Università degli Studi di Roma Tor Vergata. Laurea Triennale in Matematica.

Geometria 3 a.a. 2019-20 Docente: Prof.ssa F. Tovena - Codocente: Prof. F. Flamini Foglio n. 1 Esercizi

- 1.1) Siano X un insieme e $d: X \times X \to \mathbf{R}$ una funzione assegnata. Mostra che la funzione d'è una distanza su X se e solo se valgono le proprietà:
 - i) per ogni $x, y \in X$: d(x, y) = 0 se e solo se x = y;
 - ii) $d(x,y) + d(x,z) \ge d(y,z)$ per ogni $x, y, z \in X$.
- 1.2) a) Verifica che $d_1: \mathbf{R}^n \times \mathbf{R}^n \to \mathbf{R}$ definita da

$$d_1(\vec{x}, \vec{y}) := \sum_{i=1}^n |x_i - y_i|$$

è una distanza.

- b) Disegna $B_1^{d_1}(\vec{0})$ per n=1 e n=2.
- 1.3) Stesse domande dell'esercizio precedente, con $d_2: \mathbf{R}^n \times \mathbf{R}^n \to \mathbf{R}$ definita da

$$d_2(\vec{x}, \vec{y}) := \max_{1 \le i \le n} |x_i - y_i|, \quad \forall \vec{x}, \vec{y} \in \mathbf{R}^n.$$

- 1.4) Verifica che le metriche d_1 e d_2 degli esercizi precedenti sono metriche topologicamente equivalenti. Verificare inoltre che esse sono entrambe equivalenti alla metrica euclidea su \mathbf{R}^n
- 1.5) a) Controlla se $d(x,y) := (x-y)^2, \forall x,y \in \mathbb{R}$ è una metrica su \mathbb{R} .
 - b) Controlla se $d(\vec{x}, \vec{y}) := \min_{1 \le i \le n} |x_i y_i|, \quad \forall \vec{x}, \vec{y} \in \mathbf{R}^n$ e' una metrica su \mathbb{R}^n .
- 1.6) Considera uno spazio metrico (X,d). Controlla se le seguenti funzioni sono distanze su X:
 - a) fissato $r \in \mathbf{R}$, r > 0, $d_r(x, y) := rd(x, y)$, $\forall x, y \in X$.
 - b) $d''(x,y) := min\{d(x,y),1\}, \forall x,y \in X.$

In caso di risposta affermativa, verifica che sono metriche topologicamente equivalenti alla metrica d.

- 1.7) Considera lo spazio metrico \mathbf{R} con metrica euclidea. Mostra che, per ogni $a \in \mathbf{R}$, le semirette $(-\infty, a)$ e $(a, +\infty)$ sono aperte.
- 1.8) a) (X,d) spazio metrico discreto. Mostra che ogni sottoinsieme di X è aperto. (svolto a lezione)
 - b) X insieme finito, d metrica su X. Mostra che ogni sottoinsieme di X è aperto (e dunque d ha gli stessi aperti della metrica discreta).
- 1.9) $(X,d), (Y,d_Y)$ spazi metrici.

 - (a) Posto $d' := \frac{d}{1+d}$, mostra che d' è una distanza su X. (svolto a lezione) (b) Mostra che una funzione $f: X \to (Y, d_Y)$ è continua rispetto a d se e solo se è continua rispetto a d'.
 - (c) Mostra che d' è infatti topologicamente equivalente a d.
- 1.10) Siano assegnate due topologie \mathcal{U}_1 e \mathcal{U}_2 in un insieme X. Mostra che risulta essere una topologia anche la famiglia $\mathcal{U} \stackrel{def}{=} \mathcal{U}_1 \cap \mathcal{U}_2$ dei sottoinsiemi U di X che sono elementi sia di \mathcal{U}_1 che di \mathcal{U}_2 .
- 1.11) Siano (X,\mathcal{U}) uno spazio topologico e $A,B\subseteq X$ sottoinsiemi. Mostra che
 - i) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
 - ii) $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$. (Descrivi un esempio nel quale l'inclusione è propria)
 - iii) $Int(A \cap B) = Int(A) \cap Int(B)$.
 - iv) $Int(A) \cup Int(B) \subseteq Int(A \cup B)$. (Descrivi un esempio nel quale l'inclusione è propria)

¹Parte della stesura in latex del presente file e' a cura della Prof.ssa Martina Lanini. Ringraziamenti per aver permesso l'utilizzo