Universita' degli Studi di Roma - "Tor Vergata" - Facolta' Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell'Edilizia) SOTTOSPAZI, EQUAZIONI PARAMETRICHE E CARTESIANE, CAMBIAMENTI DI BASE Docente: Prof. F. Flamini

Esercizi Riepilogativi Svolti

Esercizio 1. Nello spazio vettoriale \mathbb{R}^3 , munito della base canonica e, siano assegnati i seguenti vettori, espressi in componenti rispetto alla base e:

$$\overline{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \ \overline{v}_2 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}, \ \overline{v}_3 = \begin{pmatrix} 8 \\ 3 \\ 11 \end{pmatrix}, \ \overline{v}_4 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

(i) Estrarre da tale sistema di vettori una base v per \mathbb{R}^3 .

(ii) Considerato il vettore $\overline{u}=2\overline{e}_1+\overline{e}_2+5\overline{e}_3$, calcolare le componenti di \overline{u} rispetto alla base v trovata al punto (i).

(iii) Determinare le componenti del vettore $\overline{w} \in \mathbb{R}^3$ in base e sapendo che, rispetto alla

base v, esso ha componenti $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$

Svolgimento. (i) Notiamo che $\overline{v}_3'=2\overline{v}_1+3\overline{v}_2$. Mentre $\det\left(\overline{v}_1\ \overline{v}_2\ \overline{v}_4\right)=-1\neq 0$. Prendiamo AD ESEMPIO

$$v = \overline{v}_1, \ \overline{v}_4, \ \overline{v}_2$$

in quest'ordine (sarebbe andato bene anche $\overline{v}_1,\ \overline{v}_2,\ \overline{v}_4$).

(ii) Presa $v:=\overline{v}_1,\ \overline{v}_4,\ \overline{v}_2,$ abbiamo $M_{e,v}=\begin{pmatrix}1&1&2\\0&1&1\\1&1&3\end{pmatrix}$. Pertanto $M_{e,v}^{-1}=$

 $\begin{pmatrix} 2 & -1 & -1 \\ 1 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix}$. Quindi le componenti in base v sono date da

$$M_{e,v}^{-1} \begin{pmatrix} 2\\1\\5 \end{pmatrix} = \begin{pmatrix} -2\\-2\\3 \end{pmatrix} = -2\overline{v}_1 - 2\overline{v}_4 + 3\overline{v}_2.$$

(iii)
$$\overline{w} = 1\overline{v}_1 + 1\overline{v}_4 + 1\overline{v}_2 = (4, 2, 5) = 4\overline{e}_1 + 2\overline{e}_2 + 5\overline{e}_3$$
.

Esercizio 2. Nello spazio vettoriale \mathbb{R}^3 , munito della base canonica e, siano assegnati i vettori

$$\overline{u}_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \ \overline{u}_2 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, \ \overline{u}_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix},$$

espressi in componenti rispetto alla base canonica e:

(i) Verificare che i tre vettori costituiscono una base u per \mathbb{R}^3 .

(ii) Siano dati i vettori
$$\overline{x}=\begin{pmatrix}3\\3\\-2\end{pmatrix}$$
 e $\overline{y}=\begin{pmatrix}1\\-1\\2\end{pmatrix}$, le cui componenti si inten-

dono rispetto alla base e. Verificare che sono linearmente indipendenti e trovare le loro componenti rispetto alla base u.

(iii) Si consideri lo spazio vettoriale \mathbb{R}^3 dotato di base u e siano Y_1, Y_2, Y_3 le coordinate nel riferimento (\mathbb{R}^3, u). Trovare le equazioni parametriche e cartesiane del sottospazio

$$W:=Lin\{\overline{x},\overline{y}\}$$

nelle coordinate Y_1, Y_2, Y_3 .

(iv) Trovare un qualsiasi vettore \overline{z} non appartenente a W e scrivere le componenti di \overline{z} in base e.

Svolgimento. (i) Notiamo che la matrice che ha come colonne i vettori di u e' la matrice

$$M_{e,u}=\left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & -1 & 1 \\ -1 & 1 & 0 \end{array}\right)$$
, che ha determinante uguale a -2 . Pertanto u e' una base.

(ii) L'indipendenza lineare di vettori e' un concetto indipendente dalla rappresentazione di essi in componenti rispetto ad una base. Pertanto, la matrice 3×2 che ha per colonne le componenti dei vettori $\overline{x}, \overline{y}$ in base e ha manifestamente rango 2. Questo implica che i due vettori sono linearmente indipendenti.

Per trovare le componenti di questi vettori in base u, si puo' procedere indifferentemente utilizzando la matrice inversa di $M_{e,u}$ oppure esprimendo i vettori $\overline{x}, \overline{y}$ come combinazione lineare dei vettori di u. Si ottiene cosi'

$$\overline{x} = \overline{u}_1 - \overline{u}_2 + 2\overline{u}_3, \quad \overline{y} = 2\overline{u}_2 + \overline{u}_3.$$

(iii) Con queste componenti, abbiamo che W e' descritto dalle equazioni parametriche

$$Y_1 = t$$
, $Y_2 = -t + 2s$, $Y_3 = 2t + s$

e dall'equazione cartesiana

$$5Y_1 + Y_2 - 2Y_3 = 0.$$

(iv) Notiamo che, nelle cooordinate date nel riferimento (\mathbb{R}^3,u) , il vettore \overline{u}_1 ha componenti $\overline{u}_1=\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$. Esse non soddisfano l'equazione cartesiana di W. Pertanto, si puo' scegliere $\overline{z}=\overline{u}_1$, le cui componenti in base e sono gia' note.

Esercizio 3. Nello spazio vettoriale \mathbb{R}^4 , munito della base canonica e, siano assegnati i seguenti vettori:

$$\overline{w}_1 = \begin{pmatrix} 1 \\ 1 \\ -2 \\ 1 \end{pmatrix}, \ \overline{w}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 2 \end{pmatrix}, \ \overline{w}_3 = \begin{pmatrix} 2 \\ 1 \\ -4 \\ 0 \end{pmatrix},$$

le cui componenti sono espresse rispetto ad e. Sia

$$W := Lin(\overline{w}_1, \overline{w}_2, \overline{w}_3)$$
.

- (i) Determinare la dimensione di W, estraendo dal sistema di generatori dato una base b per W.
- (ii) Determinare equazioni parametriche e cartesiane di W.
- (iii) Determinare una base di un sottospazio di \mathbb{R}^4 supplementare a W.

Svolgimento. (i) I vettori dati sono banalmente linearmente dipendenti in \mathbb{R}^4 . Basta calcolare il rango della matrice A del sistema dei tre vettori dati rispetto ad e. Tuttavia considerando la sottomatrice A(1,2|1,2), notiamo che essa ha determinante non nullo. Pertanto

$$\dim(W) = rg(A) = 2$$

ed una base b per W e' ad esempio costituita dai vettori $b := \overline{w}_1, \overline{w}_2$.

(ii) Imponendo la condizione

$$rq(A_1 \ A_2 \ X) = 2,$$

dove A_i e' la colonna i-esima di A ed X la colonna delle indeterminate, si ottengono le equazioni cartesiane di W, che sono

$$2X_1 + X_3 = 0 = X_1 - 2X_2 + X_4.$$

Risolvendo il sistema lineare, si trovano anche equazioni parametriche per W, cioe'

$$x_1 = t$$
, $x_2 = s$, $x_3 = -2t$, $x_4 = -t + 2s$.

(iii) Un sottospazio supplementare a W in \mathbb{R}^4 ha dimensione 2. Una base per tale spazio e' quindi costituita ad esempio dai vettori \overline{e}_1 e $\overline{e}_1+2\overline{e}_2$ che entrambi non soddisfano le equazioni cartesiane di W e sono manifestamente linearmente indipendenti.

Esercizio 4. Nello spazio vettoriale \mathbb{R}^4 , munito della base canonica e, siano assegnati i seguenti vettori:

$$\bar{b}_1 = \begin{pmatrix} 2 \\ 1 \\ -4 \\ 0 \end{pmatrix}, \ \bar{b}_2 = \begin{pmatrix} 0 \\ -1 \\ 0 \\ -2 \end{pmatrix}, \ \bar{b}_3 = \begin{pmatrix} 1 \\ 1 \\ -2 \\ 1 \end{pmatrix},$$

le cui componenti sono espresse rispetto ad e. Sia

$$U := Lin(\overline{b}_1, \overline{b}_2, \overline{b}_3)$$
.

- (i) Determinare la dimensione di U, estraendo dal sistema di generatori dato una base b per U.
- (ii) Determinare equazioni parametriche e cartesiane di U.
- (iii) Determinare equazioni parametriche e cartesiane del sottospazio $W \subset U$ determinato dalla retta vettoriale di vettore direttore \overline{b}_1 .

Svolgimento. (i) I vettori dati sono banalmente linearmente dipendenti in \mathbb{R}^4 . Basta calcolare il rango della matrice A del sistema dei tre vettori dati rispetto ad e. Tuttavia considerando la sottomatrice A(1,2|2,3), notiamo che essa ha determinante non nullo. Pertanto

$$\dim(W) = rq(A) = 2$$

ed una base b per W e' ad esempio costituita dai vettori $b := \overline{b}_2, \overline{b}_3$.

(ii) Imponendo la condizione

$$rq(A_2 \ A_3 \ X) = 2,$$

dove A_i e' la colonna i-esima di A ed X la colonna delle indeterminate, si ottengono le equazioni cartesiane di U, che sono

$$2X_1 + X_3 = 0 = X_1 - 2X_2 + X_4.$$

Risolvendo il sistema lineare, si trovano anche equazioni parametriche per U, cioe'

$$x_1 = t$$
, $x_2 = s$, $x_3 = -2t$, $x_4 = -t + 2s$.

(iii) Le equazioni parametriche di W sono ovviamente

$$X_1 = 2h, X_2 = h, X_3 = -4h, X_4 = 0.$$

Poiche' $W \subset U$ e dal fatto che U e' un piano vettoriale, e' sufficiente trovare un'ulteriore equazione cartesiana di un iperpiano che tagli W su U che sia linearmente indipendente dalle due equazioni cartesiane trovate al punto (ii) che definiscono U. Guardando l'espressione parametrica del generico vettore di W, notiamo che vale la relazione ulteriore $X_4=0$. Pertanto equazioni cartesiane di W sono date dal sistema 3 equazioni e 4 indeterminate:

$$2X_1 + X_3 = 0 = X_1 - 2X_2 = 0 = X_4.$$

Esercizio 5. In \mathbb{R}^3 , munito della base canonica e, siano assegnati i seguenti vettori:

$$\overline{v}_1 = (0, 1, -1), \ \overline{v}_2 = (1, 0, 1), \ \overline{v}_3 = (1, -1, 3),$$

le cui componenti sono espresse rispetto ad e.

- (i) Verificare che \overline{v}_1 , \overline{v}_2 , \overline{v}_3 sono generatori per \mathbb{R}^3 e che sono linearmente indipendenti.
- (ii) Considerato il vettore \overline{w} che, rispetto ad e, ha componenti $\overline{w}=(1,0,2)$, calcolare le componenti di \overline{w} rispetto alla base v data dai vettori $\overline{v}_1, \ \overline{v}_2, \ \overline{v}_3$.
- (iii) Determinare le componenti del vettore $\overline{u} \in \mathbb{R}^3$ rispetto alla base e sapendo che, rispetto alla base v, esso ha coordinate (1, -2, 1).

Svolgimento. (i) I vettori dati sono banalmente linearmente indipendenti in \mathbb{R}^3 . Basta calcolare il determinanate della matrice del sistema dei tre vettori dati rispetto ad e. Siccome sono tre vettori linearmente indipendenti in \mathbb{R}^3 , non possono che generare tutto lo spazio vettoriale, i.e. sono una sua base.

(ii) Ponendo

$$\overline{w} = (1,0,2) = c_1(0,1,-1) + c_2(1,0,1) + c_3(1,-1,3)$$

si trova

$$c_1 = 1$$
, $c_2 = 0$, $c_3 = 1$;

queste sono le componenti di \overline{w} rispetto alla base v.

(iii) $\overline{u}=1\overline{v}_1-2\overline{v}_2+\overline{v}_3=(-1,0,0)$, che sono le sue componenti rispetto alla base canonica e.

Esercizio 6. Nello spazio vettoriale \mathbb{R}^4 , dotato della base canonica e, siano assegnati i vettori:

$$\overline{v}_1 = \overline{e}_1 - \overline{e}_3 + \overline{e}_4, \ \overline{v}_2 = \overline{e}_2 - \overline{e}_4, \ \overline{v}_3 = \overline{e}_3 + \overline{e}_4.$$

- (i) Verificare che i tre vettori sono linearmente indipendenti.
- (ii) Determinare un vettore $\overline{v}_4 \in \mathbb{R}^4$ tale che valgano contemporaneamente le condizioni:
- (a) $v:=\{\overline{v}_1,\ \overline{v}_2,\ \overline{v}_3,\ \overline{v}_4\}$ sia una base di \mathbb{R}^4 , e
- (b) il vettore \overline{w} , che ha coordinate $\begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}$ rispetto alla base e, abbia coordinate $\begin{pmatrix} 0 \\ -1 \\ 1 \\ 1 \end{pmatrix}$

rispetto alla base v.

Svolgimento. (i) La matrice che ha per colonne le coordinate del sistema dei tre vettori dati rispetto alla base canonica è:

$$A = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & -1 & 1 \end{array}\right).$$

Immediatamente osserviamo che r(A) = 3, dato che

$$det A(1,2,3;1,2,3) = 1 \neq 0;$$

quindi i tre vettori sono linearmente indipendenti in \mathbb{R}^4 .

(ii) Consideriamo ora un arbitrario vettore $\overline{v}_4 = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$, le cui coordinate sono sempre

rispetto alla base e. La matrice del sistema di vettori $v=\overline{v}_1, \overline{v}_2, \overline{v}_3, \overline{v}_4$ rispetto ad e è

la matrice

$$C := \left(\begin{array}{cccc} 1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ -1 & 0 & 1 & c \\ 1 & -1 & 1 & d \end{array}\right).$$

Affinchè v sia una base, si deve avere $det\ C \neq 0$. Pertanto, sviluppando il determinate di C con il metodo di Laplace rispetto alla prima riga, otteniamo che $\mathcal V$ è una base non appena

$$-2a + b - c + d \neq 0.$$

Questa è la prima relazione che otteniamo dalla condizione (a) del testo. Pertanto, per ogni scelta di $a,b,c,d\in\mathbb{R}$ soddisfacenti la condizione $-2a+b-c+d\neq 0$ si ottiene sempre una base v di \mathbb{R}^4 . Per tali valori, C si può considerare come la matrice cambiamento di base da e a v.

Dalla condizione (ii), vogliamo scegliere v di modo che valga

$$\begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ -1 & 0 & 1 & c \\ 1 & -1 & 1 & d \end{pmatrix} \begin{pmatrix} 0 \\ -1 \\ 1 \\ 1 \end{pmatrix}.$$

Si ottiene pertanto

$$a = 1, b = 1, c = -2, d = -2$$

che in effetti soddisfa la condizione $-2a+b-c+d\neq 0$. In definitiva $\underline{v}_4=\underline{e}_1+\underline{e}_2-2\underline{e}_3-2\underline{e}_4$.

Esercizio 7. Nello spazio vettoriale \mathbb{R}^4 , dotato della base canonica e, siano dati i due sottospazi

$$U: \begin{cases} X_1 - X_2 + X_3 &= 0 \\ X_1 + X_4 &= 0 \end{cases}$$

e

$$W = Lin \left\{ \overline{w}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \overline{w}_2 = \begin{pmatrix} 2 \\ 0 \\ -2 \\ -2 \end{pmatrix}, \overline{w}_3 = \begin{pmatrix} 10 \\ 0 \\ -6 \\ -2 \end{pmatrix} \right\}.$$

- (i) Determinare $\dim(U)$, $\dim(W)$ ed opportune basi dei due sottospazi.
- (ii) Determinare equazioni parametriche di ${\bf U}$ ed equazioni parametriche e cartesiane di ${\bf W}.$
- (iii) Stabilire se $\mathbb{R}^4 = U \oplus W$.

Svolgimento. (i) Notiamo che $\overline{w}_3 = 4\overline{w}_1 + 3\overline{w}_2$, mentre i primi due vettori che definiscono W non sono proporzionali. Pertanto $\dim(W) = 2$ ed una base per W e' proprio $w := \overline{w}_1, \overline{w}_2$.

Risolvendo ora il sistema lineare dato dalle equazioni cartesiane che definiscono U si ha che la soluzione generale del sistema e'

$$\overline{x} = t \begin{pmatrix} 1 \\ 0 \\ -1 \\ -1 \end{pmatrix} + s \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} = t\overline{b}_1 + s\overline{b}_2, \quad t, s \in \mathbb{R}.$$

(ii) Dal punto precedente, equazioni parametriche di ${\cal U}$ sono:

$$X_1=t, X_2=s, X_3=-t+s, X_4=-t, \quad t,s\in \mathbb{R}.$$

Analogamente, equazioni parametriche di W sono:

$$X_1 = a + 2b, X_2 = 0, X_3 = -2b, X_4 = a - 2b, \quad a, b \in \mathbb{R}$$

e quindi equazioni cartesiane di W sono

$$X_1 + 2X_3 - X_4 = 0 = X_2.$$

(ii) Per determinare $U\cap W$ si mettono a sistema le equazioni cartesiane di U e di W e si ottiene

$$U \cap W = Lin \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \\ -1 \end{pmatrix} \right\}.$$

Quindi \mathbb{R}^4 non e' somma diretta di U con W. Eppure, facilmente si vede che $U+W=\mathbb{R}^4$.