a.a. 2011-2012 Geometria 9 CFU (Flamini) I semestre - Settimana 8 Foglio Es. 8 b Proiezioni su vettori e su sottospazi. Complementi ortogonali.

1. Nello spazio vettoriale euclideo \mathbb{R}^3 , munito del prodotto scalare standard, determinare il vettore proiezione ortogonale del vettore $v_1 = (1, 1, 0)$ sul vettore $v_2 = (1, 0, 1)$.

Svolgimento: Il vettore w, proiezione ortogonale del vettore v_1 sul vettore v_2 e' per definizione il vettore multiplo di v_2 secondo il coefficiente

$$\langle v_1, v_2 \rangle / ||v_2||^2$$
.

Poiche' $\langle v_1, v_2 \rangle = 1$ e $||v_2|| = \sqrt{2}$, il vettore cercato e' $\pi_{v_2}(v_1) = (1/2, 0, 1/2)$.

2. Nello spazio vettoriale euclideo \mathbf{R}^3 , munito del prodotto scalare standard, determinare la proiezione ortogonale del vettore v=(0,1,2) sul sottospazio W generato dai vettori $v_1=(1,1,0)$ e $v_2=(0,0,1)$ (che per **definizione** e' il vettore ottenuto come somma di tutte le proiezioni ortogonali $\pi_{\overline{f}_i}(\overline{v})$, dove $\overline{f}_1,\ldots,\overline{f}_k$, $k=\dim(W)$, e' una base ortogonale di W).

Svolgimento: Notiamo che v_1 e v_2 sono una base ortogonale di W. Pertanto, il vettore richiesto w e' la somma dei vettori, $\pi_{v_1}(v)$ e $\pi_{v_2}(v)$, che sono rispettivamente le proiezioni ortogonali di v su v_1 e su v_2 , cioe':

$$w = (\langle v, v_1 \rangle / ||v_1||) v_1 + (\langle v, v_2 \rangle / ||v_2||) v_2 = (1/2, 1/2, 2).$$

Si verifica facilmente che il vettore $t := v - \pi_{v_1}(v) - \pi_{v_2}(v)$ e' ortogonale a v_1 e a v_2 e che $Lin(\{v_1, v_2, t\}) = Lin(\{v_1, v_2, t\})$.

3. Sia \mathbb{R}^4 munito del prodotto scalare standard.

(a) Determinare il complemento ortogonale U^{\perp} del sottospazio cosi' definito:

$$U = \{(x_1, x_2, \dots, x_4) \in \mathbf{R}^4 : x_1 + x_2 - x_3 + x_4 = 2x_2 - x_4 = x_4 = 0\}.$$

(b) Verificare esplicitamente che $\mathbf{R}^4 = U \oplus U^{\perp}$.

Svolgimento: (a) Una base di U si determina trovando una soluzione non nulla del sistema lineare omogeneo che definisce U, cioe':

$$x_1 + x_2 - x_3 + x_4 = 2x_2 - x_4 = x_4 = 0.$$

Per esempio, una base di U e' data da u=(1,0,1,0). Allora, U^{\perp} e' costitutito da tutti i vettori $t=(x_1,\ldots,x_4)$ tale che $t\cdot u=0$, cioe' tali che risulti:

$$x_1 + x_3 = 0.$$

Questa e' un'equazione cartesiana per il complemento ortogonale di U. Tre autosoluzioni linearmente indipendenti della precedente equazione sono date per esempio da

$$u_1 = (1, 0, -1, 0), u_2 = (0, 1, 0, 0), u_3 = (0, 0, 0, 1).$$

Pertanto $U^{\perp} = Lin(\{u_1, u_2, u_3\})$ e ritroviamo che ha dimensione 3, cioe' e' un iperpiano in \mathbb{R}^4 . (b) Visto che il determinante della matrice che ha per colonne, rispettivamente, le coordinate di u, u_1 , u_2 ed u_3 , ha determinante $1 \neq 0$, allora l'insieme $\{u, u_1, u_2, u_3\}$ forma una base di \mathbb{R}^4 , che verifica che $\mathbb{R}^4 = U \oplus U^{\perp}$, dato che necessariamente $U \cap U^{\perp} = \{(0, 0, 0, 0)\}$.