Geometria 3 a.a. 2019-20

Docente: Prof.ssa F. Tovena - Codocente: Prof. F. Flamini Foglio n. 2 Esercizi

1

- 2.1) In \mathbf{R}^2 con topologia euclidea, determina chiusura, interno e frontiera di $S_1 = \{(x, y) \in \mathbf{R}^2 | x > 0\}$ (risp., di $S_2 = \{(x, 0) | 0 \le x \le 1\}$ e di $S_3 = \{(x, y) | 0 < x, y \le 1\}$).
- 2.2) Sia (X,\mathcal{U}) un qualsiasi spazio topologico e sia $Y\subset X$ un suo qualsiasi sottoinsieme. Dimostrare che

$$\stackrel{o}{Y} = X \setminus (\overline{X \setminus Y}).$$

2.3) Sia (X, d) uno spazio metrico. Mostra che la chiusura \overline{S} di un sottoinsieme S è il sottoinsieme $\{x \in X \mid d(x, S) = 0\}$, ove con d(x, S) si denoti la distanza di x da S, definita da

$$d(x,S) = \inf\{d(x,s)| s \in S\}.$$

- 2.4) In un insieme infinito X considera la topologia \mathcal{U}_{cof} dei cofiniti (gli aperti non vuoti sono, per definizione, i sottoinsieme con complementare finito).
 - i) Mostra che lo spazio topologico (X, \mathcal{U}_{cof}) non è metrizzabile.
 - ii) Mostra che ogni aperto non vuoto è denso in X.
 - iii) Supponi che $X = \mathbf{R}$. Determina chiusura, interno e frontiera di [0,1] (e di $\{1\}$).
 - iv) Supponi che $X = \mathbf{R}$. Mostra che $\mathcal{U}_{cof} \subset \mathcal{U}_{eucl}$. (VISTO A LEZIONE)
- 2.5) Considera un sottoinsieme A di uno spazio topologico (X,\mathcal{U}) . Mostra che
 - i) $A \in X \setminus A$ hanno la stessa frontiera. (VISTO A LEZIONE)
 - ii) La frontiera di \overline{A} è contenuta nella frontiera di A.
 - iii) L'interno \mathring{A} di A coincide con il proprio interno (cioè l'interno dell'interno di A coincide con l'interno di A).
 - iv) La frontiera dell'interno \mathring{A} di A è contenuta nella frontiera di A.
 - v) \mathring{A} , $(X \ \stackrel{o}{\setminus} A)$ e la frontiera di A sono sottoinsiemi a due a due disgiunti. La loro unione è X.
 - vi) Se A è denso, allora l'interno $(X \ ^{\circ} A)$ del complementare di A è vuoto.
- 2.6) Mostra che un sottoinsieme di uno spazio topologico è la chiusura di un aperto se e solo se è la chiusura del proprio interno.
- 2.7) In uno spazio topologico, mostra che un sottoinsieme ha frontiera vuota se e solo se è sia aperto che chiuso.
- 2.8) In un insieme X sia assegnata una funzione $g: \mathcal{P}(X) \to \mathcal{P}(X)$ con le proprietà che
 - a) $q(\emptyset) = \emptyset$;
 - b) $S \subseteq g(S)$;
 - c) g(g(S)) = g(S);
 - d) $g(S_1 \cup S_2) = g(S_1) \cup g(S_2)$

per ogni sottoinsieme S, S_1 , S_2 di X. Mostra che esiste una unica topologia su X tale che g(S) coincida con la chiusura di S per ogni sottoinsieme S di X.

¹Parte della stesura in latex del presente file e' a cura della Prof.ssa Martina Lanini. Ringraziamenti per aver permesso l'utilizzo

- 2.9) Sia $f:(X,\mathcal{U}_X)\to (Y,\mathcal{U}_Y)$ una applicazione continua tra spazi topologici; mostra che, se \mathcal{U}_Y^* è una topologia su Y meno fine di \mathcal{U}_Y , allora anche $f:(X,\mathcal{U}_X)\to (Y,\mathcal{U}_Y^*)$ è continua.
 - È vero che, se \mathcal{U}_X^* è una topologia su X meno fine di \mathcal{U}_X , allora anche $f:(X,\mathcal{U}_X^*)\to (Y,\mathcal{U}_Y)$ è continua?
 - Deduci che l'applicazione identica $id_X(X,\mathcal{U}) \to (X,\mathcal{U}')$ è continua se e solo se la topologia \mathcal{U}' nel codominio è meno fine della topologia \mathcal{U} nel dominio.
- 2.10) Siano X e Y insiemi non vuoti.
 - a) Su X è assegnata la topologia concreta \mathcal{U}_X . Su Y è assegnata la topologia cofinita $\mathcal{U}_{Y,cof}$. Mostra che le applicazioni continue $(X,\mathcal{U}_X) \to (Y,\mathcal{U}_{Y,cof})$ sono tutte e sole le applicazioni costanti.
 - b) Su X è assegnata la topologia discreta $\mathcal{U}_{X,discr}$. Su Y è assegnata una topologia \mathcal{U}_Y . Mostra che tutte le applicazioni $(X,\mathcal{U}_{X,discr}) \to (Y,\mathcal{U}_Y)$ sono continue.
- 2.11) Siano X e Y insiemi infiniti e siano $\mathcal{U}_{X,cof}$ e $\mathcal{U}_{Y,cof}$ le rispettive topologie cofinite.
 - Dimostrare che un'applicazione $f:(X,\mathcal{U}_{X,cof})\longrightarrow (Y,\mathcal{U}_{Y,cof})$ e' continua se e solo se o f e' costante oppure, per ogni $y\in Im(f)\subseteq Y,\, f^{-1}(y)$ e' un insieme finito
- 2.12) Sia $f:(X,\mathcal{U}_X)\to (Y,\mathcal{U}_Y)$ una applicazione tra spazi topologici. Esibire un esempio per cui:
 - (a) f e' continua, aperta e chiusa;
 - (b) e' continua, non aperta e non chiusa
 - (c) non e' continua ma e' aperta ed e' chiusa
 - (d) e' continua, non e' aperta ma e' chiusa
 - (e) e' continua, e' aperta ma non e' chiusa.
- 2.13) Mostra che una applicazione $f:X\to Y$ tra spazi topologici è un omeomorfismo se e solo se verifica entrambe le seguenti proprietà:
 - a) f è biiettiva;
 - b) un sottoinsieme S è chiuso in X se e solo se f(S) è chiuso in Y.