Geometria 3 a.a. 2019-20

Docente: Prof.ssa F. Tovena - Codocente: Prof. F. Flamini Foglio n. 2 Esercizi - SVOLGIMENTI

- 2.1) In \mathbf{R}^2 con topologia euclidea, determina chiusura, interno e frontiera di $S_1 = \{(x, y) \in \mathbf{R}^2 | x > 0\}$ (risp., di $S_2 = \{(x, 0) | 0 \le x \le 1\}$ e di $S_3 = \{(x, y) | 0 < x, y \le 1\}$).
- 2.2) Sia (X,\mathcal{U}) un qualsiasi spazio topologico e sia $Y\subset X$ un suo qualsiasi sottoinsieme. Dimostrare che

$$\stackrel{o}{Y} = X \setminus (\overline{X \setminus Y}).$$

2.3) Sia (X, d) uno spazio metrico. Mostra che la chiusura \overline{S} di un sottoinsieme S è il sottoinsieme $\{x \in X \mid d(x, S) = 0\}$, ove con d(x, S) si denoti la distanza di x da S, definita da

$$d(x,S) = \inf\{d(x,s)| s \in S\}.$$

- 2.4) In un insieme infinito X considera la topologia \mathcal{U}_{cof} dei cofiniti (gli aperti non vuoti sono, per definizione, i sottoinsieme con complementare finito).
 - i) Mostra che lo spazio topologico (X, \mathcal{U}_{cof}) non è metrizzabile.
 - ii) Mostra che ogni aperto non vuoto è denso in X.
 - iii) Supponi che $X = \mathbf{R}$. Determina chiusura, interno e frontiera di [0,1] (e di $\{1\}$).
 - iv) Supponi che $X = \mathbf{R}$. Mostra che $\mathcal{U}_{cof} \subset \mathcal{U}_{eucl}$. (VISTO A LEZIONE)
- 2.5) Considera un sottoinsieme A di uno spazio topologico (X,\mathcal{U}) . Mostra che
 - i) $A \in X \setminus A$ hanno la stessa frontiera. (**VISTO A LEZIONE**)
 - ii) La frontiera di \overline{A} è contenuta nella frontiera di A.
 - iii) L'interno \mathring{A} di A coincide con il proprio interno (cioè l'interno dell'interno di A coincide con l'interno di A).
 - iv) La frontiera dell'interno \mathring{A} di A è contenuta nella frontiera di A.
 - v) \mathring{A} , $(X \ \stackrel{o}{\setminus} A)$ e la frontiera di A sono sottoinsiemi a due a due disgiunti. La loro unione è X.
 - vi) Se A è denso, allora l'interno $(X \ ^{\circ} A)$ del complementare di A è vuoto.
- 2.6) Mostra che un sottoinsieme di uno spazio topologico è la chiusura di un aperto se e solo se è la chiusura del proprio interno.
- 2.7) In uno spazio topologico, mostra che un sottoinsieme ha frontiera vuota se e solo se è sia aperto che chiuso.
- 2.8) In un insieme X sia assegnata una funzione $g: \mathcal{P}(X) \to \mathcal{P}(X)$ con le proprietà che
 - a) $q(\emptyset) = \emptyset$;
 - b) $S \subseteq g(S)$;
 - c) g(g(S)) = g(S);
 - d) $g(S_1 \cup S_2) = g(S_1) \cup g(S_2)$

per ogni sottoinsieme S, S_1 , S_2 di X. Mostra che esiste una unica topologia su X tale che g(S) coincida con la chiusura di S per ogni sottoinsieme S di X.

1

 $^{^{1}}$ Parte della stesura in latex del presente file e' a cura della Prof.ssa Martina Lanini. Ringraziamenti per aver permesso l'utilizzo

2.9) Sia $f:(X,\mathcal{U}_X)\to (Y,\mathcal{U}_Y)$ una applicazione continua tra spazi topologici; mostra che, se \mathcal{U}_Y^* è una topologia su Y meno fine di \mathcal{U}_Y , allora anche $f:(X,\mathcal{U}_X)\to (Y,\mathcal{U}_Y^*)$ è continua.

È vero che, se \mathcal{U}_X^* è una topologia su X meno fine di \mathcal{U}_X , allora anche $f:(X,\mathcal{U}_X^*)\to (Y,\mathcal{U}_Y)$ è continua?

Deduci che l'applicazione identica $id_X(X,\mathcal{U}) \to (X,\mathcal{U}')$ è continua se e solo se la topologia \mathcal{U}' nel codominio è meno fine della topologia \mathcal{U} nel dominio.

- 2.10) Siano X e Y insiemi non vuoti.
 - a) Su X è assegnata la topologia concreta \mathcal{U}_X . Su Y è assegnata la topologia cofinita $\mathcal{U}_{Y,cof}$. Mostra che le applicazioni continue $(X,\mathcal{U}_X) \to (Y,\mathcal{U}_{Y,cof})$ sono tutte e sole le applicazioni costanti.
 - b) Su X è assegnata la topologia discreta $\mathcal{U}_{X,discr}$. Su Y è assegnata una topologia \mathcal{U}_Y . Mostra che tutte le applicazioni $(X,\mathcal{U}_{X,discr}) \to (Y,\mathcal{U}_Y)$ sono continue.
- 2.11) Siano X e Y insiemi infiniti e siano $\mathcal{U}_{X,cof}$ e $\mathcal{U}_{Y,cof}$ le rispettive topologie cofinite.

Dimostrare che un'applicazione $f:(X,\mathcal{U}_{X,cof})\longrightarrow (Y,\mathcal{U}_{Y,cof})$ e' continua se e solo se o f e' costante oppure, per ogni $y\in Im(f)\subseteq Y,\, f^{-1}(y)$ e' un insieme finito

- 2.12) Sia $f:(X,\mathcal{U}_X)\to (Y,\mathcal{U}_Y)$ una applicazione tra spazi topologici. Esibire un esempio per cui:
 - (a) f e' continua, aperta e chiusa;
 - (b) e' continua, non aperta e non chiusa
 - (c) non e' continua ma e' aperta ed e' chiusa
 - (d) e' continua, non e' aperta ma e' chiusa
 - (e) e' continua, e' aperta ma non e' chiusa.
- 2.13) Mostra che una applicazione $f:X\to Y$ tra spazi topologici è un omeomorfismo se e solo se verifica entrambe le seguenti proprietà:
 - a) f è biiettiva;
 - b) un sottoinsieme S è chiuso in X se e solo se f(S) è chiuso in Y.

Soluzioni

2.1) • Consideriamo S_1 .

Prima di tutto facciamo vedere che S_1 è aperto (e dunque coincide con il suo interno). Chiaramente, $\stackrel{\circ}{S_1} \subseteq S_1$, pertanto dobbiamo solo mostrare l'altra inclusione. Sia dunque $(x_0, y_0) \in S_1$. Allora $x_0 > 0$ e

$$B_{x_0}((x_0, y_0)) = \{(x, y) \in \mathbf{R}^2 \mid (x - x_0)^2 + (y - y_0)^2 < x_0^2\},\$$

per definizione contiene (x_0, y_0) ed è interamente contenuto in S_1 :

$$(x-x_0)^2 + (y-y_0)^2 < x_0^2 \Rightarrow \underbrace{-2x_0}_{<0} x + \underbrace{x^2 + (y-y_0)^2}_{>0} < 0 \Rightarrow x > 0.$$

Pertanto, ogni punto di S_1 e' interno a S_1 , i.e. $S_1 \subseteq \overset{o}{S_1}$, da cui $S_1 = \overset{o}{S_1}$.

Facciamo ora vedere che $A:=\{(x,y)\in\mathbf{R^2}\mid x\geq 0\}$ è la chiusura di $S_1.$

Con argomento analogo a quello usato per mostrare che S_1 è aperto, facilmente si vede che il complementare di A è un aperto, e dunque A è chiuso che contiene S_1 , cosi' $\overline{S}_1 \subseteq A$.

Ora dobbiamo far vedere che A e' il piu' piccolo chiuso che contiene S_1 . Per fare questo, facciamo vedere che tutti i punti di A sono di aderenza per S_1 , cosicche' $A \subseteq \overline{S}_1$ ed avremo concluso per doppia inclusione.

Ovviamente $S_1 \subseteq \overline{S_1}$, i.e. i punti di S_1 sono aderenti a S_1 . Consideriamo ora un punto $(0,y) \in A \setminus S_1$ e sia $\epsilon > 0$ un qualsiasi numero reale. Chiaramente $B_{\epsilon}((0,y)) \cap S_1 \neq \emptyset$ (contiene, ad esempio, il punto $(\frac{\epsilon}{2},y) \in S_1$ in quanto $\epsilon > 0$).

Infine, per determinare la frontiera di S_1 , ricordiamo che per ogni sottoinsieme B di uno spazio topologico X abbiamo $\partial B = \overline{B} \setminus \overset{o}{B}$. Allora nel nostro caso

$$\partial S_1 = \overline{S_1} \setminus S_1 = \{(0, y) \mid y \in \mathbf{R}\}.$$

• Per quanto riguarda S_2 , notiamo che $\overline{S_2} = S_2$. Infatti

$$S_2 = Q_1 \cap K_1,$$

dove Q_1 e' il quadrato chiuso $[0,1] \times [0,1]$ e K_1 e' il chiuso dato da $\{(x,y) \in \mathbf{R}^2 | y = 0\}$. Il fatto che K_1 sia chiuso discende dai seguenti fatti:

$$\pi_y: \mathbf{R}^2 \to \mathbf{R}, \ (x,y) \to y$$

e' continua, $K_1 = \pi_y^{-1}(0)$ e $\{0\}$ e' chiuso di ${\bf R}$ perche' Hausdorff.

Abbiamo inoltre $\stackrel{o}{S_2} = \emptyset$, visto che una base per gli aperti della topologia euclidea di \mathbf{R}^2 sono i dischi di centro dato e raggio positivo.

Pertanto $\partial(S_2) = S_2$.

• Infine

$$\overline{S_3} = \{(x,y) | 0 \le x, y \le 1\}, \quad \mathring{S_3} = \{(x,y) | 0 < x, y < 1\},$$

$$\partial(S_3) = \{(x,y) | x \in \{0,1\} \land 0 \le y \le 1\} \cup \{(x,y) | 0 \le x \le 1 \land y \in \{0,1\}\}$$

2.2) Per brevita', denotiamo $Y^c = X \setminus Y$.

Per ogni $Y\subseteq X$ si ha $Y^c\subseteq \overline{Y^c}$ e dunque $\overline{Y^{c^c}}\subseteq Y$. Ma $\overline{Y^{c^c}}$ e' un aperto, visto che e' complementare del chiuso $\overline{Y^c}$, contenuto in Y. Pertanto $\overline{Y^{c^c}}\subseteq \stackrel{o}{Y}$.

D'altra parte, $\overset{o}{Y} \subseteq Y$, pertanto $Y^c \subseteq \overset{o}{Y}^c$, dove $\overset{o}{Y}^c$ e' un chiuso complementare dell'aperto $\overset{o}{Y}^c$. Quindi $\overline{Y^c} \subseteq \overset{o}{Y}^c$ e dunque $\overset{o}{Y} \subseteq \overline{Y^c}^c$.

2.3) Denotiamo $A := \{x \in X \mid d(x, S) = 0\}.$

Sia $x \in \overline{S}$. Allora per ogni $\varepsilon > 0$ esiste un $y \in B_{\varepsilon}(x)$ tale che $y \in S$ e dunque $d(x, S) \le d(x, y) < \varepsilon$. Poiché ε può essere piccolo a piacere ne deduciamo d(x, S) = 0 e dunque $x \in A$.

Sia $x \notin \overline{S}$; pertanto x non e' aderente a S. Esiste dunque un $\epsilon > 0$ reale per cui $B_{\varepsilon}(x) \cap S = \emptyset$. Ma allora $d(x, S) \ge \epsilon > 0$: Dunque $x \notin A$.

2.4) i) Ricordiamo che a lezione avete visto che se consideriamo uno spazio metrico con la topologia indotta dalla distanza, allora esso è uno spazio di Hausdorff (ovvero uno spazio tale che per ogni coppia x, Y di punti distinti esistono aperti U_X e U_y tali che $U_x \cap U_y = \emptyset$).

Questo non è il caso della topologia \mathcal{U}_{cof} : consideriamo due punti distinti $x, y \in X$ e supponiamo che $U, V \in \mathcal{U}_{cof}$ con $x \in U$ e $y \in V$ siano tali che $U \cap V = \emptyset$. Per definizione di topologia cofinita, esistono due insiemi finiti $S_1, S_2 \subseteq X$ tali che $U = X \setminus S_1$ e $V = X \setminus S_2$ e quindi

$$X = X \setminus (U \cap V) = X \setminus ((X \setminus S_1) \cap (X \setminus \cap S_2)) = S_1 \cup S_2$$

ma questo è un assurdo poiché l'insieme a destra ha un numero finito di elementi.

- ii) Sia $U \subseteq X$ aperto. Allora esiste un insieme finito $S_1 \subset X$ tale che $U = X \setminus S_1$. Ora $x \in X$ è un punto di chiusura di U se e solo se per ogni aperto $V \subseteq X$ con $x \in V$ vale $U \cap V \neq \emptyset$. Poiché V è aperto, esiste un insieme finito $S_2 \subset X$ tale che $V = X \setminus S_2$. Allora $X \setminus (V \cap U)$ per lo stesso ragionamento del punto precedente ha un numero finito di elementi e quindi $\#(U \cap V) = \infty$ e dunque non è vuoto.
- iii) Un punto di chiusura di [1,0] è un $x \in \mathbf{R}$ tale che per ogni insieme finito $S \subseteq \mathbf{R}$ che non lo contiene vale $(\mathbf{R} \setminus S) \cap [0,1] \neq \emptyset$. Vediamo che questo vale per ogni numero reale e concludiamo $\overline{[0,1]} = \mathbf{R}$. L'interno è vuoto poiché [1,0] non contiene sottoinsiemi aperti. Ne segue che la frontiera di [1,0] è l'intera retta reale.

L'insieme $\{1\}$ è finito e dunque è chiuso e coincide con la sua chiusura. L'interno è vuoto poiché non vi è nessun aperto in $\{1\}$ e dunque tanto meno un aperto contenente 1. Ne deduciamo che la frontiera è $\partial\{1\} = \overline{\{1\}} \setminus \{1\} = \{1\}$.

- (iv) Sia $U \in \mathcal{U}_{cof}$. Allora esiste un insieme finito $S \subseteq \mathbf{R}$ tale che $U = \mathbf{R} \setminus S$. Ora notiamo che un punto x è chiuso in una topologia indotta da una metrica d su X (quindi in particolare quella euclidea): se r ed $x_0 \in X$ sono tali che $x \in B_r(x_0)$ allora banalmente $B_r(x_0) \cap \{x\} \neq \emptyset$. Poiché l'unione finita di chiusi è un chiuso, ne deduciamo che $\mathbf{R} \setminus S$ è aperto in \mathcal{U}_{eucl} .
- 2.5) A lezione abbiamo definito $\partial A = \overline{A} \cap \overline{(X \setminus A)}$ e poi abbiamo dimostrato l'equivalenza con $\partial A = \overline{A} \setminus \mathring{A}$.
 - i) Dalla definizione data a lezione $\partial(X \setminus A) = \partial A$
 - ii) $\partial \overline{A} = \overline{\overline{A}} \cap \overline{(X \setminus \overline{A})} = \overline{A} \cap \overline{(X \setminus \overline{A})}$. Ora la tesi segue poiché se $B \subseteq C$ allora $\overline{B} \subseteq \overline{C}$. Pertanto, dato che $A \subseteq \overline{A}$ e dunque $X \setminus \overline{A} \subseteq X \setminus A$, abbiamo

$$\partial \overline{A} = \overline{A} \cap \overline{(X \setminus \overline{A})} \subseteq \overline{A} \cap \overline{(X \setminus A)} = \partial A.$$

- (iii) Ricordiamo che un insieme coi
' $B_{\frac{\delta}{2}}((0,y))$ e aperto. Poiché l'interno di un insieme è aperto deve valere
 $\mathring{A}=\mathring{A}.$
- (iv) Nel punto precedente abbiamo dimostrato che $\overset{o}{A}=$ $\mathring{A}.$ Allora, poiché $\overline{\mathring{A}}\subseteq \overline{A},$ otteniamo

$$\partial \mathring{A} = \overline{\mathring{A}} \setminus \overset{o}{\mathring{A}} = \overline{\mathring{A}} \setminus \mathring{A} \subseteq \overline{A} \setminus \mathring{A} = \partial A.$$

(v)
$$\partial A = \overline{A} \setminus \mathring{A} = \overline{A} \cap (X \setminus \mathring{A}) \quad \Rightarrow \quad \partial A \cap \mathring{A} = (\overline{A} \cap (X \setminus \mathring{A})) \cap \mathring{A} = \emptyset,$$
$$(X \setminus \mathring{A}) \subseteq X \setminus A, \ \mathring{A} \subseteq A \quad \Rightarrow \quad (X \setminus \mathring{A}) \cap \mathring{A} \subseteq (X \setminus A) \cap A = \emptyset.$$

Per dimostrare che $\partial A \cap (X \ \stackrel{\circ}{\setminus} A) = \emptyset$ dimostriamo che $\overline{A} \cap X \ \stackrel{\circ}{\setminus} A = \emptyset$. Sia $x \in X \ \stackrel{\circ}{\setminus} A$, allora esiste un U aperto tale che $x \in U \subseteq X \setminus A$, ma allora $U \cap A = \emptyset$ e quindi $x \notin \overline{A}$, da cui la tesi.

Infine, $X = (X \setminus A) \cup A = \overline{(X \setminus A)} \cup \overline{A} = (X \stackrel{\circ}{\setminus} A) \cup \partial(X \setminus A) \cup \partial A \cup \mathring{A} = (X \stackrel{\circ}{\setminus} A) \cup \partial A \cup \mathring{A}$ (dove nell'ultima uguaglianza abbiamo usato il punto (i) di questo esercizio).

- 2.6) (\Rightarrow) Supponiamo che vi sia un aperto $U \in \mathcal{U}$ tale che $A = \overline{U}$. Allora poiché $\underline{U} \subset A$ ed \underline{U} è aperto per ipotesi, abbiamo che $\underline{U} \subseteq \mathring{A}$. Prendendo le chiusure otteniamo $\overline{U} \subseteq \mathring{A}$, cioè $A \subseteq \mathring{A}$. D'altronde, $\mathring{A} \subseteq A$ e quindi $\mathring{A} \subseteq \overline{A} = A$.
 - (\Leftarrow) Questa implicazione è ovvia, poiché per ogni sottoinsieme $A\subseteq X$ il suo interno $\overset{o}{A}$ è per definizione un aperto della topologia e pertanto $\overset{o}{A}=A$ è banalmente la chiusura di un aperto.

- 2.7) (\Rightarrow) Per ipotesi abbiamo $\emptyset = \partial S = \overline{S} \setminus \overset{o}{S}$, da cui $\overline{S} = \overset{o}{S}$. Inoltre, per definizione $\overset{o}{S} \subseteq S \subseteq \overline{S}$. Ne deduciamo che $\overset{o}{S} = S = \overline{S}$ e quindi S è sia chiuso che aperto.
 - (\Leftarrow) Supponiamo che $S\subseteq X$ sia sia aperto che chiuso. Allora poiché S è chiuso, coincide con la chiusura. D'altronde, essendo S aperto coincide anche con il suo interno. Ma allora $\partial S = \overline{S} \setminus \overset{o}{S} = S \setminus S = \emptyset$.
- 2.8) Si consideri l'insieme

$$\mathcal{G} := \{ A \subseteq X \mid g(C) = C \}.$$

Verifichiamo che i suoi elementi soddisfano gli assiomi dei chiusi \mathcal{C} di una topologia su X, ovvero

- (CH1) $X, \emptyset \in \mathcal{C};$
- (CH2) se $A_i \in \mathcal{C}$ per ogni $i \in I$, allora $\bigcap_i A_i \in \mathcal{C}$;
- (CH3) se $A_1, \ldots, A_r \in \mathcal{C}$, allora $A_1 \cup \ldots \cup A_r \in \mathcal{C}$.
 - (CH1) vale poiché per (b) $X \subseteq g(X)$, da cui g(X) = X, e inoltre $g(\emptyset) = \emptyset$ per (a).

Siano ora $C_i \in \mathcal{G}$ per $i \in I$. Per dimostrare che (CH2) è soddisfatto notiamo che per (b) vale $\bigcap_i C_i \subseteq g(\bigcap_i C_i)$, quindi dobbiamo solo dimostrare l'inclusione opposta. Per farlo osserviamo che per ogni $j \in I$ vale $C_j = C_j \cup \bigcap_i C_i$ e quindi per (d) abbiamo $g(C_j) = g(C_j) \cup g(\bigcap_i C_i)$, ma poiché $C_j \in \mathcal{G}$, vale $C_j = C_j \cup g(\bigcap_i C_i)$, da cui $g(\bigcap_i C_i) \subseteq C_j$. Poiché questo vale per ogni $j \in I$, ne segue $g(\bigcap_i C_i) \subseteq \bigcap_i C_j$.

Infine, (CH3) segue rapidamente da (d) per induzione su r.

Questa scelta di chiusi induce univocamente una struttura di spazio topologico su X, che è l'unica topologia possibile tale che g(S) coincida con la chiusura di S per ogni $S \in \mathcal{P}(\mathcal{X})$.

2.9) Ricordiamo che una topologia \mathcal{U}_Y^* su Y è detta meno fine di un'altra topologia \mathcal{U}_Y su Y se $\mathcal{U}_Y^* \subseteq \mathcal{U}_Y$.

Ricordiamo inoltre che $f:(X,\mathcal{U}_X)\to (Y,\mathcal{U}_Y)$ è detta continua se per ogni $U\in\mathcal{U}_Y$ vale che $f^{-1}(U)\in\mathcal{U}_X$.

Pertanto se f è continua e $\mathcal{U}_Y^* \subseteq \mathcal{U}_Y$, allora per ogni $U \in \mathcal{U}_Y^* \subseteq \mathcal{U}_Y$ vale $f^{-1}(U) \in \mathcal{U}_X$.

Se f è continua e \mathcal{U}_X^* è meno fine di \mathcal{U}_X , allora non necessariamente $f:(X,\mathcal{U}_X^*)\to (Y,\mathcal{U}_Y)$ è continua: basti pensare, ad esempio, all'identità

$$id: (X, \mathcal{U}_X) \to (X, \mathcal{U}_X)$$

che è chiaramente continua, ma se \mathcal{U}_X^* è strettamente contenuto in \mathcal{U}_X vi sarà un aperto $U \in \mathcal{U}_X \setminus \mathcal{U}_X^*$ con id⁻¹(U) = $U \notin \mathcal{U}_X^*$ e dunque la funzione

$$id: (X, \mathcal{U}_X^*) \to (X, \mathcal{U}_X)$$

non è continua.

L'applicazione $\mathrm{id}_X:(X,\mathcal{U})\to (X,\mathcal{U}')$ è continua se e solo se per ogni aperto $U\in\mathcal{U}'$ vale $(\mathrm{id}_X)^{-1}(U)=U\in\subseteq\mathcal{U}$, ovvero $\mathcal{U}'\subseteq\mathcal{U}$.

2.10) a) Ricordiamo che la topologia concreta (o banale) su X è la topologia definita come $\mathcal{U}_X = \{\emptyset, X\}$. Notiamo che gli unici chiusi di X sono dunque X e \emptyset .

Consideriamo una funzione costante $f:(X,\mathcal{U}_X)\to (Y,\mathcal{U}_{Y,cof})$, ovvero tale che esiste un $\overline{y}\in Y$ con $f(x)=\overline{y}$ per ogni $x\in X$. Vogliamo mostrare che è continua. Sia dunque $U\in \mathcal{U}_{Y,cof}$, allora esiste un $S\subseteq Y$ con $\#S<\infty$ e $U=Y\setminus S$. Osserviamo che se $\overline{y}\in S$ allora $\overline{y}\notin U$ e quindi $f^{-1}(U)=\emptyset$, mentre se $\overline{y}\notin S$ abbiamo $f^{-1}(U)=X$. Vediamo che una funzione costante è sempre continua, indipendentemente dalle topologie di cui gli spazi sono dotati.

Viceversa, supponiamo che $f:(X,\mathcal{U}_X)\to (Y,\mathcal{U}_{Y,cof})$ sia continua. Utilizziamo la caratterizzazione di funzioni continue in termini dei chiusi: f continua se e solo se la preimmagine di ogni chiuso è chiusa a sua volta. Sia $y\in Y$. Allora $\{y\}\in \mathcal{U}_{Y,cof}$ e $f^1(\{y\})=X$ o $f^{-1}(\{y\})=\emptyset$. Chiaramente, $f^{-1}(\{y\})=X$ significa che f(x)=y per ogni $x\in X$ e pertanto può avvenire per al più un y. Inoltre è evidente che non possa essere meno di uno, altrimenti l'immagine sarebbe vuota, mentre $\#Y\geq 1$.

b)Sia $f:(X,\mathcal{U}_{X,discr}) \to (Y,\mathcal{U}_Y)$ una funzione. Osserviamo che ogni sottoinsieme di X è aperto, poiché per definizione di topologia discreta ogni punto è aperto e unioni arbitrarie di aperti sono aperte. Questa osservazione è ciò che ci serve per concludere: sia $U \in \mathcal{U}_Y$ allora banalmente $f^{-1}(U) \subseteq X$ e per quanto osservato è aperto.

2.11) (\Leftarrow) Se f e' costante abbiamo visto nell'esercizio precedente che essa e' sempre continua.

Sia dunque f non costante. Un qualsiasi chiuso di Y e' della forma $C = \{y_1, \ldots, y_n\}$. Se $y_i \notin Im(f)$ allora $f^{-1}(y_i) = \emptyset$ che e' chiuso in X; se invece $y_i \in Im(f)$ allora per ipotesi $f^{-1}(y_i)$ e' un insieme finito di X, quindi chiuso di X.

Poiche' ogni chiuso C di Y e' costituito da un numero finito di punti, e poiche' l'unione di un numero finito di chiusi di X e' un chiuso di X, si ha che f e' continua in ogni caso.

 (\Rightarrow) Sia $y \in Im(f) \subseteq Y$; allora $\{y\}$ e' un chiuso di Y. Poiche' f e' continua, allora $f^{-1}(y)$ e' un chiuso di X.

Se $f^{-1}(y)$ e' un insieme infinito, essendo chiuso in X, allora necessariamente $f^{-1}(y) = X$ e dunque f e' necessariamente costante.

Se invece f e' non costante, per ogni $y \in Im(f)$ si deve avere che $f^{-1}(y)$ e' un insieme finito, per la continuita' di f.

- 2.12) (a) Si consideri $X = Y = \mathbf{R}$ e $\mathcal{U}_{\mathcal{X}} = \mathcal{U}_{\mathcal{Y}} = \mathcal{U}_{\text{Eucl}}$ e basta prendere $f = id_{\mathbf{R}}$ oppure $f(x) = x^3$
 - (b) Si consideri $X = Y = \mathbf{R}$, $\mathcal{U}_{\mathcal{X}} = \mathcal{U}_{\text{Eucl}}$, $\mathcal{U}_{\mathcal{Y}} = \mathcal{U}_{\text{Cof}}$ e basta prendere $f = id_{\mathbf{R}}$.
 - (c) Si consideri $X = Y = \mathbf{R}$, $\mathcal{U}_{\mathcal{Y}} = \mathcal{U}_{\text{Eucl}}$, $\mathcal{U}_{\mathcal{X}} = \mathcal{U}_{\text{Cof}}$ e basta prendere $f = id_{\mathbf{R}}$.
 - (d) Si consideri $X = Y = \mathbf{R}$ e $\mathcal{U}_{\mathcal{X}} = \mathcal{U}_{\mathcal{Y}} = \mathcal{U}_{\text{Eucl}}$ e basta prendereuna qualsiasi applicazione costante $f(x) = c, \forall x \in \mathbf{R}$.
 - (e) Si consideri $X = \mathbb{R}^2$, $Y = \mathbb{R}$, $\mathcal{U}_{\mathcal{X}} = \mathcal{U}_{\mathbb{R}^2, \text{Eucl}}$, $\mathcal{U}_{\mathcal{Y}} = \mathcal{U}_{\mathbb{R}, \text{Eucl}}$ e prendiamo

$$f = \pi_x : \mathbf{R}^2 \to \mathbf{R}, \ (x, y) \to x$$

la proiezione sulla prima coordinata.

f e' continua, visto che $f^{-1}(a,b) = (a,b) \times \mathbf{R}$ che e' manifestamente aperto in $(\mathbf{R}^2, \mathcal{U}_{\mathbf{R}^2, \text{Eucl}})$ come si puo' dimostrare similmente a quanto fatto nell'esercizio 1 per S_1 .

Gli aperti di $(\mathbf{R}^2, \mathcal{U}_{\mathbf{R}^2, \text{Eucl}})$ sono unioni di dischi aperti della forma $B_{\epsilon}((x_0, y_0))$. Osserviamo ora che

$$f(B_{\epsilon}((x_0, y_0))) = (x_0 - \epsilon, x_0 + \epsilon).$$

Poiche' l'unione di aperti e' un aperto, si ha dunque che f e' aperta.

Dimostriamo che f non e' chiusa. Dobbiamo esibire un chiuso di $(\mathbf{R}^2, \mathcal{U}_{\mathbf{R}^2, \text{Eucl}})$ che non si proietta su un chiuso di $(\mathbf{R}, \mathcal{U}_{\mathbf{R}, \text{Eucl}})$. Consideriamo la funzione g(x, y) := xy - 1; essa e' continua da $(\mathbf{R}^2, \mathcal{U}_{\mathbf{R}^2, \text{Eucl}})$ a $(\mathbf{R}, \mathcal{U}_{\mathbf{R}, \text{Eucl}})$ perche' polinomiale. Sia $K := g^{-1}(0) \subset \mathbf{R}^2$; insiemisticamente K e' liperbole equilatera nel piano cartesiano. Poiche' $Y = \mathbf{R}$ con topologia euclidea e' Hausdorff, $\{0\}$ e' un chiuso di Y e duinque, per la continuita' di g, K e' un chiuso di $X = \mathbf{R}^2$ con la sua topologia euclidea. Proiettando K sull'asse delle ascisse si ottiene

$$\pi_x(K) = \mathbf{R} \setminus \{0\} = (-\infty, 0) \cup (0, +\infty)$$

che e' un aperto ma non un chiuso nella topologia euclidea di $Y = \mathbf{R}$.

- 2.13) Ricordiamo che una funzione f tra due spazi topologici è un omeomorfismo se è una funzione continua con inversa continua.
 - (\Rightarrow) Sia f un omeomorfismo. Poiché deve ammettere inversa, a livello insiemistico deve essere invertibile e deve dunque essere biettiva, da cui a). Inoltre, poiché f^{-1} è continua, se $S\subseteq X$ è chiuso $(f^{-1})^{-1}(S)=f(S)$ deve essere chiuso. D'altronde, se f(S) è chiuso dalla continuità di f segue che $f^{-1}(f(S))=S$ è chiuso. Abbiamo dunque dimostrato che vale anche b).
 - (\Leftarrow) Se f è biunivoca, ne esiste un'inversa (a livello insiemistico). Dobbiamo ora usare b) per far vedere la continuità di f ed f^{-1} . Sia $A \subseteq Y$ un chiuso. Allora $A = f(f^{-1}(A))$ e questo per b) implica che $f^{-1}(A)$ sia a sua volta chiuso, ovvero che f è continua. Sia ora $S \subseteq X$ chiuso. Allora $(f^{-1})^{-1}(S) = f(S)$ è chiuso per b), da cui segue che f^{-1} è anch'essa continua.