Universita' degli Studi di Roma "Tor Vergata" Laurea Triennale in Matematica - a.a. 2021/2022

Corso: Geometria 1 con Elementi di Storia 1 Docente: Prof. A. Rapagnetta, Codocente: Prof. F. Flamini

XI Foglio Esercitazioni

Esercizio 1. Sia dato lo spazio vettoriale numerico \mathbb{R}^3 , munito della base canonica $\mathcal{E} = \{\underline{e}_1, \underline{e}_2, \underline{e}_3\}$. Sia dato l'endomorfismo $f \in End(\mathbb{R}^3)$ soddisfacente le seguenti condizioni:

 \bullet Ker(f)e' il sottospazio di \mathbb{R}^3 definito dall'equazione cartesiana

$$x_1 - x_2 + x_3 = 0.$$

 \bullet preso il vettore $\underline{w}=\underline{e}_1+2\underline{e}_2,$ allora

$$f(\underline{w}) = 2\underline{e}_1 + 4\underline{e}_2.$$

- (i) Verificare che esiste una base \mathcal{B} per \mathbb{R}^3 costituita da **autovettori** dell'endomorfismo f, specificando precisamente rispetto a quali **autovalori** essi risultano essere autovettori.
- (ii) Determinare la matrice rappresentativa dell'endomorfismo f in base \mathcal{B} , i.e. scrivere la matrice $M_{\mathcal{B}}^{\mathcal{B}}(f)$.
- (iii) Scrivere la matrice rappresentativa dell'endomorfismo f in base canonica \mathcal{E} , i.e. scrivere la matrice $M_{\mathcal{E}}^{\mathcal{E}}(f)$.
- (iv) Scrivere $f(\underline{e}_i)$ come combinazione lineare dei vettori di \mathcal{E} , per ogni $1 \leq i \leq 3$.

Esercizio 2. Si consideri la matrice quadrata

$$A := \left(\begin{array}{cc} \frac{5}{2} & -1\\ 3 & -1 \end{array}\right)$$

ed il corrispettivo endomorfismo $L_A \in End(\mathbb{R}^2)$.

- (i) Verificare che $\lambda = \frac{1}{2}$ e' un autovalore della matrice A.
- (ii) Determinare equazioni cartesiane ed una base dell'autospazio

$$V_{\frac{1}{2}}(L_A) = Ker\left(L_A - \frac{1}{2}I_2\right),\,$$

che e' il sottospazio formato dal vettore nullo e da tutti gli autovettori di L_A relativi all'autovalore $\lambda = \frac{1}{2}$.

- (iii) Verificare che $\lambda = 1$ e' un altro autovalore della matrice A.
- (iv) Determinare equazioni cartesiane ed una base dell'autospazio

$$V_1(L_A) = Ker(L_A - I_2),$$

che e' il sottospazio formato dal vettore nullo e da tutti gli autovettori di L_A relativi all'autovalore $\lambda=1.$

- (v) Denotato con \mathcal{V} il sistema di vettori ottenuto dall'unione dei vettori della base dell'autospazio $V_{\frac{1}{2}}(L_A)$ e di quelli della base dell'autospazio $V_1(L_A)$, dedurre che \mathcal{V} e' una base per l'intero spazio vettoriale \mathbb{R}^2 .
- (vi) Determinare la matrice rappresentativa dell'endomorfismo L_A in base \mathcal{V} , i.e. scrivere la matrice $M_{\mathcal{V}}^{\mathcal{V}}(L_A)$.
- (vii) Considerata la base \mathcal{V}' , ottenuta permutando fra loro i vettori della base \mathcal{V} , determinare la matrice rappresentativa dell'endomorfismo L_A in base \mathcal{V}' , i.e. scrivere la matrice $M_{\mathcal{V}'}^{\mathcal{V}'}(L_A)$.
- (viii) Stabilire se $\lambda=2$ puo' essere un ulteriore autovalore di A.
- (ix) Utilizzando quanto calcolato precedentemente, scrivere esplicitamente la formula di

$$A^n = A \circ A \circ \dots \circ A$$

che denota il prodotto righe per colonne di A con se stessa per n volte.

Esercizio 3. Si considerino le seguenti matrici quadrate reali di ordine due

$$A:=\left(\begin{array}{cc}2&1\\0&2\end{array}\right),\ B:=\left(\begin{array}{cc}0&-1\\1&0\end{array}\right),\ C:=\left(\begin{array}{cc}3&1\\1&2\end{array}\right).$$

Stabilire quali fra esse e' l'unica matrice diagonalizzabile. Spiegare inoltre per quali motivi le due matrici residue non sono diagonalizzabili.