Foglio n. 4 Esercizi

4.1) Sia (X, \mathcal{U}_X) uno spazio topologico. Definiamo

$$\Delta_X := \{(x, x) \in X \times X \mid x \in X\} \subset X \times X,$$

denominata la diagonale in $X \times X$. Dimostra che X e' di Hausdorff se e solo se la diagonale Δ_X e' un chiuso di $X \times X$ (munito della topologia prodotto $\mathcal{U}_{X \times X}$).

4.2) Siano X e Y due spazi topologici, con Y di Hausdorff e sia $A\subset X$ un sottoinsieme denso. Siano date

$$f, g: X \to Y$$

due applicazioni continue tali che

$$f(x) = g(x), \ \forall \ x \in A.$$

Dimostrare allora che f = g, i.e. $f(x) = g(x), \forall x \in X$.

4.3) Siano (X, \mathcal{U}_X) e (Y, \mathcal{U}_Y) due spazi topologici, con Y di Hausdorff. Sia $f: X \to Y$ una qualsiasi applicazione continua. Provare che il grafico dell'applicazione f, definito come

$$\Gamma_f := \{ (x, f(x)) \in X \times Y | x \in X \}$$

e' un chiuso nello spazio topologico prodotto $(X \times Y, \mathcal{U}_{X \times Y})$.

4.4) Determina un omeomorfismo tra i due sottospazi di $(\mathbf{R}^2, \mathcal{U}_{Eucl})$ definiti da

$$A = \{(x,y)|x^2 + y^2 = 1\}$$
 e $B = \{(x,y)|2x^2 + 6y^2 = 1\}.$

4.5) Determina un omeomorfismo tra i due sottospazi di $(\mathbf{R}^2, \mathcal{U}_{Eucl})$ definiti da

$$A = \{(x,y)|x^2 + y^2 = 1, x \neq 0\} \ \text{e} \ B = \{(x,y)|x = \pm 1\}.$$

4.6) Determina un omeomorfismo tra i due sottospazi di $(\mathbf{R}^2, \mathcal{U}_{Eucl})$ definiti da

$$A = \{(x,y)|x^2 + y^2 = 1, x \neq 0\}$$
 e $B = \{(x,y)|x = \pm 1, -1 < y < 1\}.$

- 4.7) Sia X uno spazio topologico e sia $Y \subset X$ un suo sottospazio topologico. Per ogni sottoinsieme S di Y è possibile considerare la chiusura \overline{S} di S in X e la chiusura, che denotiamo con \overline{S}^Y , di S in Y nella topologia indotta da X. Mostra che $\overline{S} \cap Y = \overline{S}^Y$.
- 4.8) Consideriamo ($\mathbf{R}^n, \mathcal{U}_{\text{Eucl}}$) e prendiamo i sottospazi topologici (con topologia indotta) $\mathbf{R}^n \setminus \{\mathbf{0}\}$ e S^{n-1} , dove S^{n-1} la (iper)sfera di centro $\mathbf{0}$ e raggio 1. Dimostrare che $\mathbf{R}^n \setminus \{\mathbf{0}\}$ e' omeomorfo a $S^{n-1} \times \mathbf{R}$, dove \mathbf{R} munito della topologia euclidea.
- 4.9) Si consideri lo spazio topologico ${\bf R}^3$, munito di topologia euclidea. Sia $Y\subset {\bf R}^3$ il sottospazio definito da

$$Y:=\{(x,y,z)\in {\bf R}^3 \mid x^2+y^2=1\}$$

denominato cilindro circolare. Si consideri inoltre il sottospazio $S^2 \subset \mathbf{R}^3$ dato dalla sfera di centro $\mathbf{0}$ e raggio 1 e siano $N, S \in S^2$ i punti N = (0, 0, 1) e S = (0, 0, -1) rispettivamente **polo** nord e **polo sud** della sfera. Dimostra che Y e' omeomorfo a $S^2 \setminus \{N, S\}$.

1

 $^{^1}$ Parte della stesura in latex del presente file e' a cura della Prof.ssa Martina Lanini. Ringraziamenti per aver permesso l'utilizzo