Geometria 3 a.a. 2019-20 Docente: Prof.ssa F. Tovena - Codocente: Prof. F. Flamini Foglio n. 7 Esercizi

1

- 7.1) Determina uno spazio topologico X e una famiglia numerabile di compatti di X la cui unione non sia compatta in X.
- 7.2) * Sia (X, \mathcal{U}) uno spazio topologico e sia ∞ un elemento che non appartiene a X. Sull'insieme $X^{\infty} = X \cup \{\infty\}$, considera la famiglia di sottoinsiemi

$$\mathcal{U}^{\infty} = \mathcal{U} \cup \{A \cup \{\infty\} \mid A \subseteq X, X \setminus A \text{ chiuso e compatto in } X\}.$$

Lo spazio topologico $(X^{\infty}, \mathcal{U}^{\infty})$ è detto compattificazione di Alexandroff di X con un punto di (X, \mathcal{U}) . Dimostra che:

- i) La famiglia \mathcal{U}^{∞} è una topologia su X^{∞} , rispetto alla quale X^{∞} è compatto (visto a lezione con Prof.ssa Tovena)
- ii) Lo spazio (X, \mathcal{U}) è un sottospazio topologico di X^{∞} .
- iii) Utilizzando la proiezione stereografica e considerando la topologia indotta dalla topologia euclidea, dimostra che la sfera $S^2 \subset \mathbf{R}^3$ è omemorfa alla **compattificazione di Alexandroff** con un punto di \mathbf{R}^2 .
- 7.3) Sia (X, \mathcal{U}) uno spazio topologico. Diciamo che una applicazione $f: X \to \mathbf{R}$ è superiormente semicontinua se $f^{-1}(-\infty, a)$ è aperto in X per ogni $a \in \mathbf{R}$.

Siano $\mathcal{U}_{SSA} = \mathcal{T}_s$ e $\mathcal{U}_{SDA} = \mathcal{T}_d$ le topologie su **R** degli intervalli aperti illimitati a sinistra (**Semirette sinistre aperte**), risp., a destra (**Semirette destre aperte**).

- i) Dimostra che $f: X \to \mathbf{R}$ è superiormente semicontinua se e solo se, per ogni $x \in X$ e per ogni $\varepsilon \in \mathbf{R}$, esiste un intorno U di x in X tale che $f(y) < f(x) + \varepsilon$ per ogni $y \in U$.
- ii) Dimostra che $f:X\to \mathbf{R}$ è superiormente semicontinua se e solo se $f:X\to (\mathbf{R},\mathcal{T}_s)$ è continua.
- iii) Mostra che l'applicazione $(\mathbf{R}, \mathcal{T}_s) \to (\mathbf{R}, \mathcal{T}_d)$ definita da $x \mapsto -x$ è continua.
- iv) Mostra che una applicazione $f: X \to (\mathbf{R}, \mathcal{T}_d)$ è continua (e in tal caso, la chiamiamo **inferiormente semicontinua**) se e solo se -f è superiormente semicontinua.
- 7.4) * Considera la topologia euclidea su R². Quali dei seguenti sottospazi sono connessi? quali sono connessi per archi? quali sono compatti?
 - a) $Y_1 = \{(x, y) \in \mathbf{R}^2 \mid 1 < x^2 + y^2 < 2\}$;
 - b) $Y_2 = \mathbf{R}^2 \setminus \{(x, y) | |y| > 0\}$;
 - c) $Y_3 = \mathbf{R}^2 \setminus \{(x, y) | y = 0\}$;
 - d) $Y_4 = \mathbf{R}^2 \setminus \{(0, y) \mid |y| > 0\}$.
- 7.5) * Considera un sottospazio connesso A di uno spazio topologico X. Dimostra che se Y è un sottospazio di X tale che $A \subseteq Y \subseteq \overline{A}$, allora Y è connesso.
- 7.6) In \mathbb{R}^2 con topologia euclidea, considera il sottoinsieme

$$A = \{(0,1)\} \cup \{(x,0) \mid 0 < x < 1\} \cup \{(1/n,y) \mid n \in \mathbb{N}, n \neq 0, 0 \leq y \leq 1\}.$$

Dimostra che A è connesso ma non connesso per archi.

¹Parte della stesura in latex del presente file e' a cura della Prof.ssa Martina Lanini. Ringraziamenti per aver permesso l'utilizzo

- 7.7) * Considera \mathbb{R}^2 con topologia euclidea. Dimostra che:
 - (i) S^1 ,
 - (ii) una coppia di circonferenze disgiunte,
 - (iii) una coppia di circonferenze tangenti,
 - (iv) una coppia di circonferenze secanti non sono sottospazi topologici a due a due omeomorfi.
- 7.8) Dimostra che, se ogni punto di uno spazio topologico X possiede un intorno connesso, allora le componenti connesse di X sono aperte.
- 7.9) * Considera su \mathbf{R} la topologia \mathcal{U}_{Sorg} di **Sorgenfrey del limite inferiore** che ha per base gli intervalli della forma [a,b), con $a < b \in \mathbf{R}$. Mostra che un sottoinsieme non vuoto S è connesso se e solo se è composto da un unico punto (i.e. $(\mathbf{R}, \mathcal{U}_{Sorg})$ e' **totalmente sconnesso**).
- 7.10) * Sia X uno spazio topologico. Una funzione $f: X \to \mathbf{R}$ si dice **localmente costante** se , per ogni punto $x \in X$, esiste un intorno J di x tale che f(x) = f(y) per ogni $y \in J$. Mostra che, se X è connesso e $f: X \to \mathbf{R}$ è continua e localmente costante, allora f è costante.