Geometria 3 a.a. 2019-20

Docente: Prof.ssa F. Tovena - Codocente: Prof. F. Flamini Foglio n. 3 Esercizi

1

- 3.1) * Siano X e Y spazi topologici finiti, entrambi con topologia discreta od entrambi con topologia banale. Mostra che X è omeomorfo a Y se e solo se card(X)=card(Y).
- 3.2) Sia $f: X \to \mathbf{R}$ una applicazione continua da uno spazio topologico X alla retta reale dotata di topologia euclidea. Mostra che, per ogni $x \in X$ con $f(x) \neq 0$, esiste un aperto U di X contenente x tale che $f(y) \neq 0 \ \forall y \in U$.
- 3.3) Sia X uno spazio topologico; su \mathbf{R} si consideri la topologia euclidea. Data una funzione continua $f: X \to \mathbf{R}$ tale che $f(x) \neq 0 \ \forall x \in X$, mostra che $1/f: X \to \mathbf{R}, x \to 1/f(x)$ è continua.
- 3.4) In uno spazio topologico sono equivalenti:
 - a) la intersezione di ogni famiglia di aperti è un aperto.
 - b) la unione di ogni famiglia di chiusi è un chiuso
 - c) la famiglia dei chiusi è la famiglia degli aperti in una topologia (eventualmente differente da quella assegnata).
- 3.5) * Siano $\mathcal{H} = \{\mathbf{R}, \emptyset\} \cup \{(-\infty, a], \forall a \in \mathbf{R}\} \in \mathcal{U}_{ssa} = \{\mathbf{R}, \emptyset\} \cup \{(-\infty, b), \forall b \in \mathbf{R}\}.$
 - a) Verifica che $\mathcal H$ non è una topologia su $\mathbf R$ ma è base per una topologia $\mathcal T$ su $\mathbf R$.
 - b) Determina la topologia \mathcal{T} generata da \mathcal{H} e confrontala con la topologia \mathcal{U}_{ssa} .
- 3.6) * Siano X e Y spazi topologici, $A \subset X$ e $B \subset Y$ sottoinsiemi. Mostra o contraddici che $A \overset{o}{\times} B = \overset{o}{A} \times \overset{o}{B}$ e $\overline{A \times B} = \overline{A} \times \overline{B}$.
- 3.7) * Sia $X = \mathbf{R}$.
 - (i) Si consideri il sottoinsieme delle parti di X dato da

$$S = \{(-\infty, 0), \{0\}, (0, +\infty)\}.$$

Determinare la topologia $\mathcal{U}_{\mathcal{S}}$ che ha \mathcal{S} come pre-base e stabilire se \mathcal{S} e' base per tale topologia.

- (ii) Fare un esempio di pre-base per una topologia su R che non sia una base.
- 3.8) * Dati due spazi topologici (X, \mathcal{U}_X) e (Y, \mathcal{U}_Y) . Le applicazioni di proiezione

$$\pi_X: X \times Y \to X, \ (x,y) \mapsto x, \quad \pi_Y: X \times Y \to Y, \ (x,y) \mapsto y$$

sono continue, suriettive ed aperte.

- 3.9) * Considera due applicazioni $f: X_1 \to Y_1$ e $g: X_2 \to Y_2$ tra spazi topologici. Considera inoltre l'applicazione $F: X_1 \times X_2 \to Y_1 \times Y_2$ tra gli spazi prodotto definita da $F(x_1, x_2) = (f(x_1), g(x_2)), \forall x_1 \in X_1, x_2 \in X_2$. Mostra che
 - a) F è continua se e solo se f e g sono continue.
 - b) F è aperta se e solo se f e g sono aperte.
 - c) F è omeomorfismo se e solo se f e g sono omeomorfismi.

¹Parte della stesura in latex del presente file e' a cura della Prof.ssa Martina Lanini. Ringraziamenti per aver permesso l'utilizzo