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1. Introduction

In probability theory, the so-called distributional symmetries of sto-
chastic processes play a fundamental role in many situations. As an
example, we mention De Finetti theorem(s) and its consequences and
generalisations like Hewitt and Savage and Ryll-Nardzewski theorems,
and many others. These symmetries concern the invariance properties
enjoyed by all finite joint distributions of a stochastic process.

Among the most analysed distributional symmetries, there are the
stationarity, exchangeability and spreadability, the first two ones in-
volving the shifts and the permutations on the index-set, respectively,
whereas the last one arises by considering the monoid generated by the
so called partial shifts, see e.g. [13] for an exhaustive treatment on
this point. For the most common distributional symmetries in classical
probability, the reader is referred e.g. to the seminal monograph [23]
and the references cited therein, for applications and further details.

Recently, the attempt to generalise and study such symmetries in
the quantum setting has provided also a huge amount of results and,
correspondingly, of the associated literature. For a, perhaps partial,
view on the topic, we refer to [10, 11, 12, 13, 14, 18] and the literature
cited therein.

The symmetry involving the invariance under the rotations for real
random variables is among the most natural ones. The invariance under
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unitary transformations for complex random variables can be described
in an analogous way, and thus we restrict our preliminary analysis to
the former situation.

The rotational invariance for any set (Xι)ι∈I of real, possibly un-
bounded, random variables is easily described in the following way. For
each integer n = 2, 3, . . . and for each choice of n indices ι1, ι2, . . . , ιn ∈
I, consider the joint distribution µι1,ι2,...,ιn of Xι1 , Xι2 , . . . , Xιn . which is
a probability measure on R×· · ·×R ≡ Rn.1 The set (Xι)ι∈I of random
variables is said to be rotatable or invariant under rotations if, for each
choice as above, and for each rotation O ∈ O(n), the corresponding
distributions are invariant: µι1,ι2,...,ιn = µι1,ι2,...,ιn ◦O.

We also recall that an extension of such a symmetry to the full
quantum case is done in [16], relative to the study of invariance property
of noncommutative processes under the ”bigger” object consisting of
the so-called quantum rotations. Among the most important results,
in that paper an operator-valued version of the celebrated Friedman
theorem is proven.

As it is not so difficult to recognise, the complete and clear under-
standing of the distributional symmetry associated to rotations presents
some conceptual and technical problems even in the classical case, as
we are going to explain with a commutative toy-model whose index-set
is made of only two elements. In other words, we consider the case
of the toy stochastic process indexed by the two-point set {1, 2}, by
noticing that the analysis can be easily extended to any set of indices.

Indeed, we start with two real-valued random variables X1, X2 de-
fined on the probability space (Ω,F,P). In such a situation, the joint
distribution of X1 and X2 is the Borel probability measure µ = µX1,X2

on R2 determined by the cumulative function Fµ by

Fµ(x1, x2) := µ
(
(−∞, x1]× (−∞, x2]

)
= P

(
{Xj ≤ xj, j = 1, 2}

)
,

see e.g. [4], Section 12.2

Definition 1.1. The random variables X1 and X2 are said to be ro-
tatable if

(1.1) µX1,X2 ◦O = µX1,X2 , O ∈ O(2) .

1See below for the definition of the joint distribution of a (finite) set of random
variables.

2Notice that the integrals involving (summable) functions f of X1 and X1 can be
directly expressed by the Lebesgue-Stieltjes integral against the cumulative func-
tions Fµ:

∫
Ω
f
(
X1(ω), X2(ω)P(dω) =

∫
R2 f(x1, x2)Fµ(dx1,dx2).
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We note that (1.1) is equivalent to

(1.2)

∫
R2

f ◦Otdµ =

∫
R2

fdµ , f ∈ L1(R2, µ), O ∈ O(2) .

Suppose now that∫
R2

|x1|n1|x2|n2dµ < +∞ , n1, n2 ∈ N .

In this case, we say that µ has moments of all orders. It is then
meaningful to define the sequence (mn1,n2)n1,n2 ⊂ R of moments of µ
by mn1,n2 :=

∫
R2 x

n1
1 x

n2
2 dµ.

Recall that a probability measure µ on R2 having moments of all or-
ders is uniquely determined by its moment if, given another probability
measure ν having moments of all orders with the same sequence of mo-
ments as µ, one has ν = µ.3 Note that, if µ is compactly supported,
then µ is determined by its moments thanks to the Stone-Weierstrass
theorem.

Proposition 1.2. If the joint distribution µ of the random variables
X1 and X2 has the moments of all orders and X1 and X2 are rotatable,
then for each n1, n2 ∈ N and O ∈ O(2),

(1.3)

∫
R2

xn1
1 x

n2
2 dµ =

∫
R2

(
O11x1 +O21x2

)n1
(
O12x1 +O22x2

)n2dµ .

Conversely, if µ is uniquely determined by the sequence (mn1,n2)n1,n2∈N,
then the condition in (1.3) implies the rotatablity for X1 and X2.

Proof. We note that all functions xn1
1 x

n2
2 are in L1(R2, µ) by assump-

tion, and then (1.2) yields (1.3).
Conversely, by an elementary change of variables, we argue that µ◦O,

O ∈ O, has also moments of all order, and again a change of variable
in (1.3) leads to∫

R2

xn1
1 x

n2
2 dµ =

∫
R2

xn1
1 x

n2
2 d(µ ◦O) , n1, n2 ∈ N, O ∈ O(2) .

But µ is assumed to be determined by its moments, and therefore
µ = µ ◦O for each O ∈ O(2).

�

3A useful sufficient condition under which µ is uniquely determined by the se-
quence of all moments, corresponding to the multivariate generalisation of the Car-
leman condition (cf. [7]), is provided in [32], Theorem 12.1. See also [25] and the
literature cited therein.
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We conclude this preliminary discussion by noticing that, by density,
(1.2) is equivalent to

(1.4)

∫
R2

f ◦Otdµ =

∫
R2

fdµ , f ∈ Co(R)⊗ Co(R), O ∈ O(2) ,

where the C∗-tensor product on Co(R) ⊗ Co(R) = Co(R2) is uniquely
determined, see e.g. [26], Theorem 6.4.1.

We are now in a position to rephrase the previous considerations
about the simple classical example described above in the setting of
(quantum) stochastic processes, described in [10, 11, 13].

Indeed, consider the sample algebra Co(R) together with its free
abelian product C∗-algebra

ab{1,2}Co(R) ∼ Co(R)⊗ Co(R) = Co(R2) ,

together with the ∗-representations ιj : Co(R)→ B
(
L2(R2, µ)

)
, j = 1, 2

given, for f ∈ Co(R), by(
ι1(f)g

)
(x1, x2) := f(x1)g(x1, x2), g ∈ L2(R2, µ)(

ι2(f)g
)
(x1, x2) := f(x2)g(x1, x2), g ∈ L2(R2, µ).

According to [11], Definition 2.2, we have a realisation of this sim-
ple stochastic process by the quadruple

(
Co(R), L2(R2, µ), {ι1, ι2}, 1

)
,

where 1 ∈ L2(R2, µ) is the constant function assuming the value 1,
µ-almost everywhere. Such a process is rotatable if, by definition, the
measure µ is rotation-invariant. Obviously, such a definition of rotata-
bility cannot be extended to the quantum case without providing some
further comments we are going to describe.

For such a purpose, we consider the ”single generator” X, given by
X(x) = x, of the sample algebra, and note that the C∗-algebra C0(R2),
concretely acting on the Hilbert space L2(R2, µ) by multiplication op-
erators, is generated by the embeddings ι1(X) = x1 and ι2(X) = x2,
obtaining the two ”coordinate-functions” x1 and x2, which provide mul-
tiplication operators by the coordinate x1 and x2.

Equally well, we can investigate the invariance under actions of uni-
tary operators instead of elements in the orthogonal group, that is for
the unitary group U(2) (or U(n) when n random variable are involved).
In this case, we consider the processes generated by a complex random
variable Z which, when the index-set is {1, 2} as above, leads to a prob-
ability measure µ on C2, and the embeddings ιj(Z), j = 1, 2, for which
ιj(Z) are the multiplication operator for the coordinate function zj,
acting on L2(C2, µ). Such, possibly unbounded, operators are normal,
and thus still commute with each other.
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By coming back to the real case, although the, mutually commuting
and self-adjoint, multiplication operators by the coordinates x1 and x2

will in general be unbounded unless µ is compactly supported, they still
generate the images of Co(R2) in B(L2(R2, µ) through their continuous
functional calculus with functions vanishing at infinity.

In such a situation, if the process is rotatable, that is the measure
µ is rotation-invariant, and µ is uniquely determined by its moments,
Proposition 1.2 asserts that the rotatability condition can be directly
stated in terms of the representations of the ”single generator” X
of Co(R), by (1.3). As we remarked, if µ is compactly supported,
µ is uniquely determined by its moments, and the ∗-representations
ι1(X) = x1 and ι2(X) = x2 are both bounded and generate a C∗-
algebra which is ∗-isomorphic to C

(
supp(µ)

)
.

The attempt to extend the notion of the rotatability, or equally well
the invariance under unitary transformations, to more general situa-
tions including the quantum one, meets several conceptual and techni-
cal problems, for which we are going to discuss some of them.

The first problem is when the (images of the) involved random vari-
ables, selfajoint or equally well normal, are unbounded. We note that
it could certainly appear when one approaches to (quantum) probabil-
ity from a purely algebraic setting by using that is usually denoted in
literature as algebraic probability spaces.

Indeed, in the framework of the algebraic probability spaces, the
starting point will be a pair (A, ϕ) made merely of an involutive unital
algebra, the algebra generated by all random variables, equipped with
a normalised positive functional, i.e. a state, describing all the joint
distributions of the process. Even if this would be the most natural
approach, many conceptual and technical problems arise soon. The
first one concerns the natural attempts to represent the process on a
suitable Hilbert space via the (generalisation of the) so-called Gel’fand-
Naimark-Segal (GNS for short) representation. Unfortunately, the ran-
dom variables, i.e. the elements of A, may be represented by un-
bounded operators and there is in general no cyclic vector reproducing
the stochastic process as the state ϕ. In addition, there might be ob-
structions to manage the algebraic operations like strong sums and
products. The reader is referred to [8], Theorem 3.2, for details about
this situation. We also note that, the commutativity of the random
variables might provide only little simplifications in order to overcome
such difficulties.

Concerning instead the quantum case, additional conditions must be
added to try to solve all those difficulties. Concerning this point, the
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reader is referred to [1, 2] where an analogous approach is followed to
handle gaussian states on the so-called Canonical Commutation Rela-
tion (CCR for short) algebra in the early rigorous analysis of quantum
field theory.

We now consider the simpler situation when we can reduce the mat-
ter to bounded random variables, that is when a stochastic process is
described as in [10, 11] by a quadruple (A, {ιj}j∈J ,H, ξ), made of a
C∗-algebra, called the algebra of samples, a set of ∗-homomorphisms
{ιj}j∈J of A whose images act on the Hilbert space H, and finally a
unit vector ξ which is cyclic for the ∗-algebra in B(H) generated by
all images ιj(A). In such a situation, the free product C∗-algebra ?JA
plays a crucial role, and the stochastic process is described by a state,
precisely the vector state induced by ξ ∈ H, on such a free product
?JA.

A distributional symmetry of the process under consideration, might
be then handled in the above mentioned simplified, but common, situa-
tion by using ?JA and the corresponding state ϕ. It might be expected
that any such a distributional symmetry induces ∗-automorphisms, or
merely completely positive (unital) maps of ?JA under which the state
ϕ is invariant.

This is certainly true when the symmetry under consideration can
be managed by looking at the index-set J . Among those, we men-
tion stationarity, exchangeability, and finally spreadability studied in
[13]. It can also happen that some distributional symmetry cannot
be directly established in terms of completely positive maps of the
C∗-algebra describing the involved random variables, which is indeed a
suitable quotient of the free product C∗-algebra. This is the case of the
exchangeability of the so called monotone stochastic processes because
the permutations of the indices destroy the order of such index-sets.
However, yet in this situation, we can reduce the matter to a care-
ful use of the permutations as described in [12]. Unfortunately, when
one manages ”continuous” symmetries like rotatability, the approaches
described above fail also in the commutative cases.

Another natural fact we would like to remark is the following one.
Suppose that the algebra A of the samples is singularly generated by
a unique (bounded) element x as in the simple commutative scheme
previously described. Take a (continuous and bounded) vector-valued
function F : R2 → R2 and look at the process which is a ”function” of
the previous one through F, namely it is generated by the new random
variables

(Y1, Y2) := (F1(X1, X2),F2(X1, X2)) .
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It is easy to convince ourselves that this new process might not enjoy
the same invariance properties of the previous one, as we can see with
the following simple cases.

The first one involves two classical variablesX1, X2 as before and con-
cerns exchangeability. For instance, if X1, X2 are Bernoulli-distributed
with parameter 0 < p < 1 different from 1

2
, then 1 − X1 and X2 no

longer have the same distribution, for 1 − X1 is a Bernoulli variable
with parameter 1− p. Therefore, 1−X1 and X2 are not exchangeable
because exchangeable variables are in fact equally distributed. Note
that the transformation of the two variables X1, X2 is induced by the
function F(x1, x2) = (1 − x1, x2) which realises a homeomorphism of
the spectrum {0, 1}2 of the product C2⊗C2 of the sample algebra C2.

The same can be viewed with rotatability, where we are supposing
that two random variables ι1(x) = X1 and ι2(x) = X2 are rotatable,
which simply means that their joint distribution µX1,X2 is rotation-
invariant as in Definition 1.1. For the function F(x1, x2) = (1− x1, 1−
x2), the new variables Y1 = 1 − X1 and Y2 = 1 − X2 are no longer
rotatable as can be easily seen as follows. Indeed, applying (1.3) with
k = 2, n1 = 1 and n2 = 0 (or n1 = 0 and n2 = 1), O ∈ O2 the
rotation by π, one sees at once that E[X1] = E[X2] = 0. But then,
(1 − X1, 1 − X2) cannot be rotatable since their expectations are not
zero.

As a final consideration, it is not so difficult to recognise that fol-
lowing fact. Once have established the generator of the algebra of the
samples, any reasonable way to manage the invariance by rotations, or
equally well that by unitary transformations, by ∗-automorphisms of
the free product C∗-algebra is doomed to fail. This is certainly enough
for the purpose of the present paper which deals with distributional
symmetries.

At the light of the previous considerations explaining all possible
troubles encountered when one try to manage more complicated sym-
metries like rotatability for real random variables, or unitary invariance
for general ones, and extend them to the quantum context in a rea-
sonable way, it clearly emerges that we must restrict the matter to the
case when the algebra of samples is the involutive algebra generated by
a single generator. Therefore, for such a purpose a slightly extended
definition of quantum stochastic processes based on an algebra of sam-
ples which is merely an involutive algebra is also described below. This
picture can be also considered merely in providing the right quantum
generalisation of an arbitrary set of ”quantum random variables”.
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2. Preliminaries

We gather here some facts useful for the following sections.

Basic facts.
For any Hilbert space H (including C), by I we denote the identity

1IH of B(H), if it causes no confusion.

Dynamical systems.
The triplet (A,M,Γ) is said, with an abuse of notations, a C∗-

dynamical system if A is a C∗-algebra, M is a monoid, and finally
Γ is a representation g ∈M 7→ Γg of M by completely positive identity
preserving (i.e., unital) maps of A.

In some cases, M is replaced by a group G, and in the C∗-dynamical
system (A, G, α) α is indeed a representation of G into the group of
the ∗-automorphisms Aut(A) of A. In the latter case, one speaks of
reversible dynamics, whereas dissipative dynamics appears in absence
of bijections, see, e.g., [6]. In this situation, we say that the monoid M
or the group G are acting on A

By S(A) we denote the convex of the states on A, that is the positive
normalised linear functionals on A. S(A) is weakly ∗-compact, provided
that A is unital with unit 1IA.

Let ϕ ∈ S(A) be invariant under the action of each element of M ,
i.e., ϕ ◦ Γg = ϕ, g ∈ M , and consider the Gel’fand-Naimark-Segal
(GNS for short) representation

(
Hϕ, πϕ, ξϕ

)
. Then there exists a unique

contraction Vϕ,g ∈ B(Hϕ) such that Vϕ,gξϕ = ξϕ and

Vϕ,gπϕ(a)ξϕ = πϕ(Γg(a))ξϕ , a ∈ A ,

see, e.g., [28], Lemma 2.1. The quadruple
(
Hϕ, πϕ, Vϕ,g, ξϕ

)
is called

the covariant GNS representation associated to the invariant state ϕ.
If the Γg are multiplicative, the Vϕ,g are isometries. If in addition the
Γg are invertible, then the Vϕ,g are unitaries.

The convex, compact in the ∗-weak topology, subset of all invariant
states is

SM(A) :=
{
ϕ ∈ S(A) | ϕ ◦ Γg = ϕ , g ∈M

}
.

The set of the extremal invariant states (i.e., the extreme boundary) is
denoted by EM(A) := ∂SM(A). Those are, by definition, nothing else
than the ergodic states under the action Γ of M .

Direct limit of matrix-groups.
Let us denote by F the field of real or complex numbers R or C, and

for any natural number n the general linear group GL(n,F). If J is an
arbitrary set of indices, the direct limits of such general linear groups
can be viewed in B(`2(J)) as the matrices S whose entries are those of
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the I = 1I`2(J), but k, l that belongs to some finite subset F ⊂ J and S,
when restricted to these entries, defines in a canonical way an element
of GL(|F |,F).4 We denote by GL(J,F) such a direct limit of the finite
dimensional general linear groups lim

−→ F↑J GL(F,F).

Since all matrix-groups O(n), U(n) and GL(n,R) are subgroups of
GL(n,C), all direct limits O(J), U(J) and GL(J,R) can be viewed as
subgroups of GL(J,C).

The group PJ of all permutations of the set leaving fixed all indices,
but some finite subset of J , is also viewed as a subgroup of all the above
direct limits. In the forthcoming analysis, we restrict our attention to

O(J), U(J) and PJ .

Algebraic stochastic processes and distributional symmetries.
We present a purely algebraic version of a stochastic process which

is suitable for the investigation of the distributional symmetries asso-
ciated to the direct limit groups previously described.

Indeed, a (realisation of a) quantum stochastic process labelled by the
index set J is a quadruple

(
A,H, {ιj}j∈J , ξ

)
. Here, A is an involutive

algebra, referred to as the sample algebra of the process, H is a Hilbert
space whose inner product, denoted by 〈 · , · 〉, is linear w.r.t. the left
argument, the maps ιj are ∗-morphisms from A to B(H), and ξ ∈ H is
a unit vector, cyclic for the ∗-algebra generated by all ranges {ιj(A) |
j ∈ J}. If A is unital and ιj(1IA) = 1IH, j ∈ J , the process is said to be
unital.

The finite dimensional joint distribution of a stochastic process as
above are simply defined as follows. For each positive integer n, first
consider any any finite subset {j1, . . . , jn} ⊂ J where, to simplify, we
can suppose that the contiguous indices are all different. Then for each
subset {a1, . . . , an} ⊂ J ,

(2.1) Ej1,...,jn(a1, . . . , an) := 〈ιj1(a1) . . . ιjn(an)ξ, ξ〉 .
The set of multi-linear functionals

{Ej1,...,jn | j1, . . . , jn ∈ J, n = 1, 2, . . . }
on A× · · · × A︸ ︷︷ ︸

n-times

constitutes all such finite dimensional joint distribu-

tions, which determine the process (up the unitary equivalences).
It should be noticed that, by universality, all maps ιj determine a

universal (unital) ∗-morphism ι : (∗JA)(o) → B(H) of the (unital)
algebraic free product (∗JA)(o) into B(H).

4We consider `2(J) over the complex field, and equipped with the canonical basis
made of ei(j) = δi,j , i, j ∈ J , δi,j being the Kronecker symbol.
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In the case when A is a C∗-algebra, a quadruple as above can equiv-
alently be assigned through a state ϕ on the free product C∗-algebra
∗JA, the last being the C∗-completion of (∗JA)(o), see e.g. [35], Ap-
pendix L.

Indeed, if one starts with a stochastic process, then a state ϕ on ∗JA
is uniquely determined by its values on the words in (∗JA)(o) given
by the Ej1,...,jn , such that the GNS representation is (π,H, ξ) and π :
∗JA→ B(H) is uniquely determined from the set of ∗-homomorphisms
{ιj}j∈J by universality.

Rather interestingly, all states on the free product ∗JA arise in this
way, see [10], Theorem 3.4. Phrased differently, starting now with
a state ϕ ∈ S

(
∗J A

)
, it is possible to recover a stochastic process by

looking at the GNS representation (πϕ,Hϕ, ξϕ) of ϕ, and at the natural
maps ij : A → ∗JA, j ∈ J . Indeed, for any j ∈ J we can set ιj(a) :=
πϕ(ij(a)), a ∈ A, so as to get the quadruple

(
A,Hϕ, {ιj}j∈J , ξϕ

)
which

satisfies all the properties that define a quantum stochastic process.
In addition, the state associated with this quadruple, and uniquely
determined by all finite dimensional joint distributions, is nothing but
the state ϕ we started with.

It is of certain relevance that some distributional symmetry can be
handled directly looking at the corresponding properties of the invari-
ance of the corresponding state, provided such a distributional symme-
try is described by the action of the involved group or monoid. This is
certainly the case of stationarity, exchangeability and spreadability as
explained in the sequel of papers [10, 11, 12, 13, 14, 18]. As we have
previously explained, this seems not to be the case for the invariance
under the orthogonal and unitary symmetries.

Quantum random variables.
We provide the definition of an arbitrary sequences of quantum ran-

dom variables. Namely, it is a triple V :=
(
H, {Tj}j∈J , ξ

)
, where H is

an Hilbert space {Tj}j∈I ⊂ B(H), J being an arbitrary set of indices,
is a subset of bounded operators acting on the Hilbert space H, and
finally ξ ∈ H is a unit vector.

The set of their finite dimensional joint distributions can be com-
puted as in (2.1), by replacing the ιj(aj) with the Tj, respectively.
Therefore, we can suppose without loosing generality, that ξ is cyclic for
the Tj. In fact, the orthogonal projection PV onto the cyclic subspace[
{Tj}j∈Jξ

]
commutes with all the Tj, and so reduces simultaneously all

of them. We then argue that V :=
(
H, {Tj}j∈J , ξ

)
is weakly equivalent

(in the sense that all the finite dimensional joint distributions coincide)
to VPV

=
(
PVH, {TjPV }j∈J , ξ

)
.
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We say that the sequences of random variables V :=
(
H, {Tj}j∈J , ξ

)
is real if all the Tj are selfadjoint, and in this situation we speak of a
set of real random variables.

The bridge with the algebraic stochastic processes previously defined
is, first to consider the algebra of the samples as the free involutive
algebra A generated by a single generator ao, second to define the ιj on
the generator ιj(ao) := Tj, and finally extend in the obvious manner
the ιj to ∗-morphisms on A.

3. Invariance under the rotations and unitary
transformations

We first manage the invariance under the group of rotations. For
such a purpose, we fix once for all an abstract selfadjoint generator
ao = a∗o, and consider the involutive complex free abelian algebra A :=
span{ano | n ∈ N} obtained by linear combinations of monomials of
arbitrary degrees, where a0

o := 1 = 1IA. We should have denoted such
an involutive algebra by Aao , but we drop the subscript when it causes
no confusion. We also consider unital stochastic processes if it is not
otherwise specified.

Let us consider the stochastic process P :=
(
A,H, {ιj}j∈J , ξ

)
with

A = Aao as above. For each choice of finite subsets F ⊂ J and O ∈
O(|F |), define the new process P (F,O) =

(
A,H,

{
ι
(F,O)
j

}
j∈J , ξ

)
, where

ι(F,O) are the same as before, but j ∈ F where, for the generator ao,

(3.1)
(
ι
(F,O)
j1

(ao), . . . , ι
(F,O)
jn

(ao)
)

:=
(
ιj1(ao), . . . , ιjn(ao)

)
O ,

where the product is understood as the row-column one between the
row-vector

(
ιj1(ao), . . . , ιjn(ao)

)
and the matrix O.

For monomials ako , which linearly generate A, it is elementary to
recognise that, with an abuse the notations,

(3.2) ι
(F,O)
j (ako) := ι

(F,O)
j (ao)

k , j ∈ J, k ∈ N ,

by using (3.1), ∗-morphisms ι
(F,O)
j of A are uniquely determined.

Definition 3.1. We say that the process P =
(
A,H, {ιj}j∈J , ξ

)
, with

A generated by a selfadjoint element ao, is rotatable if the finite di-
mensional joint distributions in (2.1) of the process P and those of
the transformed processes P (F,O) under the action of the rotations co-
incide, for each choice of n, finite subsets F ⊂ J , orthogonal matrices
O ∈ O(|F |), and finally a1, . . . , an ∈ A:

〈ι(F,O)
j1

(a1) . . . ι
(F,O)
jn

(an)ξ, ξ〉 = 〈ιj1(a1) . . . ιjn(an)ξ, ξ〉 .
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In order to manage the invariance under the the unitary group,
we proceed as follows. Fix an abstract generator ao, and consider
all noncommutative monomials, or reduced words of arbitrary length
n, w = (a#1

o )k1(a#2
o )k2 · · · (a#n

o )kn . Obviously, for the empty word
(a∗o)

0 = a0
o =: 1IA, #i ∈ {1, ∗}, and with

#∗i =

{
∗ if # = 1 ,

1 if # = ∗ ,

w∗ :=
(
a

#∗
n

o

)kn(
a

#∗
n−1

o

)kn−1 · · ·
(
a

#∗
1

o

)k1 , all words as above linearly gen-
erate the free involutive unital algebra A, which in this case is not
commutative. The case when the generator is supposed to be nor-
mal (i.e. aoa

∗
o = a∗oao) is achieved simply considering all commutative

monomials {amo (a∗o)
n | m,n ∈ N}.

For any process P :=
(
A,H, {ιj}j∈J , ξ

)
, where now A is generated by

a non selfadjoint (possibly normal) element ao, it is possible to define
its transformed process P (F,U), where U ∈ U(|F |) as above, by putting(

ι
(F,U)
j1

(ao), . . . , ι
(F,O)
jn

(ao)
)

:=
(
ιj1(ao), . . . , ιjn(ao)

)
U ,

ι
(F,U)
j

(
(a#
o )k
)

:=
(
ι
(F,U)
j (ao)

#
)k
, j ∈ J, # = 1, ∗, k ∈ N .

(3.3)

Here, U ι,κ := Uικ for all ι, κ ∈ J .5

Equally well, it is clear as before that the ι
(F,U)
j in (3.3) uniquely

extend by linearity to ∗-morphisms of A, and therefore determine the

transformed process P (F,U) :=
(
A,H,

{
ι
(F,U)
j

}
j∈J , ξ

)
,.

Definition 3.2. We say that the process P =
(
A,H, {ιj}j∈J , ξ

)
, with A

generated by a, possibly non selfadjoint element, ao, is invariant under
unitary transformations if the finite dimensional joint distributions in
(2.1) of the process P and those of the transformed processes P (F,U)

under the action of the rotations coincide, for each choice of n, finite
subsets F ⊂ J , unitary matrices U ∈ U(|F |), and finally a1, . . . , an ∈
A:

〈ι(F,U)
j1

(a1) . . . ι
(F,U)
jn

(an)ξ, ξ〉 = 〈ιj1(a1) . . . ιjn(an)ξ, ξ〉 .

We would like to point out that the invariance under O(J) or U(J)
can be equally well managed by considering only the corresponding in-
variance for the set V of random variables given by V =

(
H, {ιj(ao)}j∈J , ξ

)
.

5The reason to choosing the conjugate matrix is clarified in the proof of Propo-
sition 4.1.



ROTATABILITY 13

We can also see in simple but pivotal examples like the so-called
boolean stochastic processes, that the invariance under orthogonal or
unitary matrices can be managed in a more direct way.

4. Invariant boolean processes

Let H be a complex Hilbert space. Recall that the boolean Fock
space over H is given by ΓBoole(H) := Γ(H) = CΩ ⊕ H, where the
vacuum vector Ω is (1, 0). On Γ(H), we define the creation and anni-
hilation operators, respectively given for f ∈ H, by

b†(f)(α⊕ g) := 0⊕ αf, b(f)(α⊕ g) := 〈g, f〉H ⊕ 0, α ∈ C, g ∈ H.

They are mutually adjoint, and satisfy the following relations for f, g ∈
H,

b(f)b†(g) = 〈g, f〉H〈 · ,Ω〉Ω , b†(f)b(g) = 〈 · , 0⊕ g〉0⊕ f .

As shown in [10], Section 7, the unital C∗-algebra b acting on Γ(`2(N))
generated by the annihilators {b(f) | f ∈ `2(N)} coincides with K(Γ(H))+
CI.

It is then natural to view any state on b = K(Γ(H)) + CI as a
boolean stochastic process (cf. [18]), and thus some invariance proper-
ties of the distributional symmetries can be managed directly in terms
of invariance properties of the states under consideration. We will see
that it is possible for rotatability and unitary invariance. We start with
the latter.

For U ∈ U(H), define Γ(U) := I
⊕

U ∈ U(Γ(H)), and put G :=
adΓ(U(H)) ⊂ Aut(b). As we are going to see, the states ω ∈ S(b), or
equally well the boolean stochastic processes, which are invariant under
the transposed action of (a subgroup of) G play a crucial role in the
definition of invariance under the unitary action.

For such a purpose, we specialise the situation to H = `2(J) for
the index-set J of arbitrary cardinality. We also note that the algebra
of samples A is isomorphic to M2(C) and is generated by the single

annihilator

(
0 1
0 0

)
. In such a situation,

b = K(`2({#}
⊔

J)) + CI ,

Under such an identification, annihilators and creators are expressed
by the system of matrix-units as follows:

(4.1) bι = ε#ι, b
†
ι = ει#, bιb

†
κ = δι,κε##, b

†
ιbκ = εικ, ι, κ ∈ J ,
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where the additional symbol ”#” takes into account of the vacuum
vector Ω. We also note that

εl1l2 = 〈 · , δl2〉δl1 , l1, l2 ∈ {#}
⊔

J ,

is the rank-one operator mapping the element δl2 in the canonical basis
of `2({#}

⊔
J), to the other one δl1 . In such a situation, U(J) in Section

2 is viewed as a subgroup of U(`2({#}
⊔
J)) in a natural way.

The following fact will be crucial in defining the invariance under
unitary matrices of boolean processes.

Proposition 4.1. For the set {εkl | k, l ∈ {#}
⊔
J} of matrix-units in

(4.1) and U ∈ U(J),

Γ(U){εkl | k, l ∈ {#}
⊔

J}Γ(U)∗ =: {ekl | k, l ∈ {#}
⊔

J}

provides a set {ekl | k, l ∈ {#}
⊔
J} of matrix-units, denoted by ekl,

satisfying the same relations as those of the original one in (4.1), and
generating together the identity I, the whole algebra b.

In particular e## = ε##, and for the generators {bι | ι ∈ J} and the
transformed generator

Bι := e#ι = Γ(U)bιΓ(U)∗ ,

we get

(4.2) Bι =
∑
κ∈J

bκUκι .

Proof. We start by noticing that, since V = Γ(U) is unitary, {ekl |
k, l ∈ {#}

⊔
J} still generates K(`2({#}

⊔
J)), and thus the whole b

after adding the identity. Since V is the second-quantised of U , ε#,ι and
correspondingly its adjoint ει,#, are sent in e#,ι and eι,#, respectively.
It is also immediate to check that Γ(U)ε##Γ(U)∗ = ε##.

Concerning the remaining part, we first note that the sum in (4.2)
is finite because U ∈ U(J). Therefore, we easily compute

Bι =Γ(U)bιΓ(U)∗ = 〈 · , Uδι〉δ# =
〈
· ,
∑
κ

Uκιδκ

〉
δ#

=
∑
κ

〈 · , Uκιδκ〉δ# =
∑
κ

Uκι〈 · , δκ〉δ# =
∑
κ

bκUκι .

�

As before, we can easily compute

B†ι = (Bι)
∗ =

∑
κ

b†κUκι = 〈 · , δ#〉
∑
κ

Uκιδκ

=〈 · , δ#〉Uδι = Γ(U)b†ιΓ(U)∗ ,
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which implies the analogous formulas for the remaining matrix-units.
To pass to the invariance under the orthogonal group, we consider the

selfadjoint part of the annihilators sι := bι + b†, usually called the po-
sition variable according to the standard terminology of quantum field
theory. It is shown that, differently from that happens for systems sat-
isfying the q-relations but in accordance with monotone commutation
relations (cf. CFL), the concrete C∗-algebra generated by {sι | ι ∈ J}
and the identity coincides with the whole boolean algebra.

For such a purpose, we first note that O(J) ⊂ U(J) with real entries,
and for O ∈ O(J), we compute as before,

Γ(O)sιΓ(O)∗ =Γ(O)(bι + b†ι)Γ(O)∗ =
∑
κ∈J

bκOκι +
∑
κ∈J

b†κOκι

=
∑
κ∈J

(bκ + b†κ)Oκι =
∑
κ∈J

sκOκι .(4.3)

As the previous symmetries, like stationarity, exchangeability and
spreadability studied for boolean stochastic processes, and also for
other kind of quantum stochastic processes, the idea is to provide the
definition of the orthogonal and unitary invariance directly on the in-
volved algebras, the boolean one b in this case. In such a way, the
problems arising with relations and quotients to pass from the univer-
sal free (C∗-)algebra to the particular ones is automatically overcame.
In this case, as well as for the monotone stochastic processes, the prob-
lem involving relations and quotients directly in the sample ∗-algebra
is also automatically overcame.

Therefore, by taking into account (3.1) and (3.3), Definitions 3.1 and
3.2, (4.3) and (4.2), and identifying boolean stochastic processes with
states on the boolean algebra, it is meaningful to provide the following

Definition 4.2. A boolean stochastic process with arbitrary index-set
J , is invariant under the action of the orthogonal (resp. unitary) matri-
ces if the corresponding state ω ∈ S(b) is invariant under the (transpose
of the) adjoint action adΓ(O) (resp. adΓ(U)), for each O ∈ O(J) (resp
U ∈ U(J)).

We recall the definition of the state at infinity

ω∞(a+ αI) := α , a ∈ K(`2({#}
⊔

J)), α ∈ C .

The vacuum state is simply given by ω# = 〈 · , δ#, δ#〉.

Remark 4.3. Since PJ ⊂ O(J) ⊂ U(J), and the state at infinity ω∞
and the vacuum state ω# are invariant under the action of the unitary
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group U(J), by [14], Section 7, we have the expected result

EU(J)(b) =EO(J)(b) = EPJ
(b)

={γω# + (1− γ)ω∞ | γ ∈ [0, 1]} .

We end by point out that the quite interesting emerging fact is not
just to discover that the states invariant under rotation and unitary
groups coincide with the symmetric ones (the last corresponding to
exchangeable boolean stochastic processes), but the way to achieve the
action of the orthogonal and unitary symmetries for the Boole algebra.
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