Università di Roma Tor Vergata Ingegneria Civile-Ambientale-Medica

TUTORATO 3 - 17 Ottobre 2025

- 1. Siano \vec{v}_1, \vec{v}_2 due vettori linearmente indipendenti in V s.v. di dim(V) = 3. Sia $\vec{w} = 3\vec{v}_1 \vec{v}_2$.
 - (a) Dire se $\{\vec{v}_1, \vec{v}_2, \vec{w}\}$ è un sistema di vettori linearmente indipendenti.
 - (b) Dire se $\{\vec{v}_1, \vec{v}_2, \vec{w}\}$ è un sistema di generatori di $W = span\{\vec{v}_1, \vec{v}_2, w\}$. Dire se è una base.
 - (c) Dire se $\{\vec{v}_1, \vec{v}_2\}$ è un sistema di generatori di $W = span\{\vec{v}_1, \vec{v}_2, \vec{w}\}$. Dire se è una base.
 - (d) Dire se $\{\vec{v}_1, \vec{v}_2, \vec{w}\}$ è un sistema di generatori di V. Dire se è una base.
- 2. Sia $\mathbf{M}_{2,2}(\mathbb{R})$ lo spazio delle matrici 2×2 a coefficienti reali e siano

$$A = \begin{bmatrix} 1 & 3 \\ 0 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} -2 & 1 \\ 1 & 5 \end{bmatrix}.$$

- (a) Calcolare 3A, A + B, A 3B.
- (b) Calcolare A^T , B^T , $(A+B)^T$. Dire quale matrice tra $A \in B$ è simmetrica, dire quale è triangolare.
- (c) Calcolare AB, BA. Osservare che $AB \neq BA$.
- (d) Calcolare Tr(A), Tr(B), Tr(AB) e Tr(BA), ovvero la $traccia^1$ di A,B, AB e BA.
- 3. Siano

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & -1 & 5 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 0 \\ -1 & 4 \end{bmatrix}, \quad X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad Y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}.$$

- (a) Dire se il prodotto AB è compatibile. In caso positivo, calcolarlo.
- (b) Dire se il prodotto BA è compatibile. In caso positivo, calcolarlo.
- (c) Dire se i prodotti AX e BY sono compatibili e in caso calcolarli.
- 4. Data le matrice $M \in M_{2,3}(\mathbb{R})$

$$M = \begin{bmatrix} 0 & 1 & 5 \\ 4 & -3 & 1 \end{bmatrix}$$

- (a) Scrivere il sistema lineare omogeneo $M\mathbf{x} = \mathbf{0}$ associato ad M.
- (b) Siano \mathbf{x} e \mathbf{y} due soluzioni di $M\mathbf{x} = 0$. Dire se $\mathbf{x} + \mathbf{y}$ è una soluzione di $M\mathbf{x} = 0$. Dire se $\lambda \mathbf{x}$ con $\lambda \in \mathbb{R}$ è una soluzione di $M\mathbf{x} = 0$. Dedurre che $Sol(M\mathbf{x} = \mathbf{0})$ è un sottospazio vettoriale di \mathbb{R}^3 .
- 5. Sia $\mathbf{M}_{2,2}(\mathbb{R})$ lo spazio delle matrici 2×2 e sia

$$M = \begin{bmatrix} 3 & t \\ -1 & 2 \end{bmatrix}, \quad t \in \mathbb{R}.$$

- (a) Dire per quali valori del parametro $t \in \mathbb{R}$ M è invertibile.
- (b) Sia t = 1, calcolare M^{-1}
- (c) Sia t=1, calcolare $(M^T)^{-1}$, osservare che $(M^T)^{-1}=(M^{-1})^T$
- 6. Determinare il rango (per righe e per colonne) delle seguenti matrici al variare del parametro $t \in \mathbb{R}$.

$$A_1 = \begin{bmatrix} 1 & -4 & 2 \\ 0 & t+1 & -1 \\ 0 & 0 & t-3 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 1 & -4 & 2 & 2 \\ 0 & 1 & 3 & -1 \\ 0 & 0 & 0 & t \end{bmatrix}.$$

¹Si ricorda che Tr(M) è uguale alla somma degli elementi diagonali di una matrice M.