Universita' degli Studi di Roma - "Tor Vergata" - Facolta' Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell'Edilizia)

SPAZI EUCLIDEI. TRASFORMAZIONI. ORIENTAZIONI. FORMULE DI GEOMETRIA IN \mathbb{R}^2 .

Docente: Prof. F. Flamini

Esercizi Riepilogativi Svolti

Esercizio 1. Nello spazio affine \mathbb{R}^3 , con riferimento cartesiano standard $RC(O; x_1, x_2, x_3)$, siano date le due coppie di punti

$$P_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, P_2 = \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}$$
 e $Q_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, Q_2 = \begin{pmatrix} 3 \\ 4 \\ 3 \end{pmatrix}.$

(i) Determinare equazioni parametriche delle rette

$$\mathcal{L}_1:\langle P_1,P_2\rangle \in \mathcal{M}_1:\langle Q_1,Q_2\rangle$$

cioe' congiungenti rispettivamente P_1 con P_2 e Q_1 con Q_2 .

(ii) Verificare che l'affinita' lineare data da

$$f\left(\begin{array}{c} x_1\\ x_2\\ x_3 \end{array}\right) = \left(\begin{array}{ccc} 1 & 1 & -1\\ 0 & 2 & 0\\ 0 & 1 & -1 \end{array}\right) \left(\begin{array}{c} x_1\\ x_2\\ x_3 \end{array}\right)$$

trasforma la retta \mathcal{L}_1 nella retta \mathcal{M}_1 .

(iii) Determinare gli eventuali punti fissi dell'affinita' f.

Svolgimento. (i) \mathcal{L}_1 e' la retta passante per P_1 e con vettore direttore $\overline{v} = P_2 -_a P_1 =$

$$\begin{pmatrix} -1\\1\\-2 \end{pmatrix}$$
; pertanto le sue equazioni parametriche sono

$$X_1 = 1 + t$$
, $X_2 = 1 - t$, $X_3 = 1 + 2t$, $t \in \mathbb{R}^*$.

Analogamente \mathcal{M}_1 e' la retta passante per Q_1 e con vettore direttore $\overline{v}'=Q_2-_aQ_1=0$

$$\begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix}$$
; pertanto le sue equazioni parametriche sono

$$X_1 = 1 + 2t, \ X_2 = 2 + 2t, \ X_3 = 3t, \ t \in \mathbb{R}^*.$$

(ii) E' facile verificare che

$$f(P_i) = Q_i, \ 1 \le i \le 2.$$

Quindi l'affinita' lineare trasforma fra loro anche le varieta' lineari generate da questi punti.

(iii) I punti fissi dell'affinita' lineare sono tutti e soli i vettori di \mathbb{R}^3 che soddisfano la relazione

$$\begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 0 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix};$$

in altri termini, l'eventuale luogo di punti fissi di f e' determinato dall'autospazio di A relativo all'autovalore 1. In effetti 1 e' autovalore di A e la sua molteplicita' algebrica e geometrica e' 1. In effetti, l'autospazio e' dato da

$$X_2 = X_3 = 0$$

che e' l'asse delle ascisse.

Esercizio 2. Nel piano affine \mathbb{R}^2 , con riferimento cartesiano (O, e), è data la retta r rappresentata dall'equazione $X_1 + X_2 = 1$. Determinare tutte le affinità di \mathbb{R}^2 che fissano tutti i punti di r e che trasformano il punto P = (1, 2) nel punto Q = (2, 1).

Svolgimento. Sappiamo che i luogo dei punti fissi di un'affinità se non vuoto è per forza una varietà lineare. Allora per avere affinità che fissano tutti i punti di r basta determinare quelle affinità che fissano 2 punti distinti di r. Infatti, poichè l'unione di due punti distinti non è una varietà lineare, se questi restano fissi sotto l'azione di un'affinità f, allora tutti i punti della retta r restano fissi sotto l'azione di f.

Prendiamo allora i due punti $P_1=(0,1)$ e $P_2=(1,0)$ su r. Un'affinità è della forma

$$f(\overline{x}) = A \overline{x} + \overline{b} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix},$$

con A matrice invertibile. Se imponiamo

$$f(P_1) = P_1, f(P_2) = P_2,$$

otteniamo

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$

e

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}.$$

Si ottiene il sistema di 4 equazioni:

$$a_{12} = a_{11} - 1$$
, $a_{21} = a_{22} - 1$, $b_1 = 1 - a_{11}$, $b_2 = 1 - a_{22}$.

Quindi, le affinità che fissano tutti i punti di r sono ∞^2 dato che sono della forma:

$$\begin{pmatrix} a_{11} & a_{11} - 1 \\ a_{22} - 1 & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 1 - a_{11} \\ 1 - a_{22} \end{pmatrix},$$

con $a_{11}, a_{22} \in \mathbb{R}$ parametri indipendenti, tali che $a_{11} + a_{22} \neq 1$, per la condizione di invertibilità di A.

Ora imponiamo la condizione ulteriore che f(P) = Q, che fornisce

$$\begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{11} - 1 \\ a_{22} - 1 & a_{22} \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 - a_{11} \\ 1 - a_{22} \end{pmatrix}.$$

Si determina allora

$$a_{11} = \frac{3}{2}, \quad a_{22} = \frac{1}{2}.$$

Dunque esiste un'unica affinità che soddisfa tutte le condizioni richieste. Le equazioni di tale affinità sono:

$$Y_1 = \frac{1}{2}(3X_1 + X_2 - 1)$$
 $Y_2 = \frac{1}{2}(-X_1 + X_2 + 1).$

Esercizio 3. Si consideri il piano euclideo \mathbb{R}^2 , con riferimento cartesiano ortonormale $(O; x_1, x_2)$.

- (a) Assegnato il vettore $\underline{u} = (-1, 1)$, espresso in componenti rispetto alla base canonica e (le cui componenti sono scritte per comodita' per riga), determinare tutti i vettori \underline{x} che sono ortogonali ad \underline{u} e che hanno norma uguale a 2.
- (b) Siano assegnati in seguito i punti

$$P = (1, 2), Q = (2, -1), R = (1, 0),$$

le cui coordinate sono scritte per comodita' per riga. Dopo aver verificato che i 3 punti formano i vertici di un triangolo \mathcal{T} , determinare il perimetro del triangolo \mathcal{T} .

Svolgimento: (a) $\underline{x}=(x_1,x_2)$ e' tale che $0=\underline{u}\cdot\underline{x}=x_2-x_1$; percio' $\underline{x}=(\alpha,\alpha)$. Inoltre $||\underline{x}||=2$ implica $\alpha=\pm\sqrt{2}$. Percio', i vettori cercati sono

$$\underline{x} = (\sqrt{2}, \sqrt{2})$$
 oppure $\underline{x} = (-\sqrt{2}, -\sqrt{2})$.

(b) I tre punti non sono allineati. Quindi formano i vertici di un triangolo. Per trovare il perimetro basta determinare le lunghezze di tutti e tre i lati con la formula della distanza fra due punti e poi sommare queste lunghezze.

Esercizio 4. Nel piano cartesiano \mathbb{R}^2 , con riferimento cartesiano ortogonale $RC(O; x_1, x_2)$, sia data la trasformazione

$$F\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{cc} 1 & 2 \\ -2 & 1 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) + \left(\begin{array}{c} 1 \\ 4 \end{array}\right).$$

- (i) Stabilire se la trasformazione F e' un'isometria oppure un'affinita' di \mathbb{R}^2 .
- (ii) Sia r la retta di equazione cartesiana $2X_1 + X_2 3 = 0$. Determinare l'equazione cartesiana di F(r), la retta ottenuta come trasformata mediante F della retta r.

Svolgimento. (i) Poiche' la parte lineare della trasformazione F ha una matrice a determinante 5, F e' necessariamente un'affinita' di \mathbb{R}^2 .

(ii) Per trovare equazioni cartesiane di F(r) basta scegliere due punti arbitrari su r, P e Q e determinare l'equazione cartesiana della retta per 2 punti.

Esercizio 5. Siano $\overline{v}=(1,2)$, $\overline{w}=(-1,-1)$ due vettori dello spazio vettoriale euclideo \mathbb{R}^2 , munito di base canonica e prodotto scalare standard. Sia S l'isometria lineare data dalla riflessione rispetto all'asse x_1 , i.e. rispetto a $Lin(\overline{e}_1)$. Calcolare $Or(S(\overline{v}), S(\overline{w}))$. **Svolgimento**. Osserviamo che

$$\det \left(\begin{array}{cc} 1 & -1 \\ 2 & -1 \end{array} \right) = 1 = Or(\overline{v}, \ \overline{w})$$

perciò la coppia ordinata di vettori è una base per \mathbb{R}^2 che, inoltre, è orientata positivamente.

Riflettere rispetto all'asse x_1 vuol dire che, per ogni vettore $\overline{x}=(x_1,x_2), S(\overline{x})=(x_1,-x_2)$. Pertanto, l'isometria lineare S è

$$S(\overline{x}) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}.$$

Denotata con $M=\begin{pmatrix}1&0\\0&-1\end{pmatrix}$ la matrice ortogonale dell'isometria $S,\ det\ M=-1$ cioè S è un'isometria lineare inversa. Pertanto

$$Or(S(\overline{v}), S(\overline{w})) = det(M) \ Or(\overline{v}, \ \overline{w}) = -1,$$

i.e. la base

$$b = S(\overline{v}), S(\overline{w})$$

non è equiorientata con e.

Esercizio 6. Determinare tutte le rette passanti per P=(-1,2) e formanti con l'asse x_1 un angolo convesso pari a $\pi/3$. Determinare i due angoli convessi fra le due rette ottenute.

Svolgimento: Sia $\underline{r}=(l,m)$ un vettore direttore di una delle rette da determinare. Allora:

$$\frac{1}{2} = \cos(\frac{\pi}{3}) = \frac{\underline{r} \cdot (\pm \underline{e}_1)}{||\underline{r}|| \, ||\underline{e}_1||} = \frac{\pm l}{\sqrt{l^2 + m^2}},$$

che determina

$$l = \pm \frac{1}{\sqrt{3}}m.$$

Otteniamo percio', a meno di proporzionalita', due vettori direttori:

$$\underline{r}_1 = (1, \sqrt{3}) \text{ e } \underline{r}_2 = (-1, \sqrt{3}).$$

Le equazioni cartesiane delle rette cercate sono:

$$r_1: \sqrt{3}x_1 - x_2 + 2 + \sqrt{3} = 0 \text{ e } r_2: \sqrt{3}x_1 + x_2 - 2 + \sqrt{3} = 0.$$

Ora

$$cos(\theta(r_1, r_2)) = cos(\theta(\pm \underline{r}_1, \underline{r}_2)) = \pm \frac{1}{2},$$

quindi $\theta = \{\pi/3, 2\pi/3\}.$

Esercizio 7. Siano assegnate nel piano cartesiano \mathbb{R}^2 le rette:

$$\underline{s}_1: \left\{ \begin{array}{ll} x_1 = & 1 - 2t \\ x_2 = & 2t, \ t \in \mathbb{R} \end{array} \right.$$

$$\underline{s_2}$$
: $x_1 - 2x_2 + 1 = 0$ e $\underline{s_3}$: $2x_1 + x_2 - 2 = 0$.

(i) Determinare un'equazione cartesiana di \underline{s}_1 ;

- (ii) Determinare un'equazione cartesiana della retta \underline{r} parallela ad \underline{s}_1 e passante per $P_0 = \underline{s}_2 \cap \underline{s}_3$;
- (iii) Determinare l'equazione cartesiana della retta \underline{n} per $P_1 = \underline{s}_1 \cap \underline{s}_2$ e perpendicolare a \underline{s}_3 ;
- (iv) Verificare che la retta per i punti

$$Q_1 = (1, -1/4) e Q_2 = (2, 1/4)$$

e' parallela a \underline{s}_2 . Tale retta coincide con \underline{s}_2 ?

Svolgimento: (i) Poiche' $x_2 = 2t$, un' equazione cartesiana e' $x_1 = 1 - x_2$, cioe' $x_1 + x_2 - 1 = 0$.

(ii) Per determinare il punto P_0 basta risolvere il sistema lineare non omogeneo

$$x_1 - 2x_2 + 1 = 2x_1 + x_2 - 2 = 0$$

che ha come soluzione

$$x_1 = 3/5, \ x_2 = 4/5.$$

Un vettore direttore della retta \underline{s}_1 e' (-2,2), equivalentemente (-1,1). Quindi, l'equazione cartesiana della retta che si vuole determinare sara' data da:

$$x_1 + x_2 - \frac{7}{5} = 0.$$

(iii) Per trovare le coordinate di P_1 , basta sostituire nell'equazione di \underline{s}_2 , $x_1=1-2t$ e $x_2=2t$, che determina t=1/3, cioe' $x_1=1/3$, $x_2=2/3$. Un vettore normale a \underline{s}_3 e' (2,1), come si determina direttamente dalla sua equazione cartesiana. Percio' la retta cercata e' quella che passa per P_1 e che ha parametri direttori (2,1), cioe':

$$x_1 - 2x_2 + 1 = 0.$$

(iv) Un vettore direttore della retta per Q_1 e Q_2 e' dato dal vettore $OQ_2 - OQ_1 = (1,1/2)$. Quindi, un vettore direttore e' anche (2,1), che e' un vettore direttore anche di \underline{s}_2 . Ora pero' la retta per Q_1 e Q_2 e' parallella a \underline{s}_2 ma non coincide con \underline{s}_2 perche', ad esempio, le coordinate di Q_1 non soddisfano l'equazione di \underline{s}_2 .

Esercizio 8. Nel piano cartesiano \mathbb{R}^2 , con riferimento standard (O, e), sono dati i tre punti di coordinate

$$P_1 = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$
 $P_2 = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$ $P_3 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

- (i) Dopo aver verificato che i tre punti non sono allineati, si considerino tali punti come vertici di un triangolo Λ .
- (i) Il punto Q che e' intersezione delle tre altezze del triangolo Λ viene detto l'*ortocentro* del triangolo Λ . Calcolare le coordinate dell'ortocentro di Λ .
- (ii) Determinare l'area di Λ .

Svolgimento: (i) Per verificare che i tre punti non siano allineati, e' sufficiente dimostrare che i vettori $P_2 -_a P_1$ e $P_2 -_a P_3$ non sono proporzionali, come effettivamente e'

(ii) Un vettore direttore della retta per P_1 e P_2 e' dato da $P_2-P_1=(4,-2)$. Analogamente, un vettore direttore della retta per P_2 e P_3 e' (-1,1) e per P_1 e P_3 e' (3,-1). Ora dobbiamo considerare, per ogni $1 \le i \ne j \ne k \le 3$, la retta per P_i e perpendicolare alla retta per P_i e P_k . Le equazioni di queste tre rette sono

$$x_1 - x_2 + 3 = 0$$
, $3x_1 - x_2 - 9 = 0$, $2x_1 - x_2 - 3 = 0$.

Risolvendo il sistema fra due di queste tre rette troviamo il punto di coordinate $x_1 = 6$ e $x_2 = 9$. Poiche' tale punto appartiene pure alla terza retta, allora queste sono proprio le coordinate dell'ortocentro.

(ii) Il segmento P_1P_2 misura $2\sqrt{5}$. La retta per P_1 e P_2 ha equazioni parametriche

$$x_1 = -1 + 4t, x_2 = 2 - 2t$$

mentre la retta per P_3 e perpendicolare ad essa ha equazioni parametriche

$$x_1 = 2 + 2s, x_2 = 1 + 4s.$$

Il punto di intersezione di tali due rette e' il punto H di coordinate (9/5,3/5), che corrisponde al punto sulla seconda retta relativo al valore del parametro s=-1/10. L'altezza di Λ relativa al cateto P_1P_2 e' quindi il segmento P_3H che misura $\sqrt{5}/5$. Percio', l'area di Λ e' $a(\Lambda)=1$.

Esercizio 9. Nel piano affine \mathbb{R}^2 , con riferimento (O, e), sia dato il triangolo di vertici O = (0,0), A = (1,0) e B = (0,1). Si considerino i parallelogrammi:

- \bullet OABC, avente OA ed AB per lati ed OB per diagonale, e
- \bullet OADB, avente OB ed OA per lati ed AB per diagonale.

Sia E il punto di intersezione tra le rette r_{AC} e r_{OD} . Dimostrare che B, E ed il punto medio F del segmento OA sono allineati.

Svolgimento. La retta $r_{A,B}$ ha giacitura generata dal vettore $B -_a A = (-1,1)$; quindi un'equazione che determina questa giacitura è

$$X_1 + X_2 = 0.$$

Il punto C è l'intersezione delle rette

$$X_1 + X_2 = 0$$
e $X_2 = 1$

quindi C=(-1,1). Il punto D è l'intersezione delle rette

$$X_1 = 1 e X_2 = 1$$

quindi D=(1,1). La retta per A e C è la retta passante per A e con giacitura generata dal vettore C_aA , quindi è

$$X_1 + 2X_2 - 1 = 0.$$

Analogamente, quella per O e D è

$$X_1 - X_2 = 0;$$

quindi, essendo E il punto di intersezione di queste ultime due rette, si ha E=(1/3,1/3). Infine F, essendo punto medio del segmento OA, ha coordinate F=(1/2,0). La retta $r_{E,F}$ è quindi

$$2X_1 + X_2 - 1 = 0.$$

Le coordinate di B soddisfano quest'equazione, quindi B appartiene a $r_{E,F}$.

Esercizio 10. Nel piano cartesiano \mathbb{R}^2 , con riferimento cartesiano standard $RC(O; x_1, x_2)$, sia dato il punto $C = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$. Sia inoltre $P = \begin{pmatrix} \frac{6+\sqrt{2}}{2} \\ \frac{2+\sqrt{2}}{2} \end{pmatrix}$.

- (i) Determinare l'equazione cartesiana della rettà ℓ passante per P e perpendicolare alla retta congiungente C con P.
- (ii) Scrivere l'equazione del fascio (proprio) di rette di centro $Q=\begin{pmatrix} 4\\ 3 \end{pmatrix}$ e determinare l'unica retta del fascio parallela a ℓ .

(iii) Data l'affinita'

$$f\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{cc} 2 & 0 \\ 0 & 3 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) + \left(\begin{array}{c} 1 \\ 5 \end{array}\right),$$

disegnare nel piano la retta $f(\ell)$.

Svolgimento. (i) Un vettore direttore della retta congiungente C con P e' dato dal vettore $P-_aC=\begin{pmatrix} \frac{\sqrt{2}}{2}\\ \frac{\sqrt{2}}{2} \end{pmatrix}$. Questo sara' il vettore normale della retta ℓ : in altre parole, un'equazione cartesiana per ℓ e' data da

$$1(X_1 - (\frac{6+\sqrt{2}}{2})) + 1(X_2 - (\frac{2+\sqrt{2}}{2})) = 0$$

che fornisce $X_1 + X_2 - 4 - \sqrt{2} = 0$.

- (ii) L'equazione del fascio di rette e' $\lambda(X_1-4)+\mu(X_2-3)=0$, cioe' $\lambda X_1+\mu X_2-4\lambda+3\mu=0$. La condizione di parallelismo con ℓ fornisce che $\begin{pmatrix} \lambda \\ \mu \end{pmatrix}$ deve essere proporzionale a $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, i.e. $\lambda=\mu$, che determina $X_1+X_2-7=0$.
- (iii) Basta consideraré i trasformati mediante f di due punti su ℓ e scrivere l'equazione della retta per i due punti trasformati.