)(ad− 1) ≥ 0, which means a ≥ 1
d , since d− 4 ≥ 2.

4. (CKS)2 = (d−4)2(a2d2−2ad+1), C2K2
S = (d−4)2(a2d2−2ad+2d−d2),

so H(C,KS) = (d− 4)2(d− 1)2. On the other hand, 4(C(C − 2KS)−
4) = 4a2d−8a(d2−4d+1)+4d−40. Therefore, H(C,KS) < 4(C(C−
2KS)− 4) if and only if 4a2d− 8a(d2 − 4d+ 1)− (d4 − 10d3 + 33d2 −
44d+ 56) > 0. The associated equation gives us

a =
1
2d

(2(d2 − 4d+ 1)±
√
d5 − 6d4 + d3 + 28d2 + 4).

For simplicity, put

∆ := d3 − 6d2 + d+ 28 +
24
d

+
4
d2
,

so that the previous equality becomes

a = (d− 4 +
1
d
)± 1

2

√
∆.

Since we want positive bounds on a, the inequality is satisfied when

a > (d− 4 +
1
d
) +

1
2

√
∆;

we have to control if this upper-bound is bigger then 2d − 6. This
happens if and only if

√
∆ > 2d− 4− 2

d
,

i.e. d3 − 10d2 + 17d+ 20 + 8
d > 0. Dividing by d2, this happens if

(∗) d > 10− (
17
d

+
20
d2

+
8
d3

).

Since d ≥ 6, condition (∗) is satisfied only if d = 6, 7.
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To summarize, for 6 ≤ d ≤ 7, all the numerical hypotheses in Theorem
3.2.3 simultaneously hold if a ≥ 2d − 6 (note that, for d = 5 we obtained
a ≥ 4 so that d = 5, 6, 7 behave in the same way). On the other hand, for
d ≥ 8, the condition on the Hodge number (i.e. hypothesis 4. in Theorem
3.2.3) determines a bound on a which is bigger than the one determined by
the other conditions, i.e. 2d− 6. Indeed, condition 4. holds if and only if

4a2d− 8a(d2 − 4d+ 1)− (d4 − 10d3 + 33d2 − 44d+ 56) > 0.

This gives

a > d− 4 +
1
d

+
1
2

√
d3 − 6d2 + d+ 28 +

24
d

+
4
d2
. (3.19)

For what we have computed up to now, the right side member of (3.19) is
bigger than 2d − 6 when d ≥ 8. Therefore, in this case, all the numerical
conditions of Theorem 3.2.3 simultaneously hold if (3.19) holds.

In order to find a better expression for such a lower-bound on a, we first
observe that, since d ≥ 8,

√
d3 − 6d2 + d+ 28 +

24
d

+
4
d2
≤
√
d3 − 6d2 + d+ 28 +

24
8

+
4
64

=

=
√
d3 − 6d2 + d+ 31 +

1
16

<
√
d3 − 6d2 + d+ 32.

We are looking for a real number b such that
√
d3 − 6d2 + d+ 32 ≤

√
(d
√
d− b)2.

For such a value, we have

2b
√
d ≤ 6d− 1 +

b2 − 32
d

. (3.20)

Moreover, (3.19) becomes

a ≥ d− 3 +
d

2

√
d− b

2
. (3.21)

Obviously, the right side member of (3.21) must be greater than 2d− 6
for d ≥ 8. Observe that this happens if and only if

d
√
d > 2d+ b− 6. (3.22)

Therefore, putting ϕ(d) := d
√
d−2d+6, from (3.22) we have b < ϕ(d). The

function ϕ(d) is monotone increasing for d ≥ 2 so, to find a uniform bound
on b for all d ≥ 8, it is sufficient to consider b < ϕ(8), i.e. b ≤ 12. By taking
into account (3.20), we find that in all cases a good choice is b = 9. Indeed,
for d = 8, 9 and b = 9, (3.20) trivially holds; for d ≥ 10 and b = 9, (3.20)
becomes

(∗∗) 18
√
d ≤ 6d− 1 +

49
d
,

0 < 49
d < 5. Since for d ≥ 10, we have that 18

√
d ≤ 6d− 1, a fortiori (∗∗) is

satisfied. So b = 9 is a uniform choice for all cases d ≥ 8. Thus, (3.19) can
be replaced by a ≥ d− 3 + d

√
d−9
2 .
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Analogous computations show that, when d ≥ 5, only condition 2.(i) can
occur, i.e. C(C − 2KS) ≥ 8. Therefore the expression for the bound on the
number of nodes is the one in 5.(i), which is

δ ≤ a2d− 2a(d2 − 4d+ 1) + 2d− 15
4

.

We have therefore proven the following:

Proposition 3.3.1 Let S be a smooth surface in IP3 of degree d ≥ 5, which
contains a line L. Consider on S the linear system | aH − L |, with

1. a ≥ 2d− 6, if 5 ≤ d ≤ 7;

2. a ≥ dd− 3 + d
√

d−9
2 e, if d ≥ 8.

(We denote by dxe the round-up of the real number x, i.e. the smallest
integer which is bigger than or equal to x). Suppose, also, that the Severi
variety V|aH−L|,δ is not empty. Then, if

δ ≤ a2d− 2a(d2 − 4d+ 1) + 2d− 15
4

,

the Severi variety is everywhere regular.

Remark 3.3.2 We want to point out that the previous proposition, in a
certain sense, agrees with what is proven by Chiantini and Lopez in [25] (see
Theorem 2.3.4 in Chapter 2). Recall, in fact, that if D is a reduced curve
in IP3, s and d integers, such that d ≥ s+ 4, and if one assumes that:

(i) there exists a surface Y ⊂ IP3 of degree s which contains D, and

(ii) the general element of the linear system | OY (dH −D) | is smooth and
irreducible,

then they prove that S ⊂ IP3, general smooth surface of degree d containing
D, does not contain reduced, irreducible curves C 6= D of geometric genus
g < 1 + deg(C) (d−s−5)

2 .

In the case of our proposition, S is a surface of degree d ≥ 5 and D = L,
such that L2 = 2 − d. Thus, we can consider s = 1, i.e. Y is a plane
containing the line L and | OY (dH − L) | = | OIP2(d − 1) | which has a
smooth and irreducible general element. Therefore, if there exists a curve
C of a given degree, then

pg(C) ≥ 2 +
(d− 6)

2
deg(C) = 2 +

(d− 6)
2

CH.

If, moreover, C is a nodal curve, then

δ = pa(C)− pg(C) ≤ C2 + CKS

2
+ 1− 2− (d− 6)

2
CH =
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C2

2
+

(d− 4)
2

CH − (d− 6)
2

CH − 1 =
C2

2
+ CH − 1.

On the other hand, since in such cases, when all our numerical hypotheses
hold, we have C(C − 2KS) ≥ 8, then 5(i) determines

δ ≤ C(C − 2dH + 8H)
4

− 1 =
C2

4
− (d− 4)

2
CH − 1.

Observe that C2

4 −
(d−4)

2 CH−1 ≤ C2

2 +CH−1 if and only if C2

4 +CH(d
2−1) ≥

0. Since d ≥ 5 and since C is big and nef (consequence of condition 1. and
3. in Theorem 3.2.3), this latter inequality is always strictly verified. This
means that our bounds on δ are in the range of values, for the number of
nodes, that are necessary for the existence of such a curve.
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Chapter 4

Geometric Linear Normality

for Nodal Curves on Smooth

Projective Surfaces

In this chapter, we generalize some results of [27] on the geometric linear
normality property of nodal curves on smooth surfaces in IPr. As it will be
clear from the main result of this chapter, this is a problem which is strictly
related to the regularity of some Severi varieties.

In Section 4.1, we recall some terminology and notation which are useful
for our analysis. Section 4.2 contains our main result, which determines
numerical conditions establishing when a nodal curve on a smooth projective
surface is geometrically linearly normal (roughly speaking, when the pull-
back of the hyperplane linear system to the normalization of such a curve is
complete). More precisely, for a nodal curve C on a smooth, projective, non-
degenerate and linearly normal surface S we have proven that there exists a
sharp upper-bound δ = δ(C,S) such that C is geometrically linearly normal
if the number of its nodes is less than δ.

Section 4.3 is devoted to interesting examples; in particular, we treat an
example of a quintic surface which belong to a component of the Noether-
Lefschetz locus of surfaces in IP3 to which our numerical criterion easily
applies. To show the sharpness of our bound, smooth ”canonical” complete
intersection surfaces are considered. In these cases, we also determine exam-
ples of obstructed curves of some Severi varieties which, however, we prove
that are generically smooth of the expected dimension.

4.1 Notation and preliminaries

As stated in Section 1.1, projective, non-singular complete intersection va-
rieties are linearly normal, i.e. they are not isomorphic projection of non-
degenerate varieties in higher dimensional projective spaces. From the co-
homological point of view, a projective variety X ⊂ IPr is linearly normal
if and only if h1(X, IX(H)) = 0, i.e. the linear system | OX(H) | cut
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out on X by the hyperplanes in IPr is complete (see Remark 1.1.10). This
definition makes sense even if X is singular, but sometimes this is no longer
true. In fact, if X = C is a singular curve, there are singular complete in-
tersection curves C ⊂ IPn whose normalization C̃ → C ⊂ S factors through
a birational, non-degenerate map C̃ → IPr, for some r > n ≥ 3 (see [27] and
Section 4.3).

On the other hand, when the geometric genus of C is close enough to
the arithmetic genus of C, this factorization is impossible. Indeed, let C be,
for example, a plane curve of a given degree d and let ϕ : C̃ → C ⊂ IP2 be
its normalization, which is supposed to be contained in IP3. If we suppose
that pg(C) = g(C̃) = g̃ and pa(C) are such that pa(C) − pg(C) = ε small
enough, i.e. if the number of nodes is small with respect to the arithmetic
genus, such a projection cannot exist. Indeed, let C̃ be an extremal curve
in IP3 of degree d = 2k; from Castelnuovo’s bounds (see, for example, [55])
it follows that g(C̃) = (k − 1)2 and d ≥ 2 · 3 + 1 = 7, so C̃ lies on a smooth
quadric. Therefore, C̃ ∼ mL1 + nL2, where L1 and L2 denote two lines
in the two different rulings of the quadric. C̃ is an extremal curve if and
only if m = n = k. Now, if C ⊂ IP2 is birational to C̃, this means that
pa(C) = 1

2((2k − 1)(2k − 2)) = 2k2 − 3k + 1. Thus, δ = pa(C) − g(C̃) =
2k2− 3k+ 1− k2 + 2k− 1 = k2− k and d = 2k ≥ 7, i.e. k ≥ 4. This implies
that δ must be bigger than 11.

From the previous example, one may look for bounds, for the number
pa(C)− g(C̃), which exclude that C can be obtained as a birational projec-
tion of a smooth curve lying in some higher dimensional projective space.
Therefore, one can extend the notion of linear normality by considering the
geometric linear normality property of singular varieties X ⊂ IPr, having
some restricted type of singularities which can arise from projections.

To this aim, we recall the following:

Definition 4.1.1 (see [27], Definition 3.1) Let C be any reduced curve in
IPr. C is said to be geometrically linearly normal if the normalization map
ϕ : C̃ → C ⊂ IPr cannot be factored into a non-degenerate map C̃ → IPN ,
with N > r, followed by a projection.

Observe that, if S ⊂ IPr is a smooth, non-degenerate linearly normal
surface and if H denotes the hyperplane section on S,

h0(S,OS(H)) = h0(IPr,OIPr(H)) = r + 1. (4.1)

As in Section 3.2, we can make the following:

Definition 4.1.2 Let S be a smooth surface and C ∈ Div(S). We denote
by ν(C,H) the Hodge number of C and H, defined as

ν(C,H) := (CH)2 − C2H2.

By the Algebraic index theorem (Theorem 1.1.24) this is a non-negative
number, since H is a very ample divisor.
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Remark 4.1.3 Let S ⊂ IPr be a smooth, non-degenerate linearly normal
surface, and let H be the hyperplane section on S. If C ∈ Div(S) is an
effective divisor, suppose that C is smooth, non-degenerate and such that
C−H big and nef (see Definiton 1.1.28). Clearly h0(OS(H−C)) = 0 (since
C is non-degenerate), hence we have the following exact sequence

0→ H0(S,OS(H))→ H0(C,OC(H))→ H1(S,OS(H − C))→ · · ·

By Serre duality, h1(S,OS(H − C)) = h1(S,OS(KS + C −H)) and, by the
Mumford vanishing (see Theorem 1.2.4), this equals 0. Hence, by (4.1), it
follows that

h0(C,OC(H)) = h0(S,OS(H)) = r + 1, (4.2)

so C is linearly normal.

4.2 Geometric linear normality on projective, non-

degenerate and linearly normal surfaces

In this section we discuss the problem of geometric linear normality for
nodal curves on some smooth, projective and linearly normal surfaces. We
characterize the geometric linear normality of a nodal curve C in a given
linear system, only in terms of its set of nodes and of some cohomological
properties of the surface.

Our results generalize what is proven in [27], where the case of smooth
surfaces in IP3 is treated. We shall briefly recall here their results.

Theorem 4.2.1 (see Theorem 3.4. in [27]) Let S be a smooth surface of
degree d in IP3 and let C ⊂ S be a complete intersection curve of type (d, n)
in IP3, having only δ nodes as singularities. Then C is geometrically linearly
normal if and only if the set of nodes N of C imposes independent conditions
to the linear system | (n+ d− 5)H |, where H is the plane divisor of S. In
particular, for d = 5, C is geometrically linearly normal if and only if N
imposes independent conditions to | C |, i.e if and only if the Severi variety
V|C|, δ is regular at [C].

Proof: The proof of this result is based on the fact that the canonical divisor
of C̃ is ωC̃

∼= ϕ∗(OC((n+ d− 4)H))(−Ñ), where Ñ is the pull-back to C̃ of
the set N of nodes of C. Therefore, ϕ∗(OC(H)) is residual to ϕ∗(OC((n +
d − 5)H))(−Ñ). Since there is the following standard isomorphism (see
Proposition 3.3. in [27]):

H0(S, IN/S(mH))/H0(S, IC/S(mH)) ∼= H0(C̃, ϕ∗(OC(mH))(−Ñ)), ∀m ∈ Z,

by Riemann-Roch theorem on C̃ one determines

h0(C̃, ϕ∗(OC(H))) = 4 + dim(Coker(ψ)),
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where
ψ : H0(OS((n+ d− 5)H))→ H0(ON )

and
Coker(ψ) ⊆ H1(IN ((n+ d− 5)H)).

Therefore, C is geometrically linearly normal if and only if dim(Coker(ψ)) =
0. For details, the reader is referred to the original paper. 2

By using their result on nodal curves numerically equivalent to pKS (see
Theorem 3.1.6), Chiantini and Sernesi prove the following:

Theorem 4.2.2 Let S be a smooth surface of degree d ≥ 5 in IP3 and let
H be its plane divisor; let [C] ∈| nH |, n ≥ 2, correspond to an irreducible
curve having only δ nodes as singularities. If δ < 1

4(nd(n − 2)) then C is
geometrically linearly normal.

Proof: For details, the reader is referred to Theorem 3.5. in [27]. 2

They improve the previous result when S is a general smooth quintic
surface.

Proposition 4.2.3 (see Proposition 3.6. in [27]) Let S be a smooth quintic
surface in IP3, with Picard group isomorphic to Z. Let C ∼ nH be a curve
with only δ nodes as singularities. Assume n odd and δ < 5

4(n− 1)2. Then
C is geometrically linearly normal.

Our approach focuses more generally on the geometric linear normal-
ity of nodal curves in a complete linear system | D | on a smooth surface
S ⊂ IPr, where S is assumed to be linearly normal and to satisfy the co-
homological condition h1(S,OS(H)) = 0. Let [C] ∈| D | correspond to a
reduced, irreducible curve with only δ nodes as singular points and let N be
the 0-dimensional scheme of its nodes.

Before going into details, we want to spend a few words on the cohomo-
logical conditions imposed.

Remark 4.2.4 The linear normality of S means that h1(IS/IPr(H)) = 0
and this is clearly necessary to consider our problem since, otherwise, we
cannot hope to say too much on C. On the other hand, as it will be also clear
from the proof of Theorem 4.2.5, the vanishing condition h1(S,OS(H)) = 0
implies that the linear series | ωC̃(ϕ∗(−H)) | is complete, where ωC̃ denotes
the canonical sheaf on the smooth curve C̃ and ϕ : C̃ → C ⊂ S is the
normalization map of C. More precisely, if µ : S̃ → S denotes the blow-up
of S along the set of nodes of C, such that B =

∑δ
i=1Ei is the µ-exceptional

divisor in S̃, the map µ induces the normalization map ϕ : C̃ → C ⊂ S.
The exact sequence defining ωC̃ gives rise to

0→ OS̃(µ∗(KS −H) +B)→ OS̃(µ∗(KS + C −H)−B)→
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→ ωC̃(ϕ∗(−H))→ 0.

We observe that h1(S̃,OS̃(µ∗(KS −H) +B)) = 0 implies that the map

H0(S̃,OS̃(µ∗(KS + C −H)−B))→ H0(C̃, ωC̃(ϕ∗(−H)))

is surjective. Indeed, observe that by Serre duality on S̃, h1(S̃,OS̃(µ∗(KS −
H) + B)) = h1(S̃,OS̃(KS̃ − µ

∗(H))) = h1(S̃,OS̃(µ∗(H))), so the vanishing
follows from Leray isomorphism and our assumption on h1(S,OS(H)).

To prove our main theorem, we shall use the following preliminary result.

Theorem 4.2.5 Let S be a smooth, non-degenerate and linearly normal
surface in IPr such that h1(S, OS(H)) = 0. Let | D | be a linear system on
S whose general element is supposed to be smooth, irreducible and linearly
normal in IPr. Assume that [C] ∈ |D | corresponds to an irreducible curve
with only δ nodes as singular points. Then C is geometrically linearly normal
if and only if the set of nodes, N , imposes independent conditions to the
linear system | D +KS −H |.

Proof: Let D be the general member of the linear system | D |. By the
linear normality hypothesis and by Riemann-Roch on D, we have

h1(D,OD(H)) = (r + 1)− deg(D) + pa(D)− 1,

hence, by Serre duality and by adjunction on S, we get

h0(D,OD(D +KS −H)) = (r + 1)− deg(D) + pa(D)− 1. (4.3)

Now, let C ∼ D be a curve with only δ nodes as singularities. Denote
by µ : S̃ → S the blow-up of S along the set of nodes of C, N , and let
B =

∑δ
i=1Ei be the exceptional divisor in S̃. The blow-up induces the

normalization map ϕ : C̃ → C ⊂ S. By adjunction theory on S̃,

ωC̃ = OC̃(KS̃ + C̃) = OC̃(µ∗(KS +C)−B) = OC̃(ϕ∗(KS +C)(−Ñ)), (4.4)

where OC̃(Ñ) = OC̃(B) is a divisor of degree 2δ on C̃, formed by the points
which map to the nodes of C. From Riemann-Roch on C̃, it follows that

h1(C̃,OC̃(ϕ∗(H))) = h0(C̃,OC̃(ϕ∗(H)))− deg(C) + pa(C)− 1− δ.

By using (4.4) and the fact that C ∼ D on S, we get

h0(OC̃(ϕ∗(KS +D −H)(−Ñ))) =

= h0(OC̃(ϕ∗(H)))− deg(C) + pa(C)− 1− δ. (4.5)

Observe that h0(C̃,OC̃(ϕ∗(H))) = r + 1 if and only if

h0(OC̃(ϕ∗(KS +D −H)(−Ñ))) = (r + 1)− deg(C) + pa(C)− 1− δ.
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By using (4.3) and the fact that the adjunction on S is independent from
the chosen element in | D |, we obtain

h0(C̃,OC̃(ϕ∗(H))) = r + 1⇔ h0(C̃,OC̃(ϕ∗(KS +D −H)(−Ñ))) (4.6)

= h0(C,OC(D +KS −H))− δ.

Now we use our assumption h1(S,OS(H)) = 0. It implies, by duality on S,
that

h0(S,OS(D +KS −H))− h0(S,OS(KS −H)) = h0(C,OC(D +KS −H))

whereas, on S̃,

h0(S̃,OS̃(µ∗(KS +D −H)−B))− h0(S̃,OS̃(µ∗(KS −H) +B) =

= h0(C̃,OC̃(ϕ∗(KS +D −H)(−Ñ))),

since, by Leray isomorphisms, h1(OS̃(µ∗(KS −H) +B)) = h1(OS(H)) = 0.
Substituting in the second equality of (4.6), it gives

h0(OC̃(ϕ∗(H))) = r + 1⇔ h0(S̃,OS̃(µ∗(KS +D −H)−B)) =

h0(S,OS(D +KS −H))− δ.

The claim follows from the fact that h0(S̃,OS̃(µ∗(KS + D − H) − B)) =
h0(S, IN/S(KS +D −H)). 2

Remark. From (4.2) in Remark 4.1.3 and from the hypotheses on S, the
same conclusion holds if we assume that the general element of | D | is a
smooth, irreducible and non-degenerate divisor such that D −H is big and
nef.

For what concerns the geometric linear normality problem, by consid-
ering Bogomolov-unstable vector bundles on S (see Definition 1.2.12) we
can obtain an upper-bound δu on the number of nodes such that, if C has
less than δu nodes, then it is geometrically linearly normal. Using a similar
procedure of Theorem 3.2.3, we can prove the following result.

Theorem 4.2.6 Let S be a smooth, non-degenerate and linearly normal
surface in IPr such that h1(OS(H)) = 0. Let C be a smooth, irreducible
divisor on S. Suppose that:

(i) CH > H2;

(ii) (C − 2H)2 > 0 and C(C − 2H) > 0;

(iii) ν(C,H) < 4(C(C − 2H)− 4), where ν(C,H) is the Hodge number of
C and H(see Definition 4.1.2);

(iv) δ <
C(C−2H)+

√
C2(C−2H)2

8 .

If [C ′] ∈ | C | parametrizes a reduced, irreducible curve with only δ nodes as
singular points and if N denotes the 0-dimensional scheme of nodes of C ′,
then N imposes independent conditions to | C −H +KS |.
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Proof: By contradiction, assume that N does not impose independent
conditions to | C − H + KS |. Let N0 ⊂ N be a minimal 0-dimensional
subscheme of N for which this property holds and let δ0 =| N0 |. This
means that h1(S, IN0(C −H +KS)) 6= 0 and that N0 satisfies the Cayley-
Bacharach condition; so, a non-zero element of H1(IN0(C −H +KS)) gives
rise to a non-trivial rank-two vector bundle E ∈ Ext1(IN0(C − H),OS)
fitting in the exact sequence

0→ OS → E → IN0(C −H)→ 0, (4.7)

with c1(E) = C −H and c2(E) = δ0 hence

c1(E)2 − 4c2(E) = (C −H)2 − 4δ0. (4.8)

By (iv)

(C −H)2 − 4δ0 ≥ (C −H)2 − 4δ = C2 − 2CH +H2 − 4δ > H2 > 0,

since δ0 ≤ δ thus E is Bogomolov-unstable (see Theorem 1.2.13), hence
h0(E(−M)) 6= 0. Tensoring (4.7) with OS(−M), we obtain

0→ OS(−M)→ E(−M)→ IN0(C −H −M)→ 0. (4.9)

We claim that h0(OS(−M)) = 0; otherwise, −M would be an effective
divisor, therefore −MA > 0, for each ample divisor A. From (1.9), in
Definition 1.2.12, it follows that c1(E) = M +B, so by (4.7)

M −B = 2M − C +H ∈ N(S)+, (4.10)

where N(S)+ denotes the ample divisor cone of S (see Section 1.1).

This implies

MH >
(C −H)H

2
; (4.11)

thus, by (i), it follows that H(C −H) > 0, hence −MH < 0.

The cohomology sequence associated to (4.9) allows us to deduce that
there exists a divisor ∆ in | C−H−M | such thatN0 ⊂ ∆ and the irreducible
nodal curve C ′ in | C |, whose set of nodes is N , is not a component of ∆.
Otherwise, −M −H would be an effective divisor whereas, by (4.11), we get

H(−M −H) = −H2 −HM < −H2 − (C −H)H
2

= −(C +H)H
2

< 0,

since H(C +H) = (C −H)H + 2H2 > 0.

Next, by Bezout’s theorem

C ′∆ = C ′(C −H −M) ≥ 2δ0. (4.12)

On the other hand, taking M maximal, we may further assume that the
general section of E(−M) vanishes in codimension 2. Denote by Z this
vanishing-locus, thus, c2(E(−M)) = deg(Z) ≥ 0; moreover,

c2(E(−M)) = c2(E) +M2 + c1(E)(−M) = δ0 +M2 −M(C −H),
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which implies
δ0 ≥M(C −H −M). (4.13)

Applying the Index theorem to the divisor pair (C, 2M − C +H), we get

C2(2M − C +H)2 ≤ (C(C −H)− 2C(C −H −M))2. (4.14)

Note now that, from hypothesis (i) and the second one of (ii) it follows that
C(C − H) > 0, since C(C − 2H) > 0 hence C2 − HC > HC > 0. In the
same way we find C2 > 0. Since C is irreducible, this also implies that C
is a nef divisor (see Lemma 3.2.2). From (4.12) and from the positivity of
C(C −H), it follows that

C(C −H)− 2C(C −H −M) ≤ C(C −H)− 4δ0. (4.15)

We observe that the left side member of (4.15) is non-negative, since C(C−
H)−2C(C−H−M) = C(2M−C+H), where C is effective and, by (4.10),
2M −C +H ∈ N(S)+. Squaring both sides of (4.15), together with (4.14),
we find

C2(2M − C +H)2 ≤ (C(C −H)− 4δ0)2. (4.16)

On the other hand, by (4.13), we get

(2M − C +H)2 = 4(M − (C −H)
2

)2 =

(C −H)2 − 4(C −H −M)M ≥ (C −H)2 − 4δ0,

i.e
(2M − C +H)2 ≥ (C −H)2 − 4δ0. (4.17)

Next, we define

F (δ0) := 16δ20 − 4C(C − 2H)δ0 + (CH)2 − C2H2. (4.18)

Putting together (4.16) and (4.17), it follows that F (δ0) ≥ 0. We will
show that, with our numerical hypotheses, one has F (δ0) < 0, proving the
statement.

Indeed, the discriminant of the equation F (δ0) = 0 is 16C2(C − 2H)2,
and it is a positive number, since (C − 2H)2 > 0 by the first one of (ii) and
C2 > 0. We remark that F (δ0) < 0 iff δ0 ∈ (α(C, H), β(C, H)), where

α(C,H) =
C(C − 2H)−

√
C2(C − 2H)2

8

and

β(C,H) =
C(C − 2H) +

√
C2(C − 2H)2

8
;

so we have to show that, δ0 ∈ (α(C, H), β(C, H)).

From (iv), it follows that δ0 < β(C,H). Note that α(C,H) ≥ 0. Indeed,
if α(C,H) < 0 then C(C − 2H) <

√
C2(C − 2H)2, which contradicts the

Index Theorem, since C(C− 2H) > 0. In order to simplify the notation, we
put t := C(C−2H). Thus, α(C,H) < 1 if and only if t−8 <

√
t2 − 4ν(C,H).
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If t−8 < 0, the previous inequality trivially holds, so δ0 > α(C,H). Note
also that, by (iii), 4ν(C,H) < 16t− 64, so that β(C,H) > 1, which ensures
there exists at least a positive integral value for the number of nodes.

If t−8 ≥ 0, α(C,H) < 1 directly follows from (iii), whereas β(C,H) > 1
holds since it is equivalent to t− 8 > −

√
t2 − 4ν(C,H).

In conclusion, our numerical hypotheses contradict F (δ0) ≥ 0, therefore
the assumption h1(IN (D −H +KS)) 6= 0 leads to a contradiction. 2

Corollary 4.2.7 In the hypotheses of the previous theorem, if C is linearly
normal in IPr then C ′ is geometrically linearly normal.

Proof: See Theorem 4.2.5. 2

Remark 4.2.8 Observe that, if t− 8 ≥ 0, then

C(C − 2H) + C(C − 2H)− 8
8

<
C(C − 2H) +

√
C2(C − 2H)2

8
,

therefore we may change the bound δ < β(C,H) with the more ”readable”
one δ ≤ C(C−2H)

4 − 1.

Indeed,

C(C − 2H) + C(C − 2H)− 8
8

<
C(C − 2H) +

√
C2(C − 2H)2

8

≤ C(C − 2H)
4

.

We remark that Theorem 4.2.6 gives purely numerical conditions on the
divisors C and H in order to determine the geometric linear normality of
nodal curves on S. As we shall see in the next section, these conditions can
be directly checked in many cases, where other criteria fail.

4.3 Examples of obstructed curves on canonical

complete intersection surfaces

This section will be devoted to the study of some examples, which also show
the sharpness of our bound in Theorem 4.2.6 for smooth canonical complete
intersection surfaces.

First of all, assume that S is a smooth, projective, non-degenerate and
linearly normal surface, with Picard group Z-generated by the hyperplane
section H. Suppose also that h1(S,OS(H)) = 0; then our results easily
apply to the cases of nodal curves C ∼ nH on S, such that n ≥ 3 and
deg(S) > 4

n(n−2) . Indeed, condition (ii) in Theorem 4.2.6 implies that n > 2,
whereas condition (iii) gives that ν(nH,H) = 0, so C(C − 2H) − 4 =
n(n− 2)H2 − 4 > 0 if and only if H2 > 4

n(n−2) ; this means that the degree
of S must be greater than or equal to 2, but with the further condition that
S ⊂ IPr is non-degenerate.
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If we go back to the case of a general surface S ⊂ IP3, such that deg(S) ≥
2, the bound on the number of nodes is

δ <
n(n− 2)

4
deg(S);

this generalizes Chiantini and Sernesi’s result (see Theorem 4.2.2), where
the cases in which KS is ample are considered.

Moreover, in [27], the authors prove the sharpness of their bound on
δ for a general quintic surface in IP3. In particular, since in this case the
Neron-Severi group of S is such that NS(S) ∼= Z[KS ] then, when C ∼ nH

with n an odd integer, the bound on the number of nodes is δ < 5(n−1)2

4

instead of 5n(n−2)
4 .

We will extend their results by showing the sharpness of bound (iv)
in Theorem 4.2.6 by considering nodal curves C ∼ nH on general canon-
ical complete intersection surfaces. To apply our result, observe that in
these cases the necessary cohomological conditions trivially hold since a
smooth complete intersection is arithmetically Cohen-Macaulay (see Defini-
tion 1.1.9); moreover, the Hodge number for divisors of type nH is always
zero. Thus, as in the case of S ⊂ IP3, the bound (iv) in Theorem 4.2.6
reduces to

δ <
n(n− 2)

4
deg(S); (4.19)

moreover, when n is an odd integer, (4.19) can be replaced by

δ <
(n− 1)2

4
deg(S),

as it follows from Theorem 2.2 in [27]. On the other hand, by applying the
same procedure of [27], we will show that our bounds are almost-sharp for
a sextic surface in IP3.

To do this, we want to recall that the geometric linear normality property
is equivalent to regularity of some Severi varieties on some smooth, projective
surfaces.

Remark 4.3.1 Let S be a smooth, projective surface which is non-degenerate
and linearly normal. Suppose that KS ∼ H (i.e. S is canonical). In such
a case, the fundamental condition h1(S,OS(H)) = 0, used in the proof of
Theorem 4.2.5, implies that S is a regular surface. Therefore, Theorem
4.2.6 determines purely numerical conditions on the nodal curve C ensuring
that its set of nodes imposes independent conditions to | C |, i.e. that C
corresponds to a regular point [C] of the Severi variety V|D|,δ.

Examples of projective, regular, non-degenerate and linearly normal sur-
faces, such that KS ∼ H, are given by general complete intersections in IPr

of type (a1, ..., ar−2), such that (
∑r−2

i=1 ai) = r + 2; therefore, only finitely
many cases may occur. More precisely, we have a general quintic surface
in IP3, surfaces of type (2, 4) and (3, 3) in IP4, a surface of type (2,2,3)
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in IP5, whereas in IP6 we have the case (2, 2, 2, 2). In IPr, for r ≥ 7, no
non-degenerate case can occur.

In the next example we consider the case of a general complete intersec-
tion of type (2, 4) in IP4, since the first example of a smooth quintic surface
in IP3 is already treated in Section 4 of [27]. The following construction can
be obviously generalized to the other cases in the list above.

Example. Let F2, F4 be two general hypersurfaces in IP4 of degree 2
and 4, respectively; let S be the surface of degree 8, which is the complete
intersection of F2 and F4. Denote by W2 and W4 the cones in IP5, over F2

and F4 respectively, with the same vertex p ∈ IP5. Let V2 and Vm be two
general 4-folds in IP5 of degree 2 and m, respectively, where m is a positive
integer greater than or equal to 3. Let T be the complete intersection 3-fold
of V2 and Vm and denote by πp : T → T ′ the projection of T from the point
p onto the variety T ′ of dimension 3. It is classically known that the degree
of T ′ is 2m and that T ′ contains a double surface G.

In order to compute the degree of G, let us denote by E the curve
obtained on T by taking two consecutive hyperplane sections; hence E is a
complete intersection of type (2,m, 1, 1) in IP5 and so pg(E) = m(m−2)+1.
Using the same procedure for T ′ ∈ IP4, we obtain a plane curve E′ of degree
2m; therefore, its arithmetic genus is pa(E′) = 2m3 − 3m + 1. Hence,
deg(G) = m2 −m.

Let C̃ be the complete intersection curve in IP5 determined by

C̃ := V2 ∩ Vm ∩W2 ∩W4.

C̃ is a smooth curve of degree 16m, which lies on the cone of dimension 3
S̃ := W2 ∩W4. Denote by C the projection of C̃ from p; C has degree 16m
and is complete intersection of S and T ′ in IP4. Therefore, C ∈| 2mH | on
S and its singularities coincide with the zero-dimensional scheme of S ∩G;
thus C has a set N of δ = 8m2 − 8m nodes and no other singularities.
By construction, C̃ is the normalization of C which, therefore, cannot be
geometrically linearly normal. Observe that, the bound in (4.19) becomes,
in this case, δ < 8m2 − 8m, hence it is sharp.

Remark 4.3.2 The above construction shows that our result is sharp for
general canonical complete intersection surfaces. Furthermore, from The-
orem 4.2.5 it follows that, in this example, N cannot impose independent
conditions to | C |, so that the Severi variety V|2mH|,8m2−8m is not smooth
of the expected dimension (i.e. dim(| 2mH |)− 8m2 − 8m) at [C].

Proposition 4.3.3 The curve C constructed above is a singular point of
V|2mH|,8m2−8m, which is generically smooth, of the expected dimension.

Proof: The previous construction, together with Theorem 4.2.5, shows that
the tangent space of V|2mH|,8m2−8m at [C] has codimension 8m2− 8m− 1 in
the tangent space of | 2mH | at [C]. Hence, h1(S, IN (2mH)) = 1, since C
is the projection of a smooth, complete intersection in IP5.

117



Let [C ′] be a point in a neighbourhood of [C] in V|2mH|,8m2−8m, for which
the set of nodes N ′ of the correspondent curve C ′ does not impose indepen-
dent conditions to | 2mH |. Then, by semicontinuity, h1(S, IN ′(2mH)) = 1;
therefore, also C ′ is the projection of a curve C̃ ′ in IP5 which ”lives” in
a neighbourhood of C̃ in the Hilbert scheme of IP5. It follows that also
C̃ ′ must be a smooth, complete intersection of the cone S̃ with some com-
plete intersection 3-fold of type (2,m). If we denote by G the subvariety
of V|2mH|,8m2−8m, formed by these projected curves, we can find an upper-
bound for dim(G). By keeping the cones W2 and W4 fixed, the normaliza-
tions of the elements of G fill a variety of dimension at most

h0(C̃,NC̃/S̃) = h0(C̃,OC̃(2)⊕OC̃(m)) = 8m2 − 16m+ 38.

If we let also the vertex p vary in IP5, we get a variety of dimension at
most 8m2 − 16m+ 43. On the other hand, V|2mH|,8m2−8m has dimension at
least

h0(S,OS(2m))− 1− 8m2 + 8m = 8m2 + 5.

Since m ≥ 3, then 8m2 +5 > 8m2−16m+43, which means that the general
element of the Severi variety does not arise from this construction and is a
smooth point of V|2mH|,8m2−8m. 2

Remark 4.3.4 We remark that there exist non-canonical surfaces for which
the bound is almost-sharp. Indeed, let us consider a nonsingular sextic
surface S in IP3. Let C be a curve on S equivalent to nH, with n an even
integer greater than 4. Arguing with cones as in the previous example, we
can prove that C has 3

2(n2 − 2n) nodes, whereas the bound in this case is
given by the number 3

2n(n− 4), and C is the projection of a curve in IP4. It
remains to understand what happens in the range [32n(n−4), 3

2n(n−2)−1].

We end this section by considering some examples of surfaces to which
our numerical criterion easily applies, whereas other criteria fail. We shall
focus on surfaces in IP3 which contain a line L. The computations are similar
to the ones in the examples given in Chapter 3.

Example. Let S be a smooth quintic surface in IP3 which contains a line L.
Denote by Γ ⊂ S a plane quartic which is coplanar to L, so that Γ ∼ H−L.
Thus,

H2 = 5, HL = 1, L2 = −3, HΓ = 4, Γ2 = 0 and ΓL = 4.

Choose C ∼ 3H + L, so that | C | contains curves which are residue to
Γ in the complete intersection of S with the smooth quartic surfaces of
IP3 containing Γ. | 3H + L | is base-point-free and not composed with a
pencil, since (3H + L)L = 0 and 3H is an ample divisor. By Bertini’s
theorems, its general member is smooth and irreducible; but C and C −KS

can not be both either ample or, even, nef divisors. In fact, CL = 0 and
(C −KS)L = (2H + L)L = −1. Moreover, C is not numerically equivalent
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to a rational multiple of KS . Therefore, the results in [27] and in [53] cannot
be applied.

Neverthless, observe that for such a S one trivially has

h1(IS/IP3(H)) = h1(OS(H) = 0;

furthermore, CH = C(C − 2H) = ν(C,H) = 16, (C − 2H)2 = 4, H2 = 5,
4(C(C − 2H) − 4) = 48; we then obtain δ < 16

4 = 4. Thus, if | 3H + L |
contains some nodal, irreducible curves, then, if δ ≤ 3, such a singular curve
is geometrically linearly normal; since KS ∼ H, this is equivalent to saying
that such a curve corresponds to a regular point of V|3H+L|,δ, which will be
everywhere smooth of the expected dimension.
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Chapter 5

Moduli of Nodal Curves on

Smooth Projective Surfaces

of General Type

In this chapter we shall study families of curves, on a smooth, projective
and regular surface S of general type, from the point of view of their moduli
behaviour. More precisely, consider an effective divisor D on S and suppose
that the general element of the complete linear system | D | is a smooth,
irreducible curve of geometric genus pa(D) = D(D+KS)

2 + 1, where KS is a
canonical divisor on S. If g = pa(D)− δ denotes the geometric genus of an
irreducible, δ-nodal curve in |D |, assume that g ≥ 21, for each δ ≥ 0. In
this case, one can consider the morphisms

π|D|, δ : V|D|,δ −→Mg, (5.1)

for each δ ≥ 0, where V|D|,δ is the Severi variety of irreducible, δ-nodal curves
in | D |, as in Definition 2.2.28, andMg is the moduli space of smooth curves
of geometric genus g.

As we shall more precisely explain in Section 5.1, the morphisms π|D|, δ

are functorially defined since one can consider a simultaneous desingulariza-
tion of all the δ-nodal curves parametrized by V|D|,δ.

The problem is to study, for each morphism, the dimension of its image,
which is called the number of moduli of the family (see Definition 5.1.1).
Apart from some particular cases, if we assume that V|D|, δ is generically
regular (in the sense of Definition 2.2.30), what we expect is that the number
of moduli equals dim(V|D|, δ); in other words, we expect that a regular point
[X] ∈ V|D|, δ is birationally isomorphic to finitely many curves in V|D|, δ.

In some cases we will prove that this actually happens (the reader will
find precise statements in the sequel). On the other hand, we shall also
discuss some examples which show that the problem has not an immediate

1We shall observe in the sequel that this assumption is not so restrictive for the prob-

lems we are interested in.

120



answer, but it depends on the kind of considered divisors.

Our approach is analogous to that of Sernesi, [119], where he applied
infinitesimal deformation theory to families of plane nodal curves to study
their number of moduli (see also Section 2.3 for a brief overview of his
results).

In Section 5.1 we make the precise definition of what is meant by moduli
problem and we discuss clarifying examples, some of which give affirmative
answers to the moduli problem whereas others are counterexamples. Section
5.2 in the core of the chapter, where we discuss our new results. Since we
have used many different approaches to arrive at a final statement, for clarity
sake we shall separately prove all the partial results which give affirmative
answers to the moduli problem. In Section 5.3, we will summarize all these
results in a unique precise statement.

5.1 The infinitesimal approach to the moduli prob-

lem

As mentioned in the introduction of this chapter, here we fix some notation
and we precisely state the problem we are interested in. We also discuss
some examples which give both some positive and negative answers to our
moduli problem.

In this section S will denote a smooth, projective surface which is regular
and of general type, unless otherwise specified. Let D be an effective divisor
on S and let |D | be the complete linear system, whose general member is
supposed to be a smooth, irreducible curve. Denote by X an irreducible
curve in |D | which has only δ nodes as singularities, where δ ≥ 0. The map

ϕ : C → X ⊂ S

denotes its normalization, where C is a smooth curve of geometric genus
g = pa(X)− δ.

We recall that one can associate to ϕ the following exact sequence on C
(see (2.5), in Section 2.2),

0→ TC → ϕ∗(TS)→ Nϕ → 0, (5.2)

where TC is the tangent bundle of C, TS the tangent bundle of S and Nϕ is
the normal bundle of the map ϕ, in the sense of Horikawa’s theory.

If we deal with V|D|,0 and if we denote always by X the general (smooth)
element of | D |, the exact sequence (5.2) reduces to the standard normal
sequence of X in S,

0→ TX → TS |X→ NX/S → 0.

From Section 2.2., we know that the study of first-order deformations
of the pair (C, ϕ) is equivalent to the study of first-order embedded defor-
mations of X in S which preserve the singularities of X, i.e. the equisingu-
lar first-order embedded deformations. Moreover, the tangent space to the
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functor of such deformations is isomorphic to H0(C, Nϕ), whereas its ob-
struction space is a subspace of H1(C, Nϕ). On the other hand, H0(NX/S)
and H1(NX/S) play the same role when we consider first-order embedded
deformations of the smooth curve X in S.

We have already proven in Section 2.2. (see (2.20) and (2.24)) that

H0(OS(D))/ < X >

is the Zariski tangent space to | D | at [X] whereas

H0(IN/S(D))/ < X >

is the Zariski tangent space to V|D|, δ at [X], where N denotes the set of
nodes ofX. Moreover, since S is assumed to be regular, these spaces coincide
with the spaces of all first-order embedded deformations (i.e. H0(NX/S))
and all first-order equisingular deformations (i.e. H0(C, Nϕ)) of X in S,
respectively (see Remark 2.2.29).

When N = ∅, the Zariski tangent space to V|D|,0 at [X] coincides with

H0(OS(D))/ < X >,

reflecting the fact that V|D|,0 is an open subscheme of | D |.

In this situation, suppose g ≥ 2. In most of the cases we are interested in,
this is not a restriction, since we shall mainly consider very-ample divisors
of type mH, where m ∈ IN and H the hyperplane section of S ⊂ IPr. Thus,
the arithmetic genus of a general (smooth) section is at least 2. On the
other hand, if for example we consider nodal, very-ample sections which are
elements of a regular Severi variety, we know that Theorem 3.2.3 gives a
sufficient condition for the regularity of such a Severi variety, so that this
condition determines an upper-bound on the admissible number of nodes
of curves parametrized by it and so a lower-bound on the values of the
admissible geometric genera; this lower-bound is actually greater than 1.

However, in the sequel, we shall not restrict ourselves to consider only
Severi varieties V|D|,δ for which D is a positive integral multiple of the hy-
perplane divisor H or which are everywhere regular (see Theorems 5.2.2 and
5.2.7).

If we consider a smooth element X in | D |, we have

0→ H0(TS |X)→ H0(NX/S) ∂−→ H1(TX)→ · · · , (5.3)

where h0(NX/S) = dim(| D |) and h1(TX) = 3pa(X)− 3.

On the other hand, if we consider [X] ∈ V|D|,δ, δ ≥ 1, a regular point and
ϕ : C → X ⊂ S its normalization, we get

0→ H0(ϕ∗(TS))→ H0(Nϕ) ∂−→ H1(TC)→ · · · , (5.4)

where h0(Nϕ) = dim[X](V|D|,δ) and h1(TC) = 3g − 3 = 3(pa(X)− δ − 1).

From Remark 2.2.6, the coboundary maps in the above sequences apply
Horikawa’s classes to Kodaira-Spencer’s classes of the corresponding families
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pδ : Cδ → ∆ε
2, of smooth curves, parametrized by V|D|,δ, δ ≥ 0; moreover,

these maps can be identified with the differentials of the morphisms π|D|,δ,
δ ≥ 0, at the points [X] and [C → X ⊂ S], respectively.

When δ ≥ 1, these families of smooth curves are determined by the
normalizations of the nodal curves on S parametrized by the same base
scheme. Indeed, as in Section 2.2, denote by Xδ the universal family of
δ-nodal curves in S parametrized by V|D|,δ, i.e.

Xδ ⊂ S × V|D|,δ
↓

V|D|,δ .

The elements in Xδ can be simultaneously desingularized, so there exists a
diagram of proper morphisms

Cδ
Φ−→ Xδ ⊂ S × V|D|,δ
↘f ↓

V|D|,δ

where Φ is fibrewise the normalization map. The map Φ is the blow up of Xδ

along its codimension-one singular locus and, for each δ ≥ 1, the morphism

π|D|,δ : V|D|,δ →Mg

is functorially defined by f .

We can make the following definition.

Definition 5.1.1 Let S be a smooth, projective surface of general type (not
necessarily regular) and let D be a smooth curve on S. Let δ ≥ 0 be such
that V|D|,δ 6= ∅. The number of moduli of the family V|D|,δ is

dim(π|D|,δ(V|D|,δ)).

The expected number of moduli of V|D|,δ is

expmod(V|D|,δ) := dim(V|D|,δ),

for each δ ≥ 0.

Remark 5.1.2 Let X be a curve corresponding to a regular point [X] of
V|D|,δ (when δ = 0, [X] is automatically a smooth point of V|D|,0) and let
ϕ : C → X ⊂ S be its normalization map. Assume that S is as in the
definition above and suppose that it is also regular. If we further assume
that [X] is a general point of V|D|,δ, δ ≥ 0, from (5.3), (5.4) and from the
regularity of S we have that

dim(π|D|,0(V|D|,0)) = h0(NX/S)− h0(TS |X)

and
dim(π|D|,δ(V|D|,δ)) = h0(Nϕ)− h0(ϕ∗(TS)),

respectively.
2Recall that, as in (1.24), Section 1.5, ∆ε denotes the affine scheme Spec(C[ε]/(ε2)).
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In the sequel, when δ = 0 (so N = ∅) we shall use in the same way the
symbols X and D to denote a smooth curve in | D |.

Definition 5.1.3 Given S a smooth, projective surface of general type (not
necessarily regular), the moduli problem consists in determining for which
kind of S’s and which kind of divisor classes D in Div(S) the number of
moduli of V|D|,δ coincides with the expected number of moduli of the family,
i.e. when

expmod(V|D|,δ) = dim(π|D|,δ(V|D|,δ))

holds.

Remark 5.1.4 From Remark 5.1.2, when S is assumed to be also a regular
surface, the moduli problem reduces to find for which S and for which divisor
classes D on S h0(D, TS |D) = 0 and h0(C,ϕ∗(TS)) = 0 hold, respectively.

As mentioned in the introduction of this chapter, there are some exam-
ples which show that the expected dimension for the moduli problem posed,
for example, by the map

π|D|,0 : V|D|,0 −→Mpa(D),

is not always achieved.

Negative answers:

1) Even if we are mainly interested in regular surfaces, the first trivial exam-
ple is given by particular irregular surfaces. Indeed, consider C and D two
smooth curves of geometric genera g(C) and g(D), respectively, each greater
than 1. The surface S = C × D is a smooth surface of general type, with
irregularity q(S) = g(C) + g(D) ≥ 4. Such a surface contains two isotrivial
(irrational) pencils of smooth curves.

2) In [122], Serrano studies, more generally, isotrivial fibrations. By fibra-
tion, there it is meant a morphism Ψ : S → C, where S is a smooth,
projective surface and C a smooth, projective curve, where the fibres of ψ
are connected. When all smooth fibres are isomorphic to each other and
non-rational, the fibration ψ is said to be isotrivial. This means that, if ψ
is a fibration with general fibre isomorphic to a curve A, then there exists
a smooth curve B and a finite group G, acting algebraically on A and B,
such that S is birational to (A × B)/G, C ∼= B/G and ψ commutes with
the map (A × B)/G → B/G. The case of quasi-bundle is given when each
singular fibre is a ”multiple” in Div(S) of a smooth curve. Such a surface
determines an example of a surface strongly isogenous to a product and it
is the case when the group G freely acts on the product. We shall discuss,
later on, a simple case of a surface strongly isogenous to a product, which
will give us an example of a smooth, regular, projective surface of general
type which contains isotrivial families.

Turning back to the work of Serrano, he gives numerical characterization
of surfaces which contain an isotrivial fibration. A key tool for his analysis
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is a result of Miyaoka, [93], who proves that if S is a surface with positive
index then Ω1

S is almost-everywhere ample (in short, a.e. ample), which
means that it is a rank-two vector bundle that is ample outside a proper
Zariski closed subset of S. We recall that the index of a variety is a linear
combination of Chern or Pontrjagin numbers of X. In the case of a surface
S, the index is defined by

τ(S) :=
1
3
(c21(S)− 2c2(S)) = 2 + 2pg(S)− h1,1(S). (5.5)

What Serrano proves is the following numerical result.

Proposition 5.1.5 (see [122], Proposition 5.3) If S admits an isotrivial
fibration, then K2

S ≤ 2c2(S).

Proof: If K2
S > 2c2(S), then τ(S) > 0; from Miyaoka’s result Ω1

S is a.e.
ample. Let F be the generic fibre of the isotrivial map

ψ : S −→ C;

then Ω1
S |F is a.e. ample on F . Therefore H0(F, (Ω1

S |F )∨) = 0, which
implies that ψ∗(TS) = 0, which concludes the proof. 2

The last assertion follows from Serrano’s Lemma 3.2., in which he shows
that, given a fibration ψ : S −→ C with fibres of genus g ≥ 2, then ψ is
isotrivial if and only if ψ∗(TS) is not the zero sheaf.

3) As announced before, we discuss a particular example of a surface strongly
isogenous to a product. It belongs to a class of surfaces that Catanese has
recently studied (see [19]) called Beauville’s surfaces or fake quadrics (see
[126], page 195). This consists in a regular surface of general type containing
isotrivial fibrations and having the following numerical properties:

pg(S) = q(S) = 0, b2(S) = 2, K2
S = 8.

Observe that, since b1(S) = 2q(S) = 0 and pg(S) = 0, S is projective, as it
follows from the Kodaira embedding theorem (see [75]).

To construct a concrete example of such a surface, we shall briefly discuss
some useful details before.

Consider Ci a smooth curve of genus gi ≥ 2, 1 ≤ i ≤ 2. Take S to be the
surface

S := (C1 × C2)/G,

where G is a finite group acting on each Ci and also freely acting on the
product C1 × C2. Therefore, the quotient is a smooth surface and the pro-
jection

p : C1 × C2 −→ S

is a topological covering. From standard results on topological coverings of
(algebraic) varieties, we get that κ(S) = κ(C1×C2) where κ(−) denotes the
Kodaira dimension (see Section 1.3). This means that S is of general type.

It will be useful to recall the following well-known result.
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Lemma 5.1.6 Let X and Y be non-singular varieties and denote by p1 :
X × Y → X and p2 : X × Y → Y the canonical projections.

(i) If F (resp. E) is a vector bundle on X (resp. Y ), then

H0(X,F)⊗H0(Y, E) ∼= H0(X × Y, p∗1F ⊗ p∗2E).

(ii) If X and Y are smooth curves,

Ω1
X×Y

∼= p∗1Ω
1
X ⊕ p∗2Ω1

Y ;

ωX×Y
∼= p∗1ωX ⊗ p∗2ωY .

Proof: See Fact III.22 in [10], page 36. 2

By the previous lemma, in our case we obtain KC1×C2 = p∗1(KC1)+p
∗
2(KC2),

so K2
C1×C2

= 8(g1−1)(g2−1); on the other hand, since p : C1×C2 → S is a
topological covering, then KC1×C2 = p∗(KS) therefore K2

C1×C2
= deg(p)K2

S .

If we take a suitable finite group, acting as stated above and of cardinality

| G |= (g1 − 1)(g2 − 1),

we find K2
S = 8. If the action of G on Ci is such that Ci/G ∼= IP1, we

immediately obtain q(S) = pg(S) = 0. To prove this, it is useful to recall
the following result.

Lemma 5.1.7 Let X be a non-singular variety and let G be a finite subgroup
of Aut(X). Let π : X → Y = X/G be the natural projection. If π is ètale,
then Y is non-singular; moreover

H0(Y, (Ωp
Y )⊗k) ∼= H0(X, (Ωp

X)⊗k)G, p ≥ 0, k ≥ 0.

If X is a curve and π is a ramification covering, the same is true only for
k = 1.

Proof: See Lemma VI.11 and Exercise VI.12 in [10], page 78. 2

In our case, from Lemma 5.1.7, we get

H0(S,Ω1
S) ∼= H0(T,Ω1

T )G;

by Lemma 5.1.6 and by the Leray isomorphism,

H0(T,Ω1
T ) ∼= H0(C1, ωC1)⊕H0(C2, ωC2).

Therefore,
H0(S,Ω1

S) ∼= H0(C1, ωC1)
G ⊕H0(C2, ωC2)

G.

Always by Lemma 5.1.6,

H0(Ci, ωCi)
G ∼= H0(Ci/G, ωCi/G), 1 ≤ i ≤ 2.
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So, if Ci/G ∼= IP1, then h0(Ci, ωCi)
G = h0(IP1, ωIP1) = 0, therefore 0 =

h0(S,Ω1
S) = h1(S,OS) = q(S), by Dolbeault isomorphisms. Now, since

p : T → S is a topological covering, then

χ(OT ) = (g1 − 1)(g2 − 1)χ(OS);

from the fact that T = C1 × C2, it follows that χ(OT ) = (g1 − 1)(g2 − 1);
therefore χ(OS) = 1. Since we already know that q(S) = 0, we get 1 =
χ(OS) = 1 + pg(S), so pg(S) = 0.

For the last numerical invariant, we can consider Noether’s formula

12χ(OS) = e(S) +K2
S ,

where e(S) denotes the Euler topological characteristic of S. In our case,
we obtain

K2
S = 10− h1,1(S), e(S) = 2 + h1,1(S).

Since K2
S = 8, then h1,1(S) = 2. Thus, for the given hypotheses, the second

Betti number b2(S) := 2pg(S) + h1,1(S) equals 2.

To sum up, by having supposed to have a finite group G, acting on the
single curves and freely acting on the given curve product, such that

- T := C1 × C2,

- | G |= (g1 − 1)(g2 − 1),

- S = T/G and Ci/G ∼= IP1

we have found that pg(S) = q(S) = 0, K2
S = 8, b2(S) = 2 and κ(S) = 2,

which are actually the numerical invariants of a fake quadric.

Now we want to exhibit a concrete example of a surface T = C1×C2 and
a finite subgroup G < Aut(T ), with the necessary properties of the actions
on each Ci and on T , in such a way that the quotient S = T/G satisfies all
the above numerical conditions.

Consider C1 = C2 = C a Fermat plane quintic of equation

x5
0 + x5

1 + x5
2 = 0.

Then consider T = C × C, where g(C) = 6.

Notation: For clarity sake, we shall write C(i) to denote the ith-factor of
the product, 1 ≤ i ≤ 2, even if each factor is equal to the same curve C.

Let G ∼= Z5 ⊕ Z5. Write g = (a, b) ∈ Z5 ⊕ Z5 to denote an arbitrary element
of the group.

G acts on:

1) C(1) by the following rule:

(a, b)[x0, x1, x2] := [x0, ζax1, ζbx2],

where [x0, x1, x2] are the homogeneous coordinates of an arbitrary point on
the curve C(1) ⊂ IP2 and ζ is a 5th-primitive root of unity in C;

2) C(2) by a similar rule of the one on C(1); indeed, the action of the element
(a, b) on a point [x0, x1, x2] of C(2) is defined as in 1) but via the element of
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the group ϕ((a, b)) ∈ G, where ϕ ∈ Aut(Z5 ⊕ Z5) ∼= GL(2,Z5), represented
by the following matrix: (

1 2
3 4

)
This ϕ is an automorphism of G which determines a free action of G on
T = C(1) × C(2). Indeed, the action on T is defined by

(a, b)(P,Q) := ((a, b)P,ϕ((a, b))Q),

where P ∈ C(1) and Q ∈ C(2). Thus, S = T/G is a smooth surface and
p : T → S is an ètale covering of degree 25.

We now study the action of G on C(1) and then on the product T .

Let P ∈ C(1)/G and ε(1) : C(1) → C(1)/G the canonical projection; then
P, Q ∈ ε−1

(1)(P ) if and only if there exists g ∈ G such gP = Q. Observe that:

(i) the points on C(1), of the form Qk = [0, 1, ek], where 0 ≤ k ≤ 4 and ek
a 5th-root of −1, are stabilized by the following subgroup of G,

K := {(a, a) | a ∈ Z5} ∼= Z5;

each point Qk has ramification index equal to 5.

(ii) the points on C(1), of the form Th = [1, 0, eh], where 0 ≤ h ≤ 4 and eh
a 5th-root of −1, are stabilized by the following subgroup of G,

H := {(a, 0) | a ∈ Z5} ∼= Z5;

each point Th has ramification index equal to 5.

(iii) the points on C(1), of the form Pj = [1, ej , 0], where 0 ≤ j ≤ 4 and ej
a 5th-root of −1, are stabilized by the following subgroup of G,

J := {(0, b) | b ∈ Z5} ∼= Z5;

each point Pj has ramification index equal to 5.

By Riemann-Hurwitz formula,

2g(C(1))− 2 = deg(ε(1))(2g(C(1)/G)− 2) + deg(R),

where deg(ε(1)) = 25, g(C(1)) = 6 whereas R denotes the ramification di-
visor; its degree is deg(R) = 3 · 4 · 5 = 60. Therefore, g(C(1)/G) = 0 so
C(1)/G ∼= IP1.

Analogously, since the action of G on C(2) coincides, up to the automorphism
ϕ of G, with the previous action, we have C(2)/G ∼= IP1, which determines
the ramification covering ε(2) : C(2) → C(2)/G (with the ”translated” action
of G via ϕ).

Now consider the action of G on the product T = C(1)×C(2). If P(i) ∈ C(i),
denote by [x0

(i), x
1
(i), x

2
(i)] its homogeneous coordinates. Thus,

(a, b)(P(1), P(2)) = ((a, b)P(1), ϕ((a, b))P(2)) =

= ([x0
(1), ζ

ax1
(1), ζ

bx2
(1)], [x

0
(2), ζ

ãx1
(2), ζ

b̃x2
(2)]),
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where 
ã ≡ a+ 2b mod5, ã ∈ Z5

(∗)
b̃ ≡ 3a+ 4b mod5, b̃ ∈ Z5 .

Therefore, one has that

(a, b)(P(1), P(2)) = (P(1), P(2)) (∗∗)

if and only if P(1) and P(2) are ramification points of ε(1) : C(1) → C(1)/G

and ε(2) : C(2) → C(2)/G, respectively. If we go back to the ramification
points of ε(1) : C(1) → C(1)/G, in cases (i), (ii) and (iii) discussed above,
one easily deduces that (∗∗) can never occur. To see this, we consider, for
example, case (i); the others are completely the same.

We know that the points on C(1) of the form Qk = [0, 1, ek], 0 ≤ k ≤ 4,
(ek)5 = −1, are ramification points for ε(1) : C(1) → C(1)/G, being stabilized
by the subgroup K = {(a, a) | a ∈ Z5}. If we consider the transforms of
the pairs in K, via the automorphism ϕ, from the congruence system (∗) we
get all pairs of the form {(3a, 2a) | a ∈ Z5}, which determine the subgroup

{(0, 0), (3, 2), (1, 4), (4, 1), (2, 3)} < Z5 ⊕ Z5.

Therefore, if there existed ramification points also for ε(2) : C(2) → C(2)/G,
such points should be stabilized by this subgroup; but this subgroup does
not have ramification points on C(2).

By considering also the other cases, we determine that the action of G on
T , defined above, is free. Since g(C(i)) = 6, the quotients C(i)/G ∼= IP1,
S = T/G is a smooth surface of general type and | G |= 25, so S is a
Beauville surface (equiv. a fake quadric).

Since there is an action of G on each C(i) and on the product T , we also have
an action of G on the fibres of the canonical projections. Indeed, denote by
π(1) the first projection

T = C(1) × C(2)

↓
C(1).

We get a commutative diagram

T
G−→ T

↓ ↓
C(1)

G−→ C(1),

where the vertical arrows are given by π(1), such that

π−1
(1)(g(P(1))) = g(π−1

(1)(P(1))),

for all g ∈ G, P(1) ∈ C(1), where

π−1
(1)(P(1)) = {P(1)} × C(2) = {(P(1), P(2)) | P(2) ∈ C(2)} ∼= C(2).

If P(1) ∈ C(1) is not a ramification point for ε(1) : C(1) → C(1)/G, then its
isotropy subgroup is trivial; therefore, the orbit of P(1) consists of 25 distinct
points. This means that the set

{π−1
(1)(g(P(1)))}g∈G
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consists of 25 distinct copies of C(2). If, as before, we denote by R the
ramification divisor of ε(1) : C(1) → C(1)/G, then the family

{π−1
(1)((P(1)))}P(1)∈C(1)\R

is an irrational pencil of curves isomorphic to C(2), parametrized by an open
dense subset of C(1). In the topological covering

p : T → S

the 25 copies of C(2), in {π−1
(1)(g(P(1)))}g∈G, identify to a smooth curve C(2) ⊂

S which is isomorphic to C(2).

If P(1) ∈ R ⊂ C(1) is a ramification point for ε(1) : C(1) → C(1)/G, such
a point is stabilized by a subgroup of index 5 in G. Denote by GP(1)

this
isotropy subgroup; then

{π−1
(1)(g(P(1)))}g∈GP(1)

is a non-reduced curve consisting of 5 identified copies of C(2). Therefore,
the set

{π−1
(1)(g(P(1)))}g∈G

is an orbit consisting of five elements, each of these being a non-reduced
curve of the form D(2) = 5C(2). In the topological covering p : T → S, these
five elements in the orbit will be identified to a non reduced curve of the
form D(2) = 5C(2) in S.

In conclusion, we have determined in S an isotrivial rational pencil of smooth
curves of genus 6, parametrized by an open dense subset of C(1)/G ∼= IP1.
The singular fibres are non-reduced curves, each isomorphic to five copies
of a general, smooth fibre. Observe that C2

(i) = 0, for each i, since they are
fibres. Moreover, for each 1 ≤ i ≤ 2, we have the exact sequence

0→ OS → OS(C(i))→ OC(i)
(C(i))→ 0.

From the regularity of S and the fact that deg(OC(i)
(C(i))) = 0, we get

that dim(| OS(C(i)) |) = 1, so the complete linear system coincides with the
constructed isotrivial family.

Remark. The previous example shows that we cannot expect to have,
”tout court”, an affirmative answer to the moduli problem, even in the
case of projective, minimal and regular surfaces of general type. Indeed,
note that the surface constructed above is also minimal; otherwise, if there
existed a rational smooth curve E in S, p−1(E) should be a disjoint union of
rational curves in T which, being not contained in the fibres, should project
isomorphically to the bases C(i), 1 ≤ i ≤ 2, that is a contradiction. Observe
that the divisors of the form C(i) are not ample on S, since they are fibres in
S. Moreover, these divisors are not even (integral or rational) multiples of
the canonical divisor, since they have zero self-intersection, whereas K2

S = 8.
This is an important remark, as it will be clear after having considered the
next examples and our new results in Section 5.2.
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We now discuss some examples of families of curves on a smooth and reg-
ular surface S of general type which give, on the contrary, positive answers
to the moduli problem posed in Definition 5.1.3.

Some cases of positive answers:

A direct approach which can be used for the study of the moduli problem
consists in using the notion of stability of vector bundles on smooth surfaces
and curves. Let’s restrict ourselves to the smooth case, i.e. let’s consider
smooth curves in a given linear system | D |, where D is, for example, an
ample divisor on S. We want to find conditions, on the chosen divisor class,
in such a way that the dimension of the general fibre of the map

π|D|,0 : V|D|,0 −→Mpa(D)

is zero. From assumptions on S and from Remark 5.1.4, computing the
dimension of the general fibre π|D|,0−1([D]) reduces to determining the di-
mension of H0(D, TS |D). So we are interested in cases in which this space
vanishes.

To this aim, one partially successful method is to use the semi-stability of
vector bundles on S restricted to D. We have recalled, in Definition 1.2.11,
the notion of (Mumford-Takemoto) stability.

Denote by D the general element in | D |, which is supposed to be a smooth,
irreducible curve on S. Assume that KS is an effective divisor. If TS |D
were stable on D, it couldn’t have global sections. Indeed, from the normal
sequence

0→ TD → TS |D→ ND/S → 0

and from adjunction formula, we get that deg(TS |D) = 2 − 2g + D2 =
−DKS < 0, since D is very ample and KS is assumed to be effective. So, if
we compute the slope of this rank-two vector bundle on D, we get

µ(TS |D) =
−DKS

2
< 0.

Thus, if TS |D is stable, there cannot exist a non-zero global section, i.e. an
injective sheaf morphism

0→ OD → TS |D,

otherwise we would have µ(OD) = 0 > µ(TS |D) which contradicts the
stability property.

We recall that the tangent bundle of a surface of general type is Bogomolov-
stable (see Section 1.3). So it would be sufficient to know some criteria which
establish that, given a smooth curve D on S, the restriction of a Bogomolov-
stable rank-two vector bundle on S to D remains stable (in the sense of
Mumford-Takemoto). There are some results answering to this question
(see [43] for a detailed overview and analysis): Mehta and Ramanathan,
[90], proved that for a given semistable vector bundle E on S, there always
exists a number d0 such that the restriction of E to a general curve of degree
d ≥ d0 is semistable. Unfortunately, the bound d0 dependes on E itself and
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not only on numerical invariants of E such as the rank or the Hilbert polyno-
mial. In a later work, [42], Flenner found numerical conditions in order that
a given semistable vector bundle on a n-dimensional, normal, projective va-
riety X restricts to a general hypersurface H ∈ | OX(d) | in such a way that
it remains semistable. These conditions determine a lower-bound d0 such
that, for each d > d0 the restriction property holds. However this bound d0,
depending on n, is very large. Other papers, which deal with this subject
are, for example, the work of Miyaoka, [94], and a recent article of Hein,
[65]. Both these authors use arguments in prime characteristic to deduce
some results of semistability in characteristic zero. However, the bounds are
always very large.

Another approach that could be used consists in applying discriminants
and elementary modifications of vector bundles on S alongD (see Definitions
1.2.15, 1.2.16 and Proposition 1.2.17). Since the dual of a stable vector
bundle is stable, we can prove that, for some regular surfaces S of general
type, the restriction to a canonical divisor of Ω1

S is stable.

Proposition 5.1.8 Let S be a smooth, projective surface of general type
(not necessarily regular), with positive index, i.e. τ(S) = 1

3(c21 − 2c2) > 0,
and effective canonical divisor. Let D ∼ KS on S. Then, Ω1

S |D is stable.

Proof: By contradiction, assume that Ω1
S |D is unstable. Therefore, there

must exist a destabilizing projection

Ω1
S |D

h−→ F .

If we compose this projection with the restriction map to D, we obtain

Ω1
S

rD−→ Ω1
S |D

h−→ F .

This gives the following exact sequence on S:

0→ TD,F (Ω1
S)→ Ω1

S → i∗(F)→ 0,

where i : D ↪→ S is the inclusion of D in S and TD,F (Ω1
S) is the elementary

modification of Ω1
S along D via F . If δ(E) = c1(E)2

4 − c2(E) denotes the
discriminant of a vector bundle E , then by Bogomolov’s criterion (Theorem
1.2.13) E is unstable if and only if δ(E) > 0. From Proposition 1.2.17,

c1(TD,F (Ω1
S)) = c1(Ω1

S)−D = KS −D ∼ 0,

since D ∼ KS . Moreover,

δ(TD,F (Ω1
S)) = δ(Ω1

S) +
1
2
c1(Ω1

S)D − c1(F) +
1
4
D2

=
1
4
K2

S − c2(S) +
1
4
K2

S + (
1
2
K2

S − deg(F)) =
1
2
K2

S − c2(S) + α,

with α ≥ 0 since, by hypothesis, F destabilizes Ω1
S |D so deg(F) ≥ 1

2K
2
S .

Therefore, by assumptions on S, δ(TD,F (Ω1
S)) = τ(S) +α > 0. This implies

that TD,F (Ω1
S) is Bogomolov-unstable, i.e. there exists a line bundle L ⊂

TD,F (Ω1
S) such that L2 > 0 and L ∈ N+(S) the ample divisor cone. Since

L ⊂ TD,F (Ω1
S) ⊂ Ω1

S , this determines the instability of Ω1
S , which is a

contradiction, being S of general type. 2
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Corollary 5.1.9 Let S be as in Proposition 5.1.8 and suppose that it is also
regular with K2

S > 0. Then the family V|KS |,0 has the expected number of
moduli.

Proof: From the previous proposition and the fact that the stability is
invariant under duality, we conclude that the restriction of the tangent bun-
dle TS = (Ω1

S)∨ to a smooth canonical divisor is a stable vector bundle.
For what we have observed before Proposition 5.1.8, h0(TS |D) = 0. From
Remark 5.1.4, we get the statement. 2

Remark 5.1.10 Observe that, if S is as in Corollary 5.1.9, it can be neither
a surface of degree d ≥ 5 in IP3, since for such surfaces c21 < c2, nor a complete
intersection in IPr+2, r ≥ 2, since in these cases we have c21 ≤ 2r

r+1c2, which
contradicts the positivity of the index. Moishezon and Teicher proved, in
[96], that there exists an infinite class of examples of surfaces of general
type with positive index which are simply connected. The triviality of the
fundamental group implies that, for such a S, the first Betti number b1(S)
equals 0, so the regularity of S.

The numerical techniques of Proposition 5.1.8 can be easily extended to
surfaces of general type, which are not assumed to have necessarily posi-
tive index, and to Q-divisors which are numerically equivalent to rational
multiples of the canonical divisor.

Proposition 5.1.11 Let S be a smooth, projective and regular surface of
general type. Assume that KS is effective with K2

S > 0. Let D be a divisor
which is numerically equivalent to p

qKS, where p and q are positive and
relatively prime integers, such that

(∗) p2 + q2

4q2
K2

S − e(S) > 0,

where e(S) denotes the Euler-Poincare’ characteristic of S. Then, the family
V|D|,0 has the expected number of moduli.

Proof: By applying the same procedure of Proposition 5.1.8, assume by
contradiction that there exists a destibilizing sheaf F for Ω1

S |D; thus,
deg(F) ≤ p

2qK
2
S . Therefore,

δ(TD,F (Ω1
S)) =

1
4
K2

S − c2(S) +
1
2
KS(

p

q
KS) + (

p2

2q2
K2

S − deg(F)).

By (∗) and by hypothesis on F , δ(TD,F (Ω1
S)) > 0 which implies the Bogomolov-

instability of δ(TD,F (Ω1
S)) and so of Ω1

S , which is absurd. Then one concludes
as in Corollary 5.1.9. 2

Remark 5.1.12 If, for example, S ⊂ IP3 is a general quintic and q = 1,
then e(S) = 55 and D ∼ pH, H the plane divisor of S, the above result holds
as soon as p ≥ 7. If S ⊂ IP3 is general and of degree 6, then e(S) = 108, so
(∗) reduces to p2 > 17q2. Thus, the previous result holds if D ∼ aH, with
a ≥ 9. Similar computations can be done for Sd ⊂ IP3, d ≥ 7 and/or q ≥ 2.
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5.2 Moduli of curves in a given linear system on

a surface of general type

In this section we shall study the number of moduli of families of irreducible,
nodal curves on some surfaces of general type.

For what concerns other classes of projective surfaces, we only want to
mention that, apart from the paper of Sernesi for the plane case ([119], see
also Section 2.3), there are also some results related to this subject in the
rational surface case. Indeed, Beauville ([9]) studied the problem of classi-
fying smooth, projective hypersurfaces with isomorphic smooth hyperplane
sections and proved that (in characterictic zero) the only hypersurfaces with
such a property are hyperquadrics and hyperplanes. Some properties of pro-
jective varieties with isomorphic or birational hyperplane sections have been
shown by McKernan, [89]. Pardini ([105]), on the other hand, has studied
the projective varieties with the property that there exists a projective iso-
morphism between two of their generic hyperplane sections. In the case of
surfaces, she has given the correct proof of classical statements of Fubini
and Fano, by using the approach of Ciliberto, [28], based on the fact that
the ”special” hyperplane sections, in particular all the tangent sections, of
a variety with projectively isomorphic hyperplane sections, admit infinitely
many projective automorphisms. This classical result establishes that if S
is a surface of degree d in IPr (not necessarily smooth), with projectively
equivalent hyperplane sections, then S must be: a cone, a projectively ruled
rational surface or a projection of a Veronese surface.

We now turn back to our problem. From now on, S will be a smooth,
projective and regular surface of general type, unless otherwise specified.
| D | will denote a complete linear system on S, whose general element,
D, is assumed to be smooth and irreducible. Our approach consists in the
infinitesimal study of the morphism

π|D|,δ : V|D|, δ →Mg,

where δ ≥ 0, and g = pa(D)− δ is the geometric genus of the smooth curve
C obtained via the normalization map ϕ : C → X ⊂ S of the nodal curve
X corresponding to [X] ∈ V|D|, δ.

For what observed in Remark 5.1.4, our aim is to find conditions on S

and D to get the vanishing of H0(TS |D) and of H0(ϕ∗(TS)), respectively.

We start by proving the following crucial and more general result.

Theorem 5.2.1 Let S be a smooth, projective surface of general type (not
necessarily regular). Let X ∼ D be an irreducible, δ-nodal curve, δ ≥ 0,
whose set of nodes is denoted by N . Then,

h1(S, IN ⊗ Ω1
S(D +KS)) = 0⇒ h0(C, ϕ∗(TS)) = 0. (5.6)

In particular, when δ = 0,
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h1(S, Ω1
S(D +KS)) = 0⇒ h0(D, TS |D) = 0 (5.7)

Proof: If N 6= ∅, denote by µ : S̃ → S the blow-up of S in N , so that one
can consider the following diagram of morphisms

C ⊂ S̃
↓ ϕ ↓ µ

X ⊂ S .

Thus, we obtain
H0(ϕ∗(TS)) = H0(µ∗(TS) |C).

If we tensor the exact sequence defining C in S̃ with µ∗(TS), we get the
following exact sequence on S̃:

0→ µ∗(TS)(−C)→ µ∗(TS)→ µ∗(TS) |C→ 0. (5.8)

By the Leray isomorphism, we have

H0(µ∗(TS)) = H0(TS) = 0,

since H0(TS) is isomorphic to the Lie algebra of the Lie group Aut(S), which
is finite by assumption on S (see Section 1.3). Thus, the cohomological exact
sequence associated to (5.8) reduces to

0→ H0(µ∗(TS) |C)→ H1(µ∗(TS)(−C))→ · · · .

A sufficient condition for h0(ϕ∗(TS)) = 0 is therefore h1(µ∗(TS)(−C)) = 0.
By Serre duality on S̃, we have the following equality

h1(µ∗(TS)(−C)) = h1((µ∗(TS))∨ ⊗OS̃(KS̃ + C)). (5.9)

Since TS is locally free on S, then

µ∗(TS)∨ = µ∗(T ∨S ) = µ∗(Ω1
S);

so (5.9) becomes

h1(µ∗(TS)(−C)) = h1(µ∗(Ω1
S)(KS̃ + C)). (5.10)

Denote by B the µ-exceptional divisor in S̃ such that B = Σδ
i=1Ei. From

standard computations with blow-ups, we get

µ∗(X) = C + 2B

and
µ∗(KS) = KS̃ −B,

so
KS̃ + C = µ∗(KS +X)−B.

Therefore, the right-hand side of the equality (5.10) becomes

h1(µ∗(Ω1
S)(KS̃ + C)) = h1(µ∗(Ω1

S(KS +X))⊗OS̃(−B)).

135



By using Lemma 1.2.6, we have

H1(µ∗(Ω1
S(KS +X))⊗OS̃(−B)) ∼= H1(IN (X +KS)⊗ Ω1

S).

Since X ∼ D on S, we get statement (5.6).

For (5.7), i.e. δ = 0, one can directly use the exact sequence

0→ TS(−D)→ TS → TS |D→ 0.

2

In the sequel, we will be concerned about finding conditions on divisors
D on S ⊂ IPr in order that

H1(S, Ω1
S(KS +D)) = 0 (5.11)

and

H1(S, IN ⊗ Ω1
S(KS +D)) = 0 (5.12)

hold, where N is the set of nodes of an irreducible, nodal curve X ∼ D.

Our first result in this direction is the following.

Theorem 5.2.2 Let S ⊂ IPr be a smooth and regular surface of general
type with hyperplane divisor H. Suppose that the linear system |D | on S

has general element which is a smooth, irreducible curve. Let X ∼ D be an
irreducible, δ-nodal curve, δ ≥ 0, of geometric genus g = pa(D)−δ. Assume
that:

(i) Ω1
S(KS) is globally generated;

(ii) D ∼ KS + 6H + L, where L is an ample divisor;

(iii) the Severi variety V|D|,δ is regular at [X] (in the sense of Definition
2.2.30).

Then, the morphism
π|D|,δ : V|D|,δ →Mg

has injective differential at [X]. In particular, π|D|,δ has finite fibres on each
regular component of V|D|,δ, so each such component parametrizes a family
having the expected number of moduli.

Proof: First of all, we want to show that hypothesis (ii) implies the van-
ishing in (5.11). To prove this, we will use Griffiths vanishing results (see
Theorems 1.2.7, 1.2.8 and Corollary 1.2.10). Therefore, the first step of our
analysis is to apply such vanishing results to the vector bundle

E = Ω1
S(mH),

where m is a positive integer. We have det(E) = KS + 2mH.
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If we want to apply Theorem 1.2.7, with l = q = 1 and E = Ω1
S(mH), we

get that

KS ⊗ E ⊗ det(E)⊗OS(L) = Ω1
S ⊗OS(KS +KS + 3mH + L),

where L is an ample divisor. In this case, if we find an m0 such that, for
m ≥ m0, Ω1

S(mH) is globally generated on S and if we take L an ample
divisor on S, then the hypotheses of Theorem 1.2.7 are satisfied and for each
curve D ∼ KS +3mH+L the vanishing in (5.11) holds, as soon as m ≥ m0.

If we want to apply Corollary 1.2.10, with k = l = q = 1 and E = Ω1
S(mH),

we get that

KS ⊗ E ⊗ det(E) = Ω1
S ⊗OS(KS +KS + 3mH).

In this case, if we find an m1 such that, for m ≥ m1, Ω1
S(m) is an ample

vector bundle on S, then the hypotheses of Corollary 1.2.10 are satisfied; so
it is sufficient to consider divisors D ∼ KS + 3mH, to get the vanishing in
(5.11), as soon as m ≥ m1.

The problem reduces to finding which ”twists” of Ω1
S are globally gener-

ated or ample on a smooth, projective surface.

In the sequel we shall shortly write Ω1
S(m) instead of Ω1

S(mH). Now,
since S ⊂ IPr is a smooth surface, we have the conormal sequence

0→ ConS/IPr(m)→ Ω1
IPr(m) |S→ Ω1

S(m)→ 0.

From Proposition 1.2.1, we have to compute for which positive integers m

Ω1
IPr(m)

is ample or globally generated.

If we dualize the Euler sequence of IPr (see (1.2) in Section 1.1),

0→ OIPr → O⊕(r+1)
IPr (1)→ TIPr → 0,

we get
0→ Ω1

IPr → O⊕(r+1)
IPr (−1)→ OIPr → 0. (5.13)

Since an exact sequence of vector bundles of the form

0→ E → F → OIPr → 0

yields exact sequences

0→
p∧
E →

p∧
F →

p−1∧
E → 0,

for p ≥ 1 (see [104], page 6, and [128], page 73), from (5.13) and from the
choice p = 2, we obtain

0→ Ω2
IPr → O⊕

r(r+1)
2

IPr (−2)→ Ω1
IPr → 0.

Therefore, one trivially has

0→ Ω2
IPr(2)→ O⊕

r(r+1)
2

IPr → Ω1
IPr(2)→ 0
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and also
0→ Ω2

IPr(3)→ O⊕
r(r+1)

2
IPr (1)→ Ω1

IPr(3)→ 0.

From these exact sequences we get that

(a) Ω1
IPr(2) is globally generated;

(b) Ω1
IPr(m) is globally generated and ample, for m ≥ 3.

By turning back to the vanishing in (5.11), we get the following possibilities.

(1) If D ∼ KS + 6H + L (i.e. when m=2), where L an ample divisor on S,
then the vanishing holds by Theorem 1.2.7;

(2) If D ∼ KS + 3mH, with m ≥ 3, then the vanishing holds by Corollary
1.2.10. However, since m ≥ 3, KS + 3mH = KS + 6H + (3m− 6)H, where
3m− 6 ≥ 3. So, once again, we are in case (1).

To sum up, ifD ∼ KS+6H+L, L an ample divisor, H1(S, Ω1
S(KS+D)) = 0.

This vanishing is a fundamental tool for the next second part of the proof.

On S we can consider the exact sequence

0→ IN (D)→ OS(D)→ ON (D)→ 0 (5.14)

which determines the map ρD,

0→ H0(IN (D))→ H0(OS(D))
ρD→ H0(ON (D))→ H1(IN (D))→ · · · .

By hypothesis (iii), ρD is surjective.

Next, if we tensor the exact sequence (5.14) with Ω1
S(KS) and if we take

the associated cohomology sequence, we get

0→ H0(IN (D)⊗ Ω1
S(KS))→ H0(Ω1

S(KS +D))
ρ
Ω1

S
(KS+D)

−→
ρ
Ω1

S
(KS+D)

−→ H0(ON (Ω1
S(KS +D))) ∼= C2δ → H1(IN (D)⊗ Ω1

S(KS))→

→ H1(Ω1
S(KS +D))→ 0.

Thus, the map ρΩ1
S(KS+D) is surjective if and only if H1(IN (D)⊗Ω1

S(KS)) ∼=
H1(Ω1

S(KS + D)). For what we have shown in the first part of this proof,
hypothesis (ii) implies that H1(Ω1

S(KS +D)) = 0. So, if D is as in (ii), we
have

h1(IN (D)⊗ Ω1
S(KS)) = 0⇔ ρΩ1

S(KS+D) surjective.

By (5.6) of Theorem 5.2.1, the surjectivity of ρΩ1
S(KS+D) implies therefore

that h0(ϕ∗(TS)) = 0 and so the statement.

The last step is to determine if, with the given hypotheses, the map
ρΩ1

S(KS+D) is surjective. Recall that hypotesis (iii) implies the surjectivity
of ρD. Consider the map

H0(Ω1
S(KS +D))

ρ
Ω1

S
(KS+D)

−→ H0(ON (Ω1
S(KS +D)) ∼= C2δ ∼=

δ⊕
i=1

C2
(i). (5.15)

By hypothesis (i), for each p ∈ S, the map

H0(Ω1
S(KS))⊗OS,p → Ω1

S(KS) |p∼= O⊕2
S,p
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is surjective; thus, for each p ∈ S there exist two global sections

sp
1, s

p
2 ∈ H

0(Ω1
S(KS))

which generate the stalk Ω1
S(KS) |p as an OS-module, i.e.

sp
1(p) = (1, 0) ∈ O⊕2

S,p ,

sp
2(p) = (0, 1) ∈ O⊕2

S,p .

If N = {p1, p2, . . . , pδ} is the set of nodes of X, then

H0(ON (D)) = Cδ ∼= C(1) ⊕ C(2) ⊕ · · · ⊕ C(δ).

The surjectivity of ρD implies there exist global sections σi ∈ H0(OS(D))
such that

σi(pj) = (0, 0, . . . , 0), if 1 ≤ i 6= j ≤ δ,

σi(pi) = (0, . . . , 0, 1, 0, . . . , 0), 1 ∈ C(i), 1 ≤ i ≤ δ.

Therefore, spi
1 ⊗ σi, s

pi
2 ⊗ σi ∈ H0(Ω1

S(D +KS)) and

spi
1 ⊗σi(pj) = spi

2 ⊗σi(pj) = (0, . . . , 0) ∈ C2
(1)⊕· · ·⊕C2

(δ)
∼= C2δ, 1 ≤ i 6= j ≤ δ,

spi
1 ⊗ σi(pi) = ((0, 0), . . . , (1, 0), . . . , (0, 0)) = (0, . . . , 1, 0, . . . , 0) ∈ C2δ,

where (1, 0) ∈ C2
(i) and

spi
2 ⊗ σi(pi) = ((0, 0), . . . , (0, 1), . . . , (0, 0)) = (0, . . . , 0, 1, . . . , 0) ∈ C2δ,

where (0, 1) ∈ C2
(i), for 1 ≤ i ≤ δ. This means that the map (5.15) is

surjective. Moreover, since the condition for a point [X] ∈ V|D|,δ to be
regular is an open condition in the family, it follows that the component of
V|D|,δ containing [X] has the expected number of moduli. 2

Corollary 5.2.3 If Sd ⊂ IP3 is a smooth surface of degree d ≥ 6, the regular
components of V|nH|,δ, n ≥ d+ 3, have the expected number of moduli

Observe that, in the case δ = 0 and Sd general, once again we find what
computed in Remark 5.1.12 (see the case S6).

Remark 5.2.4 The use of Griffiths vanishing results has been a fundamen-
tal tool for our previous analysis; so the condition Ω1

S(m) globally generated
for m ≥ 2 (resp. ample, for m ≥ 3) plays a crucial role to apply such vanish-
ings. Thus, with this approach, the results in Theorem 5.2.2 are, in a certain
sense, sharp. Indeed, since we are dealing with regular surfaces, the regu-
larity of S implies that Ω1

S cannot be globally generated. In fact, with no-
tation as in (1.8), Section 1.1, H1,0(S) = H0,1(S) and H1,0(S) ∼= H0(S,Ω1

S)
whereas H0,1(S) ∼= H1(S,OS) = 0; therefore Ω1

S has no global sections.

Moreover, we have also the following results of Schneider ([117]).

Theorem. Let X ⊂ IPn be a d-dimensional variety whose cotangent bundle
is nef. Then d ≤ n/2.
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Corollary. Let X ⊂ IPn be a d-dimensional variety.

(i) Assume that its cotangent bundle is ample. Then X cannot be embedded
in IP2d−1;

(ii) If n = 2d− 1, Ω1
X(1) cannot be ample.

Therefore, even in the most natural case of smooth surfaces S in IP3 of
degree d ≥ 5, we have that Ω1

S and Ω1
S(1) are not ample.

From the first part of the proof of Theorem 5.2.2, observe that in the
case of smooth curves one can eliminate hypotheses (i) and (iii). Indeed, we
have the following more general result.

Theorem 5.2.5 Let S ⊂ IPr be a smooth surface (not necessarily regular
and of general type) and let D be an effective divisor on S. Denote by H
the hyperplane section of S. Assume that

D ∼ KS + 6H + L,

where L an ample divisor on S. In this case, the vanishing in (5.11) actually
occurs.

If moreover S is regular and of general type and | D | contains smooth, irre-
ducible elements, the family of smooth curves V|D|,0 has the expected number
of moduli.

Proof: For the first part of the statement, one can repeat the procedure at
the beginning of the proof of Theorem 5.2.2. Then, when S is assumed to
be also regular and of general type, from (5.7) we get the second part of the
statement. 2

Remark 5.2.6 Observe that Theorem 5.2.5 applies, for example, to linear
system of the form | mH |, m ≥ d+ 3, on surfaces Sd ⊂ IP3 of degree d ≥ 5.
Thus we have positive answers to the moduli problem for smooth curves, in
such linear systems, improving Corollary 5.2.3 in the cases V|mH|,0.

By making the further assumption that S is also a non-degenerate com-
plete intersection surface, we can give further improvements of Theorem
5.2.2.

Theorem 5.2.7 Let S ⊂ IPr be a smooth, non-degenerate complete inter-
section surface of type (a1, a2, . . . , ar−2) (where a1 ≤ a2 ≤ . . . ≤ ar−2).
Let D ∼ mH on S. If

m > ar−2

then
H1(Ω1

S(KS +mH)) = 0. (5.16)

Suppose moreover that S is of general type and that δ ≥ 0 is such that
V|mH|,δ 6= ∅. With notation as in Theorem 5.2.2, if we also assume that
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(i) Ω1
S(KS) is globally generated,

(ii) the Severi variety V|D|,δ is regular at [X],

then, the morphism
π|D|,δ : V|D|,δ →Mg

has injective differential at [X]. In particular, π|D|,δ has finite fibres on each
regular component of V|D|,δ, so each such component parametrizes a family
having the expected number of moduli.

Proof: We only have to show that the hypothesis onm implies the vanishing
in (5.16). After that, one can repeat the procedure of the second part of the
proof of Theorem 5.2.2 and conclude since S, being a complete intersection,
is a.C.M. (see Definition 1.1.9) and so automatically regular.

Consider the conormal sequence

0→ ConS/IPr → Ω1
IPr |S→ Ω1

S → 0.

By tensoring this exact sequence with OS(KS +mH), we get

0→ ConS/IPr(KS +mH)→ Ω1
IPr |S ⊗OS(KS +mH)→ Ω1

S(KS +mH)→ 0;

we want to find conditions on m in order that

(a) H1(S, Ω1
IPr |S ⊗OS(KS +mH)) = 0 and

(b) H2(S, ConS/IPr(KS +mH)) = 0

hold. The vanishing in (b) is equivalent, by Serre duality, to

(b’) H0(S, NS/IPr(−mH)) = 0.

We now use the hypothesis on S, i.e. we assume that S is a smooth, non-
degenerate complete intersection.

For what concerns the vanishing in (a), consider the Euler exact sequence
restricted to S,

0→ OS → O⊕(r+1)
S (1)→ TIPr |S→ 0.

By tensoring its dual sequence with OS(KS +mH), we get

0→ Ω1
IPr |S ⊗OS(KS+mH)→ O⊕(r+1)

S (KS+(m−1)H)→ OS(KS+mH)→ 0.

Since S is a smooth, complete intersection in IPr, there exists an integer α,
depending on the degrees of the (r − 2) hypersurfaces determining S, such
that KS ∼ αH. Therefore, we get

0→ H0(Ω1
IPr |S ⊗OS((α+m)H)→ H0(OS((α+m− 1)H)⊗ C(r+1) µm−→

µm−→ H0(OS((α+m)H))→ H1(Ω1
IPr |S ⊗OS((α+m)H)→ 0,

since H1(OS(t)) = 0, for all t ∈ Z, being S a complete intersection in IPr.
It is well known that, for each m, the map

H0(OS((α+m− 1)H))⊗H0(OS(H))
µm−→ H0(OS(α+m)H)
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is surjective if and only if S is projectively nomal. Since a smooth complete
intersection is in particular projectively normal, the map µm is surjective,
for m ∈ Z. Therefore,

H1(Ω1
IPr |S ⊗OS((α+m)H) = 0,

for each m ≥ 1. So the vanishing in (a) holds.

For what concerns the vanishing in (b’), once again we use the fact that S
is a complete intersection. Its normal bundle in IPr splits in

NS/IPr =
r−2⊕
i=1

OS(ai),

where, by hypothesis, a1 ≤ a2 ≤ . . . ≤ ar−2, ai = deg(Vi), where Vi hyper-
surface in IPr such that S =

⋂r−2
i=1 Vi, and each ai > 1, since S is assumed to

be non-degenerate. Therefore,

H0(S, NS/IPr(−mH)) =
r−2⊕
i=1

H0(OS((ai −m)H)).

We have to distinguish two different cases.

(1) Suppose m > ar−2 = max1≤i≤r−2{ai}. Therefore, one immediately finds
that H0(S, NS/IPr(−mH)) = 0. This implies that H1(Ω1

S((α + m)H)) =
H1(Ω1

S(KS +mH)) = 0.

(2) Suppose that there exists at least an i0 ∈ {1, . . . , r − 2} such that
ai0 −m ≥ 0. From this hypotesis, we get that H0(S, NS/IPr(−mH)) 6= 0.
Thus, H2(S, ConS/IPr(KS +mH)) 6= 0. If we reconsider the exact sequence

0→ ConS/IPr⊗OS(KS+mH)→ Ω1
IPr |S OS(KS+mH)→ Ω1

S(KS+mH)→ 0

we get that

(∗) 0→ H1(Ω1
S(KS +mH))→ H2(ConS/IPr ⊗OS(KS +mH))→

→ H2(Ω1
IPr |S OS(KS +mH))→ H2(Ω1

S(KS +mH))→ 0.

If we use Serre duality, we get

H2(Ω1
S(KS +mH)) ∼= H0(TS(−mH))∨

and
H2(Ω1

IPr |S OS(KS +mH)) ∼= H0(TIPr |S (−mH))∨.

Now, if we consider the twist, by OS(−mH), of the Euler exact sequence
restricted to S, we obtain

H0(TIPr |S (−mH)) ∼= C(r+1) ⊗H0(OS(1−mH)).

Therefore, two subcases can occurr.
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• m > 1: in this case h0(OS(1 − mH)) = h0(TIPr |S (−mH)) = 0.
By Serre duality and by the cohomological exact sequence (∗), we get
h0(TS(−mH)) = 0, which implies that h2(Ω1

S(KS +mH)) = 0. This
means that

H1(Ω1
S(KS +mH)) ∼= H0(S, NS/IPr(−mH)).

So, since we are in the hypothesis that there exists i0, 1 ≤ io ≤ r − 2,
such that ai0 − m ≥ 0, this isomorphism implies that h1(Ω1

S(KS +
mH)) 6= 0.

• m = 1: in this case, H0(TIPr |S (−H)) ∼= C(r+1). By using the co-
homological exact sequence (∗) and the equality h1(Ω1

S(KS + H)) =
h1(TS(−H)) determined from Serre duality, we have

h1(Ω1
S(KS +H)) = h0(NS/IPr(−H))− (r + 1) + h0(TS(−H)).

Therefore, h1(Ω1
S(KS +H)) = 0 if and only if

h0(NS/IPr(−H)) = (r + 1)− h0(TS(−H));

the last equality implies that h0(NS/IPr(−H)) ≤ (r + 1). This contra-
dicts our hypotheses on S; indeed, since S is a non-degenerate complete
intersection in IPr, NS/IPr(−H) =

⊕r−2
i=1 OS((ai−1)H) and ai−1 ≥ 1,

for each 1 ≤ i ≤ r− 2. So,
∑r−2

i=1 h
0(OS((ai − 1)H)) > (r+ 1). There-

fore, even in this case we conclude that h1(Ω1
S(KS +H)) 6= 0.

2

The previous result improves Theorem 5.2.2 in the case of linear systems
of the form | mH |. Indeed, we have the following:

Corollary 5.2.8 If Sd ⊂ IP3 is a smooth surface of degree d ≥ 6, then the
regular components of V|mH|,δ on Sd, with m ≥ d + 1, have the expected
number of moduli.

Thus, this result improves Corollary 5.2.3, where the condition on m was
m ≥ d+ 3.

As in Theorem 5.2.5, observe that in the case of smooth curves in | mH |
one can eliminate hypotheses (i) and (ii) in Theorem 5.2.7.

Theorem 5.2.9 Let S ⊂ IPr be a smooth, non-degenerate complete inter-
section surface of type (a1, a2, . . . , ar−2) (where a1 ≤ a2 ≤ . . . ≤ ar−2).
Then,

H1(Ω1
S(KS +mH)) = 0, for m > ar−2.

If S is also assumed to be of general type, the family of smooth curves in
| mH |, with m > ar−2, has the expected number of moduli.
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Proof: This is a consequence of the computations in Theorem 5.2.7 and of
(5.7) in Theorem 5.2.1. 2

Remark 5.2.10 Observe that, in the case of divisors of the form mH, H
a hyperplane section of S, we have improved the results of Theorem 5.2.5;
indeed, if, for example, S is a smooth quintic in IP3, from Theorem 5.2.9, we
get that h1(S,Ω1

S(KS +mH)) = 0 for m ≥ 6, instead of m ≥ 8 (see Remark
5.2.6). Moreover, this vanishing result is sharp, as it can be directly checked
from the following explicit example. Let D ∼ H (i.e. m = 1) be a smooth
curve on S. Thus, r = 3, a1 = 5 > 1 = m. Since NS/IP3

∼= OS(5H),
then h0(NS/IP3(−H)) = 35 6= 4 (= r + 1). Therefore, in this case, we
must have h1(S,Ω1

S(KS + H)) 6= 0. If we want to explicitely compute
this dimension, it is sufficient to use the fact that S is of general type;
thus, h0(TS(−H)) = h0(TS) = 0, and, by previous computations, we get
h1(TS(−H)) = h1(S,Ω1

S(KS +H)) = 35− 4 = 31, whereas h1(TS) = 40.

We remark that, for S ⊂ IPr, the results in this section give affirmative
answers to the moduli problem, posed in Definition 5.1.3), for example for
divisors mH on S of sufficiently high-order class m (with respect to the
degree of S). If we want to consider the moduli problem for classes of
divisors of low degrees, we can restrict ourselves to the case of a general
smooth, complete intersection surface S ⊂ IPr and immediately conclude by
using a recent result of Schoen, [127]. In his paper, he studies (algebraic)
varieties which are dominated by products of varieties of smaller dimension
(abbreviated DPV); in the case of products of curves, one writes DPC. Since
we are concerned with surfaces, we shall recall only DPC-property.

Definition 5.2.11 A variety W , of dimension n, is said to be dominated
by products of curves (DPC) if there exist curves C1, . . . , Cs and a dominant
rational map

F : C1 × . . .× Cs →W.

Some known examples of DPC-varieties are: unirational varieties, abelian
varieties, ruled and hyperelliptic surfaces and Fermat hypersurfaces.

The main goal of Schoen’s paper is to discuss some obstructions to DPC
and DPV properties; more precisely, by using Hodge theory, he constructs
an invariant, τ , which gives an obstruction to a variety being DPV (this is
based on the Deligne analysis in [34], Sect. 7).

Theorem 5.2.12 (see [127], Theorem 1.1) There is a function τ which as-
signs to each birational isomorphism class of varieties a non-negative integer
and which has the following properties:

(1) If dim(W ) = n, then τ(W ) ≤ n;

(2) If W1 →W2 is a dominant rational map, then τ(W1) ≥ τ(W2);

(3) τ(W1 × . . .×Ws) = max1≤i≤s{τ(Wi)}
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Corollary 5.2.13 If τ(W ) > 1, then W is not DPC.

By using Hodge structure and real algebraic group theory, he shows that
some varieties cannot be DPC; for example, if W ⊂ IPN is a sufficiently
general complete intersection of degree d > N + 1, then τ(W ) = dim(W ) =
n; so, by corollary above, if W is such a general complete intersection and
if n > 2, then W cannot satisfy DPC-property.

To relate this result to our moduli problem, observe that it implies that
a general complete intersection surface S ⊂ IPr, of degree d ≥ r + 2, cannot
be dominated by a product of curves C1 × C2. Therefore, if H denotes the
hyperplane section of S, in the complete linear system | mH | on S there
cannot exist isotrivial (rational or irrational) pencils of smooth or δ-nodal
curves, otherwise, after a suitable base change, such a surface would be
DPC. In particular, the fibres of the morphism

π|mH|,δ : V|mH|,δ →Mg

are finite, for δ ≥ 0 and for each m ≥ 1.

Remark 5.2.14 Observe that, via Schoen’s results, we can answer the
moduli problem, for smooth and nodal curves in the linear system | mH |,
on a general complete intersection surface S ⊂ IPr of degree d ≥ r + 2 and
for each m ≥ 1.

Our results are more generally valid for divisors D on S, where S can
have a wildly complicated Div(S). For the particular cases of smooth and
nodal curves in the complete linear system | mH | on S ⊂ IPr, they give
positive answers to the moduli problem for m ≥ m(S), m(S) depending on
the structure of S.

On the other hand, our techniques involve only vanishing results and
vector bundle theory on smooth, projective surfaces, so they are of a more
elementary nature and give simpler proofs.

Our work in progress is to give positive answers to the moduli problem,
at least for surfaces S ⊂ IP3, for divisors of type mH, m ≥ 1, without using
Hodge theory and Schoen’s result but only using degeneration techniques.
Some preliminary results have been already obtained by the author.

5.3 The final statement

This section contains a final statement of what we have proven and recalled
in this chapter concerning the moduli problem of Definition 5.1.3 and Re-
mark 5.1.4. It can be viewed as the collection of all partial results of Section
5.2.

Theorem 5.3.1 Let S ⊂ IPr be a smooth, regular surface of general type
and denote by H the hyperplane section on S. Let D be an effective divisor
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and assume that the general member of | D | is a smooth, irreducible curve
of geometric genus pa = pa(D). Let X ∼ D be a δ-nodal curve, δ ≥ 0,
determining a regular point of the Severi variety V|D|,δ. Denote by ϕ : C →
X ⊂ S the normalization map of X, where C is a smooth curve of geometric
genus g = pa − δ. In this case:

(1) if Ω1
S(KS) is globally generated and D ∼ KS +6H+L, where L an ample

divisor on S, then the morphism

π|D|,δ : V|D|,δ →Mg

has injective differential at [X]. In particular, π|D|,δ has finite fibres over
each regular component of V|D|,δ, so each such component parametrizes a
family having the expected number of moduli.

When δ = 0, the same conclusion holds for the open subset V|D|,0 of | D |
without the hypothesis on Ω1

S(KS);

(2) If S is moreover a non-degenerate complete intersection of type

(a1, a2, . . . , ar−2)

(where a1 ≤ a2 ≤ . . . ≤ ar−2, ai > 1, for each i) and D ∼ mH such that
m > ar−2 and if Ω1

S(KS) is globally generated, then the morphism

π|mH|,δ : V|mH|,δ →Mg

has injective differential at [X]. In particular, π|mH|,δ has finite fibres over
each regular component of V|mH|,δ, so each such component parametrizes a
family having the expected number of moduli.

Furthermore, if we restrict to the open subset V|mH|,0 of | mH |, the same
conclusion holds without the hypothesis on Ω1

S(KS);

(3) If, moreover, S is assumed to be a general complete intersection of degree
d ≥ r + 2 and D ∼ mH, where m ≥ 1, then the the fibres of the morphism

π|mH|,δ : V|mH|,δ →Mg

are finite, for δ ≥ 0. In particular, the regular components of V|mH|,δ have
the expected number of moduli.

Proof: See Theorems 5.2.2, 5.2.5, 5.2.7, 5.2.9 and Corollary 5.2.13 .
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Hermann, Paris, 1958.

[48] Gradolato M. A., Mezzetti E., Curves with nodes, cusps and ordinary
triple points, Ann. Univ. Ferrara, Ser. VII, Sc. Mat., 31 (1985).

[49] Gradolato M. A., Mezzetti E., Families of curves with ordinary singular
points on regular surfaces, Ann. mat. pura et appl., 150 (1988), 281-
298.

[50] Greuel G.M., Karras U., Families of varieties with predescribed singu-
larities, Comp. Math., 69 (1989), 83-110.

[51] Greuel G.M., Lossen C., Equianalytic and equisingular families of
curves on surfaces, Manuscr. Math., 91 (1996), 323-342.

[52] Greuel G.M., Lossen C., Shustin E., Geometry of families of nodal
curves on the blown-up projective plane, Trans. AMS, 350 (1997), 251-
274.

[53] Greuel G.M., Lossen C., Shustin E., New asymptotics in the geometry of
equisingular families of curves, Internat. Math. Res. Notices, 13 (1997),
595-611.

[54] Greuel G.M., Lossen C., Shustin E., Castelnuovo function, zero-
dimensional schemes and singular plane curves, Alg-Geom/9903179,
(1999), 1-32.

149



[55] Griffiths P., Harris J., Principles of Algebraic Geometry, John Wiley &
Sons, Inc., New York, 1978.

[56] Griffiths P., Harris J., Residues and 0-cycles on algebraic varieties, Ann.
Math., 108 (1978), 461-505.

[57] Grothendieck A., Dieudonne J., Elements de Geometrie Algebrique IV
(4eme partie), Publ. Math. I.H.E.S., 32, 1967.

[58] Harris J., On the Severi problem, Invent. Math., 84 (1986), 445-461.

[59] Harris J., Curves and their moduli, in Proc. Symposia Pure Math. -
Algebraic Geometry - Bowdoin, 46 (1987), 99-143.

[60] Harris J., Morrison I., Moduli of curves, Graduate Texts in Mathemat-
ics, vol. 187, Springer, New York, 1998.

[61] Harris J., Mumford D., On the Kodaira dimension of the moduli space
of curves, with an appendix of William Fulton, Inv. Math., 67 (1982),
23-88.

[62] Harris J., Pandharipande R., Severi degrees in cogenus 3, Alg-
Geom/9504003, (1995), 1-13.

[63] Hartshorne R., Ample Subvarieties of Algebraic Varieties, Springer
LNM, 156, Springer, Berlin, 1970.

[64] Hartshorne R., Algebraic Geometry (GTM, No. 52), Springer-Verlag,
New York-Heidelberg, 1977.

[65] Hein G., Restriction of stable rank two vector bundles in arbitrary
characteristic, Alg-Geom/9904102 (1999).

[66] Hirzebruch F., Singularities of algebraic surfaces and characteristic
numbers, Contemp. Math., 58 (1986), 141-155.

[67] Horikawa E., On deformations of holomorphic maps I, J. Math. Soc.
Japan, 25 (1973), 372-396.

[68] Horikawa E., On deformations of holomorphic maps II, J. Math. Soc.
Japan, 26 (1974), 647-667.

[69] Horikawa E., On deformations of holomorphic maps, in Manifolds -
Tokyo 1973. Iwanami-Shoten (1974), 383-388.

[70] Huybrecths D., Lehn M., The geometry of moduli spaces of sheaves,
Publication of the Max-Plank-Institut für Mathematik, Aspects in
Mathematics, 31, Vieweg, Bonn, 1997.

[71] Kleiman S. L., The enumerative theory of singularities, in Nordic Sum-
mer School/NAVF - Symposium in Mathematics, Oslo 1976, 297-396.

[72] Kleiman S. L., Piene R., Enumerating singular curves on surfaces, Alg-
Geom/9903192, (1999), 1- 30.

[73] Knutsen A. L., On degrees and genera of smooth curves on projective
K3 surfaces, Alg-Geom/9805140, (1998), 1- 13.

[74] Kobayashi S., Hyperbolic manifolds and holomorphic mappings, Pure
and Applied Mathematics, 2, Marcel Dekker, New York, 1970.

[75] Kodaira K., Morrow J., Complex manifolds, Holt, Rinehart and Win-
ston, New York, 1971.

150



[76] Kodaira K., Spencer D., On deformations of complex analytic struc-
tures I, II, Ann. of Math., 67 (1958), 328-466.

[77] Kollar J., Rational curves on algebraic varieties, Springer, Berlin, 1996.

[78] Konsevitch M., Enumeration of rational curves via torus action, in The
moduli space of curves, R. Dijkgraag, C. Faber and G. van der Geer,
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