Universita' degli Studi di Roma "Tor Vergata" Laurea Triennale in Matematica - a.a. 2021/2022

Corso: Geometria 1 con Elementi di Storia 1 Docente: Prof. A. Rapagnetta, Codocente: Prof. F. Flamini

III Foglio Esercitazioni

Esercizio 1. Si consideri \mathbb{R}^3 come spazio affine numerico sul campo \mathbb{R} , dotato di origine O coincidente con il vettore nullo e coordinate cartesiane affini (x_1, x_2, x_3) rispetto al riferimento canonico E_1, E_2, E_3 . Si consideri il sottospazio affine S definito dal seguente $SL(3,3;\mathbb{R})$

$$S: \begin{cases} 2x_1 + x_2 + x_3 &= 0\\ x_1 + x_2 - x_3 &= -1\\ 4x + 3x_2 - x_3 &= -2 \end{cases}$$

(i) Determinare equazioni cartesiane ed equazioni parametriche della giacitura $W_{\mathcal{S}}$, i.e. scrivere $W_{\mathcal{S}}$ sia come luogo delle soluzioni nello spazio vettoriale \mathbb{R}^3 di un opportuno sistema lineare omogeneo dedotto da quello definente \mathcal{S} sia come Span di opportuni vettori linearmente indipendenti dello spazio vettoriale \mathbb{R}^3 .

(ii) Scrivere equazioni parametriche di S, i.e. scrivere S come sottospazio affine dello spazio affine \mathbb{R}^3 nella forma $p + W_S$, per un opportuno punto $p \in S$.

(iii) Dato il punto q che nel, riferimento affine dato, ha coordinate $q=\begin{pmatrix} 0\\1\\2 \end{pmatrix}$, verificare

che $q \notin \mathcal{S}$ e determinare equazioni parametriche del minimo sottospazio affine \mathcal{T} che contenga sia q che \mathcal{S} .

(iv) Scrivere equazioni cartesiane di \mathcal{T} , i.e. esprimere \mathcal{T} come come luogo delle soluzioni nello spazio affine \mathbb{R}^3 di un opportuno sistema lineare non omogeneo.

Esercizio 2. Si consideri \mathbb{R}^4 come spazio affine numerico sul campo \mathbb{R} , dotato di origine O coincidente con il vettore nullo e coordinate cartesiane affini (x_1, x_2, x_3, x_4) rispetto al riferimento canonico E_1, E_2, E_3, E_4 . Si considerino i punti

$$q_{1} = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 0 \end{pmatrix}, q_{2} = \begin{pmatrix} 1 \\ 1 \\ -1 \\ 1 \end{pmatrix}, q_{3} = \begin{pmatrix} 0 \\ 0 \\ 3 \\ 1 \end{pmatrix}, q_{4} = \begin{pmatrix} 0 \\ -1 \\ 4 \\ 2 \end{pmatrix}$$

- (i) Determinare equazioni parametriche della retta affine $\overline{q_1q_2}$.
- (ii) Verificare che $\overline{q_1q_2q_3q_4} = \overline{q_1q_2q_3}$ come sottospazi affini.
- (iii) Determinare equazioni cartesiane del sottospazio affine $\overline{q_1q_2q_3}$.

Esercizio 3. Si consideri \mathbb{R}^2 come piano affine numerico sul campo \mathbb{R} , dotato di origine O coincidente con il vettore nullo e coordinate cartesiane affini (x_1, x_2) rispetto al riferimento canonico E_1, E_2 . Si consideri il punto $c = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ e la retta ℓ passante per

$$p = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
 e di giacitura $W := x_1 - x_2 = 0$.

- (i) Determinare le equazioni della riflessione rispetto al centro (punto) c.
- (ii) Scrivere una equazione cartesiana di ℓ .

- (iii) Determinare un' **equazione cartesiana** della retta r, ottenuta come retta riflessa della retta ℓ rispetto al centro c.
- (iv) Stabilire se le rette $r \in \ell$ risultano rette affini parallele o meno nel piano affine \mathbb{R}^2 .

Esercizio 4. Si consideri lo spazio vettoriale $V:=M_{2,2}(\mathbb{Q})$ ed il sottoinsieme

$$Z := \left\{ A \in V | \ A + A^t = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right) \right\} \subset V.$$

- (i) Stabilire se il sottoinsieme Z ha una struttura di sottospazio affine di V, quando V e' dotato della naturale struttura di spazio affine associato ad uno spazio vettoriale.
- (ii) In caso di risposta affermativa al punto (i), riconoscere la giacitura W_Z di Z come sottospazio noto e gia' studiato di V.
- (iii) Scrivere W_Z come Span di opportuni vettori linearmente indipendenti di V.