Universita' degli Studi di Roma "Tor Vergata" Laurea Triennale in Matematica - a.a. 2021/2022

Corso: Geometria 1 con Elementi di Storia 1 Docente: Prof. A. Rapagnetta, Codocente: Prof. F. Flamini

I Foglio Esercitazioni

Esercizio 1. Sia $\mathbb C$ il campo dei numeri complessi e sia $\mathbf z:=1+i\in\mathbb C.$

- (i) Determinare \mathbf{z}^{-1} , i.e. l'inverso moltiplicativo di \mathbf{z} in \mathbb{C} .
- (ii) Rappresentare nel piano di Argand-Gauss i numeri complessi \mathbf{z} , $\overline{\mathbf{z}}$ e \mathbf{z}^{-1} .
- (iii) Determinare il numero complesso \mathbf{z}^3 ed il numero complesso \mathbf{z}^{-3} .
- (iv) Trovare tutte le soluzioni in \mathbb{C} del polinomio $x^3 3x^2 + 4x 2 \in \mathbb{R}[x]$.

Esercizio 2. Nell' \mathbb{R} -spazio vettoriale numerico \mathbb{R}^3 stabilire quali dei sottoinsiemi sottoelencati hanno una struttura di \mathbb{R} -sottospazio vettoriale:

(i)
$$U_1 := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid x + 2y - z = 0 \right\}$$

(ii)
$$U_2 := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid x + y - z = 7 \right\}$$

(iii)
$$U_3 := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid xy = 0 \right\}$$

(iv)
$$U_4 := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} | z - x^2 = 0 \right\}$$

Esercizio 3. Sia data la matrice $A = \begin{pmatrix} 1 & \frac{2}{3} & \frac{1}{2} \\ 5 & \frac{1}{3} & \frac{-2}{5} \\ -10 & \frac{2}{5} & \frac{1}{5} \end{pmatrix} \in M(3,3;\mathbb{Q}).$

- (i) Determinare la matrice opposta di A e la matrice A^t , trasposta di A
- (ii) Determinare la matrice combinazione lineare di A e di A^t , a coefficienti $\frac{1}{2}$ e 4 rispettivamente.

(iii) Data la matrice $B = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \in M(2,2;\mathbb{Q})$, stabilire se puo' esistere una matrice $C \in M(2,2;\mathbb{Q})$ per cui, la combinazione lineare 3B + 2C delle matrici $B \in C$ con coefficienti 2 e 3 rispettivamente, possa dare la matrice nulla, i.e. 3B + 2C = O.

Esercizio 4. Sia \mathbb{K} un campo e si consideri il \mathbb{K} -spazio vettoriale $\mathbb{K}[x]$ dei polinomi, a coefficienti nel campo \mathbb{K} e nell'indeterminata x. Si consideri il sottoinsieme

$$W := \{ p(x) \in \mathbb{K}[x] \mid p(2) = 0 \} \subseteq \mathbb{K}[x].$$

- (i) Stabilire se W e' un \mathbb{K} -sottospazio vettoriale di $\mathbb{K}[x]$.
- (ii) In caso di risposta affermativa, W e' un \mathbb{K} -sottospazio vettoriale proprio di $\mathbb{K}[x]$?
- (iii) Preso $\mathbb{K}[x]_{\leq 4}$, che e' il sottoinsieme di $\mathbb{K}[x]$ formato dai polinomi di grado al piu' 4, verificare dapprima che $\mathbb{K}[x]_{\leq 4}$ e' sottospazio vettoriale di $\mathbb{K}[x]$; in seguito dimostrare che $W \cap \mathbb{K}[x]_{\leq 4}$ e' anch'esso un $\mathbb{K}[x]$ -sottospazio di $\mathbb{K}[x]$, determinando l'espressione del generico polinomio che appartiene a $W \cap \mathbb{K}[x]_{\leq 4}$.
- (iv) Stabilire se $W \cup \mathbb{K}[x]_{<4}$ e' anch'esso un \mathbb{K} -sottospazio di $\mathbb{K}[x]$.

Esercizio 5. Sia $V=M(n\times n,\mathbb{R})$ lo spazio vettoriale delle matrici quadrate ad elementi nel campo \mathbb{R} . Denotiamo con $Sym\subset V$ il sottoinsieme delle matrici simmetriche a con $Antisym\subset V$ il sottoinsieme delle matrici antisimmetriche.

- (i) Dimostrare che Symed Antisymhanno una struttura di sottospazi vettoriali propri di ${\cal V}$
- (ii) Dimostrare che $Antisym \cap Sym = \{O\}.$
- (iii) Dimostrare che ogni $M \in V$ si scrive in modo unico come combinazione lineare di un elemento di Sym e di un elemento di Antisym.

Esercizio 6. Sia \mathbb{K} un campo e sia $\Phi : \mathbb{K}[x] \to Funz(\mathbb{K}, \mathbb{K})$ l'applicazione che associa al polinomio $p(x) \in \mathbb{K}[x]$ la funzione polinomiale $p : a \to p(a)$, per ogni $a \in \mathbb{K}$.

- (i) Dimostrare che se $\mathbb{K}=\mathbb{Q}$ oppure \mathbb{R} oppure \mathbb{C} , allora Φ e' una funzione iniettiva.
- (ii) Se invece $\mathbb{K} = \mathbb{Z}_2$, dimostrare che Φ non e' iniettiva.