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ON VALIRON’S THEOREM

FILIPPO BRACCI AND PIETRO POGGI-CORRADINI

Abstract. This is a survey on Valiron’s Theorem about the convergence prop-
erties of orbits of analytic self-maps of the disk of hyperbolic type and related
questions in one and several variables.

1. Introduction

Let D = {z ∈ C : |z| < 1} and let φ be an analytic function defined on D.

If |φ(z)| < 1 for |z| < 1, then φ is a self-map of the disk D and one can iterate

by letting φn = φ ◦ · · ·φ, n times. The natural question that arises is given a point

z0 ∈ D, what can be said about its orbit zn = φn(z0), as n = 1, 2, 3, . . . ? In this survey

we will describe a theorem of Valiron which relates to this question and describe the

multidimensional setting.

1.1. Schwarz’s Lemma. One of the very first results one encounters in function

theory is Schwarz’s Lemma, which can be proved using the maximum principle.

Lemma 1 (Schwarz’s Lemma). Suppose φ is an analytic self-map of D. If, moreover,

φ(0) = 0 then

(1) |φ(z)| ≤ |z| for all z ∈ D.

(2) |φ(z0)| = |z0| for some z0 6= 0 if and only if φ is a rotation.

(3) |φ′(0)| ≤ 1 and |φ′(0)| = 1 if and only if φ is a rotation.

The proof is based on the fact that the function φ(z)/z is analytic and bounded

by 1.

Geometrically, Schwarz’s Lemma says that for every 0 < r < 1:

φ(rD) ⊂ rD,

and from the proof one deduces more precisely that, except for rotations, for every

0 < r0 < 1 there exists 0 < s0 < 1 such that for 0 < r < r0,

(1.1) φ(rD) ⊂ s0rD.

The maximum principle and Schwarz’s Lemma can be used to show that the au-

tomorphisms of D are of the form

γ(z) = c
z − a

1− āz
5
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for some constants |c| = 1 and |a| < 1. All the automorphisms γ send the point a ∈ D
to 0, and we write γa when the constant c equals 1. Using these automorphisms one

can transfer the system of disks rD (0 < r < 1) around any given point a ∈ D:

∆(a, r) = γ−1
a (rD).

These are called pseudo-hyperbolic disks of radius r at a. Because linear fractional

transformations map circles to circles, ∆(a, r) is an Euclidean disk, but a is not the

Euclidean center (actually a is further from the origin). With this notation, a simple

use of the γz and γφ(z) shows that given any analytic self-map φ of D, and for any

z ∈ D, we always have,

(1.2) φ(∆(z, r)) ⊂ ∆(φ(z), r)

for all 0 < r < 1. Moreover, by continuity and compactness, given a compact set

K = {|z| ≤ t} for some 0 < t < 1, and given a radius 0 < r0 < 1 there exists a

constant s0 < 1 so that uniformly for z ∈ K and for 0 < r < r0:

(1.3) φ(∆(z, r)) ⊂ ∆(φ(z), s0r).

This can also be worded in terms of the pseudo-hyperbolic distance

d(z, w) = |γz(w)| =
∣∣∣∣

z − w

1− w̄z

∣∣∣∣ for z, w ∈ D.

Although we call it distance, d(z, w) does not satisfy the triangle inequality, yet it

almost does for small distances because of the formula:

d(z, w) ≤ d(z, ζ) + d(ζ, w)

1 + d(z, ζ)d(ζ, w)
.

An actual distance is obtained by letting

ρ(z, w) = log
1 + d(z, w)

1− d(z, w)
.

This is the hyperbolic distance of D.

1.2. One fixed point in D. If a self-map of the disk fixes two points, conjugating

it using an automorphism and using part 2. of Schwarz’s Lemma 1, one proves that

it is actually the identity map. Thus every other self-map of the disk can fix at most

one point in D.

If a self-map fixes exactly one point in D it is called of elliptic type. In this case,

the map can be conjugated by automorphisms so that the fixed point is the origin,

hence the power series expansion there is:

φ(z) = λz + O(z2)

where λ = φ′(0) ∈ D. Three subcases arise: when |λ| = 1, the map φ is a rotation;

if 0 < |λ| < 1 the fixed point is called attractive, if λ = 0 it is superattractive. The

behavior of single orbits is well understood in all these cases.
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For instance, in the attractive case, it is clear from (1.1) that every orbit tends to

zero. Moreover, by Kœnigs Theorem (which is proved using property (1.3)), there is

a one-to-one analytic map σ defined near 0 with σ(0) = 0 and σ′(0) = 1 such that

(1.4) σ ◦ φ(z) = λσ(z)

near 0, i.e one can change coordinates holomorphically so that φ becomes linear, and

because of the condition on σ′(0) being equal to 1, the orbits zn = φn(z0) asymp-

totically approach the corresponding orbit λnσ(z0). It is worth notice that σ can be

extended (not univalently in general) to all D in such a way that (1.4) still holds.

In the superattractive case, the orbits tend fast to the origin. Even in this case

it is possible to perform an holomorphic change of variables near the origin in such

a way that φ assumes a simpler form. Namely, if φ(z) = O(zk) then by Böttcher’s

Theorem there exists a one-to-one analytic map σ defined near 0 so that σ(0) = 0,

σ′(0) = 1 and

(1.5) σ ◦ φ(z) = σ(z)k

near 0. In this case however the map σ cannot be in general well defined on all D.

For all these matters we refer the interested reader to [CG92].

1.3. No fixed points in D. Assume that the self-map φ fixes no point in D. Then

either φ is an automorphism of D in which case it is an isometry for the hyperbolic

distance, or, by Schwarz’s Lemma, φ is a strict contraction, i.e.

d(φ(z), φ(w)) < d(z, w).

for all z, w ∈ D. If φ is an automorphism then it can be conjugated to one of two

maps: either multiplication by T > 1 on the upper half-plane H = {Im z > 0}
(hyperbolic automorphism) or translation by b > 0 on H (parabolic automorphism).

We will see that φ can also be classified as hyperbolic or parabolic when it is not

an automorphism. However, even though self-maps of the disk with no fixed points

do try to imitate the behavior of the automorphisms in the long run, this is only

true to varying degrees and the situation is much more complicated, especially in the

parabolic case. The main topic of this survey is to describe self-maps φ of hyperbolic

type.

We will proceed in stages. The first claim is that given a self-map of the disk there

exists a point ζ ∈ ∂D such that every orbit of φ converges to ζ. This allows one to

change variables to the upper half-plane and send ζ to infinity. Computation usually

become easier in this formulation, although it might still be useful to work in both

models in view of the possible extentions to several complex variables. The point ζ is

the famous Denjoy-Wolff point of the map φ. The second claim is that, like in the case

of automorphisms, if φ (not an automorphism) is in the upper half-plane model with
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Denjoy-Wolff point at infinity, then either Im φ(z) > Im z for all z ∈ H (parabolic

case), or there is T > 1 such that Im φ(z) > T Im z for all z ∈ H (hyperbolic case).

Notice that if φ is not an automorphism then the previous inequalities are strict at

every point. Indeed, by a generalization of Schwarz’s Lemma known as Julia’s Lemma

(see below), if there is equality at some point then there is equality everywhere and

φ is an automorphism of either parabolic type (in the first) or hyperbolic type (in

the second).

In more geometric terms, letting H(s) = {Im z > s}, φ(H(s)) ⊂ H(Ts) for some

T ≥ 1. The half-planes H(s) are called horodisks because in the disk model they

correspond to Euclidean disks tangent to ∂D at the Denjoy-Wolff point.

We first observe that if φ is a self-map of D with no fixed points and φ is not an

automorphism, then no iterate of φ can have fixed points in D either. In fact, suppose

that φN(z0) = z0 for some N ≥ 2 and some z0 ∈ D. The the orbit of z0 is periodic of

period N and so are the steps dn = d(zn, zn+1), which contradicts the fact that dn is

a strictly decreasing sequence by Schwarz’s Lemma.

This can be used to show that any orbit zn cannot accumulate anywhere in D, i.e.

must eventually escape any given compact set. In fact, suppose that a subsequence

znk
tends to p ∈ D. Find 0 < t < 1 so that |p| < t and let K = {|z| ≤ t}, also let

s < 1 and 0 < r0 < 1 be given as in (1.3). Eliminating finitely many terms, we can

assume that znk
∈ K for all k. Choose a radius 0 < r0 < 1 close enough to 1 so that

the pseudo-hyperbolic disk D = ∆(zn1 , r0) contains K. By (1.3) we have

φnk
(D) ⊂ ∆(znk

, sk
0r0),

and since sk
0 tends to zero and znk

tends to p, we must have for large enough k0 that

φnk0
(D) ⊂ D. This implies that φnk0

has a fixed point in D but we have ruled out

fixed points for the iterates of φ.

The next step is to show that given an orbit zn, not only |zn| tends to one but

actually zn tends to some ζ ∈ ∂D. For this we need a boundary consequence of

Schwarz’s Lemma known as Julia’s Lemma.

1.4. Julia’s Lemma. We will present a simplified version of Julia’s Lemma which

is more suitable to our purposes. First we use the Poisson kernel at ζ ∈ ∂D to define

the horodisks at ζ:

(1.6) H(t) = {z ∈ D :
1− |z|2
|ζ − z|2 >

1

t
}.

Note that H(t) is decreasing as t ↓ 0 and ∩t↓0H(t) = ∅ while ∪t↑∞H(t) = D.
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Lemma 2. Let φ be an analytic self-map of D and let pk ∈ D be a sequence of points

tending to ζ ∈ ∂D. If φ(pk) also tends to ζ and the ratio

1− |φ(pk)|
1− |pk| −→ d > 0,

as k →∞, then for all t > 0

(1.7) φ(H(t)) ⊂ H(dt).

The general version of Julia’s Lemma allows for φ(pn) to be tending to some other

boundary point η ∈ ∂D and also does not assume d > 0, but deduces it. The proof of

this lemma is obtained by applying Schwarz’s Lemma in the form (1.2) to hyperbolic

disks centered at pn of larger and larger radius so that these disks tend to the horodisk

H(t). Note also that while (1.2) contracts the hyperbolic radius, when d > 1 equation

(1.7) only requires for a smaller horodisk to be mapped into a larger one.

Now consider an orbit zn. We have seen above that |zn| tends to 1. Choose a

subsequence znk
such that

|znk+1| = |φ(znk
)| ≥ |znk|

and further assume that znk
tends to some point ζ ∈ ∂D. Since d(znk

, φ(znk
)) ≤

d(z0, z1), φ(znk
) also tends to ζ. Hence, we can apply Julia’s Lemma, with pk = znk

and with d ≤ 1, to find that φ(H(t)) ⊂ H(t). This immediately implies that the

whole orbit zn must tend to ζ. Moreover if we let

α = lim inf
z→ζ

1− |φ(z)|
1− |z|

then by Julia’s Lemma φ(H(t)) ⊂ H(αt). We call α the coefficient of dilatation of φ

at its Denjoy-Wolff point. It follows from what we said so far that α ≤ 1, and the

map φ is said to be of hyperbolic type if α < 1, while it is of parabolic type if α = 1.

It can also be shown that α > 0 always.

As we mentioned above the terminology parabolic vs. hyperbolic is used because

one wishes to show that these maps tend to imitate the corresponding parabolic vs.

hyperbolic automorphisms. However, this is not always the case, especially in the

parabolic case. What happens in the hyperbolic case is the content of this survey.

2. Self-maps of the disk of hyperbolic type

The hyperbolic automorphisms in the upper half-plane model are easy to describe.

They are of the form

τ(z) = Az + b

with A > 1 and b ∈ R. The only two fixed points for τ are infinity and −b/(A− 1).

The hyperbolic geodesic L = {Re z = −b/(A − 1); Im z > 0} is invariant (L is
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also known as the axis of the automorphism) and invariant is also every half line

originating from the fixed point −b/(A− 1) which lays in H. It is clear then that for

every orbit zn of τ , the following three properties hold: (1) the ratios zn+1/zn tend to

A; (2) the sequence Arg zn has (a) a limit in (0, π) and a computation shows that it

equals Arg(z0 − b/(A− 1)), hence it is a harmonic function of z0 and (b) by varying

z0 this limit takes every value in (0, π); (3) the sequence zn/An tends z0− b/(A− 1).

A quicker way to describe this dynamic would have been to notice that τ can be

conjugated via a translation to the map z 7→ Az. Back in the disk model the axis

L is an arc of circle orthogonal to ∂D, intersecting ∂D at 1 and at some other fixed

point p ∈ ∂D \ {1}. All arcs of circle interesecting D in 1 and p are invariant for the

automorphism and the three properties above become: (1) the ratios (1− zn+1)/(1−
zn) tend to α; (2) the sequence Arg(1− zn) has (a) a limit in (−π/2, π/2) which is a

harmonic function of z0 and (b) this limit takes every value in (−π/2, π/2); (3) the

sequence (1− zn)/αn tends to a limit.

Assume now that φ is a self-map of the disk with Denjoy-Wolff point at 1 (without

loss of generality) and coefficient of dilatation α < 1. Or, equivalently, assume that

Φ is a self-map of the upper half-plane H and Φ(z) = Az + p(z) with Im p(z) ≥ 0

and A = 1/α = infz∈H
ImΦ(z)

Im z
> 1. It is natural to ask if the three properties of

hyperbolic automorphisms above are also shared by the orbits of Φ. Valiron shows

that properties (1) and (2) (a) still hold, see [Va31] or Chapter VI of [Va54] (he

doesn’t seem to have considered property 2 (b)). Next we present a slighty different

proof of his result.

2.1. Property (1): Given an orbit zn of Φ, the ratio zn+1

zn
tends to A. This

property is intimately connected with the Julia-Carathéodory Theorem. We state it

somewhat reworded, in the upper half-plane model.

Theorem 3 (Julia-Carathéodory). Let Φ be an analytic self map of H. Let

A = inf
z∈H

Im Φ(z)

Im z
.

Then,

(2.1) K-limz→∞
Φ(z)

z
= A.

For a proof see [Sh93] p. 66-69, which, as one might guess, is based on Schwarz’s

Lemma. By K-limz→∞, “non-tangential limit”, we mean that z tends to infinity in

such a way that |Arg z − π/2| < π/2− δ for any given δ > 0

In particular, when Φ is of hyperbolic type then (2.1) holds. Yet one cannot

immediately deduce from it property (1) for the orbits of Φ since, in principle, zn

might tend to 1 tangentially.
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Lemma 4. Let Φ be a hyperbolic holomorphic self map of H. Then any given orbit

zn satisfies

|Arg zn − π/2| < π/2− δ

for some fixed δ > 0 depending only on z0.

Proof. Schwarz’s Lemma imposes that zn+1 belongs to the pseudo-hyperbolic disk

∆ centered at zn of radius d0 = d(z0, z1), and the hyperbolic type imposes that

Im zn+1 ≥ A Im zn for some A > 1. So zn+1 is forced to land in the intersection (never

empty!) of ∆ with the half-plane {Im z ≥ A Im zn}. Applying a dilation 1/ Im zn to

this picture we see that zn+1/ Im zn belongs to the intersection of a pseudo-hyperbolic

disk of radius d0, centered at some point with imaginary part equal to 1, and the

half-plane {Im z ≥ A}. From this we deduce that

|Arg(zn+1 − zn)− π/2| ≤ π/2− δ0

for some δ0 > 0 which depends only on z0. Now consider a sector S(δ) = {|Arg z −
π/2| ≤ π/2− δ} and let R be the union of all the sectors z + S(δ0) as z describes the

segment [−z0, z0]. It is clear that the orbit zn never leaves the region R, and that R

is contained in a larger sector S(δ1) with 0 < δ1 < δ0. ¤

Now that we know that every orbit stays confined in a non-tangential approach

region, we can apply Julia-Carathéodory’s theorem and obtain property (1) that

zn+1/zn always tends to A.

2.2. Property (2) (a): Given an orbit zn of Φ, the limit Arg zn exists and is

a harmonic function of z0. Observe first that Arg zn = Arg Φn(z0) is a bounded

harmonic function in z0, so once the existence of the limit is established, harmonicity

follows by Harnack’s principle. We write zn = xn + iyn. Property (1) can be written

as zn+1 = Azn + o(1)zn, thus dividing by yn we get

zn+1

yn

= A
zn

yn

+ o(1)
zn

yn

.

However, Lemma 4 implies that zn/yn = xn/yn + i is bounded away from 0 and ∞.

So, taking the imaginary part of both sides, we obtain

(2.2)
yn+1

yn

= A + o(1).

Consider the automorphism of H that sends zn back to i, i.e.

(2.3) τn(z) =
z − xn

yn

.

Then set

(2.4) qn = τn(zn+1) =
xn+1 − xn

yn

+ i
yn+1

yn

.
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It follows immediately from (2.2) that Im qn → A as n tends to infinity. Also, by

conformal invariance, the sequence

d(i, qn) = d(zn, zn+1) = dn ≥ 1− A

1 + A
> 0

and is a decreasing sequence. Therefore it has a limit d∞ > 0. Geometrically, if C
is the boundary of the pseudo-hyperbolic disk ∆ = ∆(i, d∞), then C intersects the

horizontal line {Im z = A} in one or two points, q+ and q−, which are the only points

where the sequence qn can accumulate. If q+ and q− happen to coincide then that is

the limit of qn. Moreover, if q+ and q− are distinct, then let

B = max
ζ∈C

Im ζ > A.

So one can choose n0 so that Im qn < B for n ≥ n0. Hence the tail {qn}n≥n0 cannot

jump from q+ to q− because the whole sequence qn stays in the complement of ∆.

Therefore, we have shown that qn always has a finite limit, which we call q∞. For

future use we note here that q∞ = b∞ + iA where

(2.5) b∞ = lim
n→∞

xn+1 − xn

yn

.

Now, since τn is a translation followed by a dilation the slope of the straight segment

[zn, zn+1] is the same as the slope of [i, qn], hence we get

Arg(zn+1 − zn) −→ Arg(q∞ − i).

Fix ε > 0 and consider the angular sector

Sε = {z ∈ H : |Arg z − Arg(q∞ − i)| < ε}.

Then, there exists n0 = n0(ε) such that for n ≥ n0, zn belongs to the shifted sector

zn0 + Sε. Letting n tend to infinity we get

Arg(q∞ − i)− ε ≤ lim inf
n→∞

Arg zn ≤ lim sup
n→∞

Arg zn ≤ Arg(q∞ − i) + ε.

This is geometrically clear but can also be seen from the formula

Arg(z) = Arg(z − zn0) + Arg

(
1 +

zn0

z − zn0

)
= Arg(z − zn0) + o(1)

as z tends to infinity. Finally, since ε was arbitrary we obtain

lim
n→∞

Arg zn = Arg(q∞ − i).

2.3. Property (2) (b): For every angle θ ∈ (0, π) one can find an orbit zn of

Φ such that θ(z0) = limn→∞ Arg zn is equal to θ. This property is best established

by constructing a conjugation (change of variables) in the spirit of Kœnigs’ Theorem

in the elliptic case, see (1.4). The existence of such a conjugation is by itself very
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interesting, and, after the original work of Valiron, many others authors deal with

such a problem. Valiron finds a map σ such that

(2.6) σ ◦ Φ = Aσ

by showing that the normalized sequence of iterates Φn(z)/|Φn(z0)| converges uni-

formly to it. We will use a slightly different normalization suggested by Pommerenke

in [Po79] which has been found useful in other situations, namely for the parabolic

case [Po79], and for backward iterates [PC00] and [PC02]. We also recall the work

by Cowen [Co81], where a different approach, based on the uniformization theorem,

is used.

The strategy is to renormalize the iterates of Φ using the automorphisms τn intro-

duced in (2.3), i.e., choose an orbit zn = xn + iyn and then study the convergence of

the sequence σn = τn ◦ Φn. Observe that σn(z0) = i for all n = 1, 2, 3, . . . , and since

σn(z1) = qn as in (2.4) we also have

lim
n→∞

σn(z1) = b∞ + iA.

In particular, every normal sublimit of σn is a non-constant analytic function.

We first claim that d(σn, σn+1) tends to 0 as n tends to infinity. By Schwarz’s

Lemma,

d(σn(z), i) = d(σn(z), σn(z0)) ≤ d(z, i).

So σn(z) stays in a compact subset of H and since

σn+1(z) = (τn+1 ◦ Φ ◦ τ−1
n )(σn(z)),

it will be enough to show that the sequence ψn = τn+1 ◦Φ ◦ τ−1
n converges uniformly

on compact subsets of H to the identity. Write

ψn(z) =
Φ(xn + zyn)− xn+1

yn+1

= z
yn

yn+1

Φ(xn + zyn)

xn + zyn

+
xn

yn

yn

yn+1

Φ(xn + zyn)

xn + zyn

− xn+1

yn+1

.

For fixed z the sequence xn + zyn tends to infinity non-tangentially, so we can apply

Julia-Carathéodory’s Theorem 3, and using the fact that xn/yn = cot Arg zn has a

limt, we obtain that ψn(z) tends to z.

This implies that if σN is a subsequence converging to a normal sublimit σ, then

σN+1 will tend to σ as well. Therefore, since

σn ◦ Φ = (τn ◦ τ−1
n+1) ◦ σn+1

for all n and since

τn ◦ τ−1
n+1(z) =

xn+1 − xn

yn

+ z
yn+1

yn

→ b∞ + Az
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by (2.5) and (2.2), we obtain that every sublimit σ must satisfy the functional equa-

tion

(2.7) σ ◦ Φ = Aσ + b∞.

Finally, since

d(i, σn(z)) = d(τn ◦ Φn(z0), τn ◦ Φn(z)) = d(Φn(z0), Φn(z))

is a decreasing sequence, it must converge to d(i, σ(z)). Hence any other normal

sublimit σ̃ must satisfy d(i, σ̃(z)) = d(i, σ(z)) for all z ∈ H, i.e., σ̃ can only differ

from σ by an automorphism of H which fixes i. However, writing T (z) = Az + b∞,

equation (2.7) can be iterated to σ ◦ Φn = Tn ◦ σ, hence we get that σ(zn) = Tn(i)

which is a sequence tending to infinity. In particular, σ̃ can only differ from σ by an

automorphism of H which fixes i and infinity, but this can only be the identity.

In conclusion, we have shown that given an orbit zn of Φ one can renormalize

the iterates of Φ with some automorphisms τn of H built from zn so that τn ◦ Φn

converges uniformly on compact subsets of H to a function σ which satisfies the

functional equation

(2.8) σ ◦ Φ = T ◦ σ = Aσ + b∞

where T (z) = Az + b∞ and b∞ is a real number depending continuously on z0. In

fact, if θ(z0) = limn→∞ Arg Φn(z0), see Property 2 (a) above, then

(2.9) b∞ = (A− 1) cot(θ(z0)).

Writing σ̂ = σ + b∞/(A − 1), one sees that σ̂ satisfies (2.6), and a computation

using (2.9) shows that actually σ̂ and Valiron’s conjugation are the same function.

Yet, one may ask: how many solutions do (2.6) and (2.8) have? Also, is it possible

to choose z0 so that in (2.8) the coefficient b∞ becomes 0? Namely, we still haven’t

established Property 2 (b).

Semi-conformality of σ. All the previous questions can be answered if we can show

that the conjugating map σ that we have found in (2.8) has the property of being

semi-conformal at infinity. Without loss of generality we can work with σ̂ instead of

σ. Thus we want to show that K-limz→∞ σ̂(z) = ∞ and that

(2.10) K-limz→∞ Arg
σ̂(z)

z
= 0.

To this end we introduce the functions

gn = A−nσ̂ ◦ τ−1
n − b∞

A− 1
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which are self-maps of H (we follow the same argument as in Section 2 of [PC00]).

Notice that, since σ̂(z0) = σ(z0) + b∞/(A− 1) = i + b∞/(A− 1), then

gn(i) = A−nσ̂(zn)− b∞
A− 1

= i.

Also if qn is defined as in (2.4), then

gn(qn) = Aσ̂(z0) = Ai + b∞ = q∞.

So any normal sublimit g of the sequence gn must fix i and also q∞ (since qn → q∞).

Thus by Schwarz’s lemma, g is the identity, i.e., gn(z) → z uniformly on compact

subsets of H. Now let K be a compact subset of H. As n →∞,

d

(
An

(
z +

b∞
A− 1

)
, σ̂(xn + zyn)

)
= d(z, gn(z)) → 0

uniformly for z ∈ K, hence

Arg σ̂(xn + zyn)− Arg

(
z +

b∞
A− 1

)
→ 0.

But by (2.9) we also have

Arg(xn + ynz) = Arg(z +
xn

yn

) → Arg(z + cot θ(z0)) = Arg

(
z +

b∞
A− 1

)
.

Hence,

Arg σ̂(xn + zyn)− Arg(xn + ynz) → 0.

By choosing K to be a hyperbolic disk of larger and larger radius we see that the

union of the sets xn +ynK eventually covers sectors of larger and larger opening. We

have proved the semi-conformality of σ̂, and thus of σ.

Now that we know that σ̂ is semi-conformal, iterating (2.6), which is satisfied by

σ̂, we get σ̂ ◦ Φn = Anσ̂ and evaluating at z0 we obtain σ̂(zn) = Anσ̂(z0). Applying

(2.10) to zn we see that Arg Anσ̂(z0)−Arg zn tends to zero. In other words, θ(z0) =

Arg σ̂(z0). It then remains to show that by varying z0, Arg σ̂(z0) takes on every value

in (0, π). This follows at once from the semiconformality as well and it is explained in

Lemma 5 below. For a proof of this lemma see Section 5 of [PC00], and also [Co81].

Lemma 5. Suppose σ̂ is an analytic self-map of H which has non-tangential limit

infinity at infinity and is semi-conformal, i.e., (2.10) holds for σ̂. Then there is

a simply-connected region Ω in H with an inner-tangent at infinity, i.e. for every

α ∈ (0, π/2) there is R > 0 so that

{|Arg z − π/2| < α; |z| > R} ⊂ Ω,

with the property that σ̂ restricted to Ω is one-to-one and σ̂(Ω) also has an inner

tangent at infinity.
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The previous lemma in particular allows to select a simply-connected region Ω ⊂ H,

called a fundamental set for φ, so that

(1) The map φ is one-to-one on Ω.

(2) The set Ω is fundamental for φ, in the sense that φ(Ω) ⊆ Ω and for any

compact subset K ⊂⊂ H there exists N = N(K) so that φn(K) ⊂ Ω for all

n > N .

(3) The map σ̂ is one-to-one on Ω.

(4) The set σ̂(Ω) is fundamental for the hyperbolic automorphism ζ 7→ Aζ.

The explicit knowledge of the set Ω (and the intertwining map σ) coincides with

the knowledge of the analytic and dynamical properties of φ. One could say that

the dynamical properties of φ are read by means of the geometrical properties of the

couple (σ, Ω). For instance, φ is one-to-one on H if and only if Ω = H if and only if

σ is one-to-one on H.

To go back to our questions, we are left to deal with the uniqueness of the map σ.

We have

Proposition 6 (Uniqueness of conjugation). Suppose σ is an analytic self-map of

H which satisfies the functional equation (2.6). Then σ has non-tangential limit ∞
at ∞, it is semi-conformal at ∞ (i.e. (2.10) holds for σ). Moreover, every other

self-map of H satisfying (2.6) is a positive constant multiple of σ.

Oddly enough, even if everyone would swear that all the solution built by Val-

iron [Va31], Pommerenke [Po79], Cowen [Co81] and Bourdon-Shapiro [BS97] coin-

cide, it seems that no one proved this explicitly. In case the map σ is known to fix

∞ as non-tangential limit and to be semi-conformal at ∞, the proof can be done

directly (see the proof of Theorem 1.2 of [PC00]). Here we present a different proof

which is based on the existence of an intertwining map semi-conformal at ∞ and a

theorem on the commutator of hyperbolic automorphisms due to Heins [He41].

The Proof of Proposition 6. Let us first define the following sets of holomorphic

mappings:

CA := {F : H→ C holomorphic |F (Az) = AF (z) ∀z ∈ H},
S := {σ : H→ C holomorphic |σ ◦ φ = Aσ}.

The set CA is thus formed by holomorphic maps which commute with the linear

fractional map (hyperbolic automorphism of H) ζ 7→ Aζ; while the set S is made of

all solutions of the functional equation (2.6). Notice that for the moment we are not

restricting ourselves to self-maps of H. The two sets are essentially the same as the

following lemma shows (see also Lemma 4 in [Co81]). As a matter of notation, we

let σV be the Valiron intertwining mapping constructed before.
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Lemma 7. There is a one-to-one correspondence between S and CA given by:

CA 3 F 7→ F ◦ σV ∈ S.

Proof. Let F ∈ CA. Let us denote by Φ(z) = Az. Then

(F ◦ σV ) ◦ φ = F ◦ (σV ◦ φ) = F ◦ Φ ◦ σV = Φ ◦ (F ◦ σV ).

On the other hand if σ ∈ S, since σV is univalent on Ω (the fundamental set con-

structed before), one can define a holomorphic map F̃ on σV (Ω) by

F̃ (σV (x)) := σ ◦ σ−1
V (x).

Since A(σV (Ω)) ⊆ σV (Ω), on σV (Ω) we have

(2.11) F̃ ◦ Φ = σ ◦ σ−1
V ◦ Φ = σ ◦ φ ◦ σ−1

V = Φ ◦ σ ◦ σ−1
V = Φ ◦ F̃ .

Then one can extend F̃ to all of H as follows:

F (z) = A−nF̃ (Anz) for z ∈ H and n ∈ N such that Anz ∈ σC(V ).

The map F is well defined, i.e., it is independent of n ∈ N by (2.11). Moreover

F ∈ CA and σ = F ◦ σV . ¤

Now we can complete the proof of Proposition 6 as follows. Let σ ∈ S be such

that σ(H) ⊆ H. From Lemma 7 it follows that σ = F ◦ σC for some F : H→ C such

that F (Aw) = AF (w). If F (H) ⊆ H, by a theorem of Heins [He41], we must have

F (w) = µw for some µ ∈ R+ and therefore σ = µσV , which in particular proves that

σ has fixed point ∞ and it is semi-conformal at ∞. We are thus left to prove that

if F (σV (H)) ⊆ H then actually F (H) ⊆ H. Assume this is not the case. Then there

exists w0 ∈ H such that Im F (w0) ≤ 0. Since σV (H) is fundamental for w 7→ Aw, it

follows that there exists n ∈ N such that Anw0 ∈ σV (H). But then

Im F (Anw0) = Im AnF (w0) ≤ 0,

meaning that F ◦ σV (H) 6⊂ H against our hypothesis.

Remark 8. More generally, arguing as in Proposition 4 of [Co81] one can prove that

for any σ ∈ S (no restriction on the image σ(H)) there exists a holomorphic map

g : {ζ ∈ C : | log |ζ|| < π2/ log A} → C such that σ is given by w 7→ σV (w) ·
g(exp(2πi log σV (w)/ log A)). Thus Proposition 6 says that if σ(H) ⊆ H then g is a

real positive constant.

2.4. Property 3: The ratios zn/A
n do not always converge. This property

is connected to the conformality at infinity of Valiron’s conjugation. In fact, let σ

be the limit of τn ◦ Φn, and without loss of generality assume that b∞ = 0 so that

σ satisfies (2.6). Let α = infz∈H Im σ(z)/ Im z. There are two possibilities: either
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α is 0 or it is positive. In either case, since zn approaches infinity non-tangentially,

Julia-Carathéodory’s Theorem 3 applies, so that

σ(zn)

zn

=
An

zn

σ(z0) → α

When α > 0 it is costumary to say that σ has a finite angular derivative at infinity.

Valiron gives a couple of necessary and sufficient conditions for this to happen, which

are quite tautological. Bourdon and Shapiro [BS97] show that if Φ extends analyt-

ically near infinity then α > 0. Arguing as in [BG03] one can state the Bourdon-

Shapiro theorem as follows:

Theorem 9. Suppose Φ is an analytic self-map of H such that Φ(z) = Az + Γ(z),

with A > 1, and there exist M, ε > 0 such that |Γ(z)| ≤ M |z|1−ε for all z ∈ H. Then

the conjugating map σ has a finite angular derivative at infinity.

The question of the convergence of the ratio zn/A
n is strictly related to that of the

existence of fixed points for intertwining mappings σ : H→ H. Indeed, assume that

σV has finite angular derivative at infinity, say α > 0. Then σλ := λσV for λ > 1/α

is a holomorphic self-map of H such that it has non-tangential limit ∞ at ∞, and

σ′λ(∞) = λα > 1. Therefore ∞ is the Denjoy-Wolff point of σλ for all λ > 1/α. In

particular σλ has no fixed points in H. Therefore, the ratio zn/An is convergent if

and only if there exists one—and hence infinitely many—intertwining maps σ with

Denjoy-Wolff point at ∞. One is thus forced to study the following curve T :

T : R+ 3 t 7→ H(tσV ) ∈ H ∪ {∞},
where for a holomorphic self-map f 6= Id of H, H(f) is the so-called Heins map,

defined to be the (unique) fixed point of f in H if f has fixed points, or the Denjoy-

Wolff point of f in case f has no fixed points in H. The map H is easily seen to

be continuous on the subset of the complex Banach space H∞(H) given by functions

with range in H, and it can be shown that it is holomorphic on the open set given by

functions whose image is relatively compact in H (see [Br02]). Therefore the curve

t → T (t) is a continuous curve in H that can be continuously extended to [0,∞) as

T (0) = 0 (the geometric meaning is that the constant function z 7→ 0 is a solution

of (2.6)). Moreover it is analytic at a point t0 whenever T (t0) ∈ H. The question on

the ratio zn/An can be stated in terms of T as follows: the ratio zn/A
n is convergent

if and only if the curve T reaches infinity in a finite time, namely if and only if there

exists t0 ∈ (0, +∞) such that T (t0) = ∞ (and then T (t) = ∞ for t > t0). The curve

T reads the geometrical properties of φ. For instance it is easy to see that if φ is such

that limz→p |φ(z)| < 1 for all p ∈ ∂H\{∞}, then T (t) ∈ H∪{∞} for all t ∈ (0, +∞),

and in particular T is analytic in its interior. With a slightly more subtle argument
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on commuting mappings (using Behan’s lemma, see, e.g., [Ab89]) one can show that

if T (t) = 0 for some t ∈ (0, +∞) then f cannot fix 0 in the sense of non-tangential

limits. It would be interesting to pursue a systematic study of the relations between

properties of φ and properties of T .

3. Several complex variables

We fix N = 2, 3, 4, . . . and B = BN = {z ∈ CN : ‖z‖ < 1}, where

‖z‖2 = (z, z) and (z, w) =
N∑

j=1

zjwj.

Let φ be a self-map of B. As in the disk case we can say that φ is of elliptic type if

it fixes at least one point in B (however, now, φ could fix more than just one-point

and not be the identity). We are interested in the case when φ has no fixed points

in B. The Denjoy-Wolff Theorem still hold (see [Ab89] Theorem 2.2.31), namely, the

iterates of φ converge to one point on ∂B. By conjugating with a unitary map we can

assume without loss of generality that this special point is e1 = (1, 0, . . . , 0). Once

again maps with no fixed points in B will be divided into hyperbolic and parabolic

type, but before we can do this we need to introduce a few tools.

3.1. A special automorphism. For a ∈ B, we define the projections

Pa(z) =
(z, a)

(a, a)
a and Qa(z) = z − Pa(z).

Then we let

(3.1) γa(z) =
Pa(z) + saQa(z)− a

1− (z, a)

where sa =
√

1− ‖a‖2, and so that γa(a) = 0. It is well-known that γa is an

automorphism of B.

We define the pseudo-hyperbolic distance between two points a, b ∈ B as

d(a, b) = ‖γa(b)‖ < 1.

Schwarz’s Lemma ([Ab89] Thm. 2.2.12) and [Ab89] Cor. 2.2.2, imply as in the disk

that d(φ(a), φ(b)) ≤ d(a, b). Another quantity which is decreased by self-maps of the

ball is

(3.2) Q(a, b) =
|1− (a, b)|2

(1− ‖a‖2)(1− ‖b‖2)
,

i.e., Q(φ(a), φ(b)) ≤ Q(a, b) ([Ab89] Prop 2.2.17)
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3.2. Hyperbolic versus parabolic. We will again consider the orbit of the origin

zn = φn(0), thus zn → e1. It follows that one can extract a subsequence zN with the

property that ‖zN+1‖ ≥ ‖zN‖. Hence

c = lim inf
z→e1

1− ‖φ(z)‖
1− ‖z‖ ≤ 1

so by Julia’s Lemma ([Ab89] Thm. 2.2.21)

|1− (φ(z), e1)|2
1− ‖φ(z)‖2

≤ c
|1− (z, e1)|2

1− ‖z‖2
,

and in particular,

(3.3)
|1− z1

n+1|2
1− ‖zn+1‖2

≤ c
|1− z1

n|2
1− ‖zn‖2

.

We say φ is of hyperbolic type if c < 1, and of parabolic type if c = 1. The quantity

c = c(φ) is called the coefficient of dilatation of φ. It is clear that

(3.4) c(φn) = [c(φ)]n.

In the sequel we will assume that φ is a self-map of the ball of hyperbolic type.

First we describe the automorphisms of hyperbolic type.

3.3. Automorphisms of the ball of hyperbolic type. As in the one-dimensional

case it is best to move to an “upper half-plane” model. It turns out that B is

biholomorphic to the domain

HN = {w = (w1, w′) ∈ CN : Im w1 > ‖w′‖2}
via a map very similar to the classical Caley transform. Given a ∈ HN with Im a1 −
‖a′‖2 > 1 there is an automorphism of hyperbolic type Ψa which sends the point

ι = (i, 0′) to a. We first build the inverse of such mapping. Consider the translation

(we refer to [Ab89] p. 155 for these automorphisms of HN .)

(3.5) hb(w) = (w1 + b1 + 2i〈w′, b′〉, w′ + b′)

where b = (−Re a1 + i‖a′‖2,−a′) ∈ ∂HN . Then

hb(a) = (i(Im a1 − ‖a′‖2), 0′).

Now consider the non-isotropic dilation

(3.6) δA(w) =
(
Aw1,

√
Aw′

)

where A = Im a1 − ‖a′‖2. The automorphism Φa = δ1/A ◦ hb sends a to ι,

Φa(w) =

(
w1 − Re a1 + i‖a′‖2 − 2i〈w′, a′〉

A
,
w′ − a′√

A

)
.

The inverse is

(3.7) Ψa(z) =
(
Az1 + Re a1 + i‖a′‖2 + 2i

√
A〈z′, a′〉,

√
Az′ + a′

)
.
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More generally, given a unitary transformation U of CN−1 one can consider the au-

tomorphism

(3.8) Ψ(z) =
(
Az1 + Re a1 + i‖a′‖2 + 2i

√
A〈U(z′), a′〉,

√
AU(z′) + a′

)
.

Varying a with A = Im a1−‖a′‖2 > 1 and U as above, the automorphisms Ψ describe

all possible hyperbolic automorphisms of HN with infinity as attracting fixed point.

3.4. Self-maps of the ball of hyperbolic type. Let Φ be a holomorphic self-map

of HN without fixed points in HN , such that its Denjoy-Wolff point is ∞, and of

hyperbolic type.

Following the lead of the one-dimensional case the following open problem arises:

Open Problem 10. How closely are the orbits of Φ trying to imitate the behavior

of the orbits of a corresponding hyperbolic automorphism Ψ as in (3.8)?

The automorphism Ψ in (3.8) fixes exactly two points: infinity and the point

c ∈ ∂HN . To see this first solve
√

AU(c′) + a′ = c′.

Taking U−1 and dividing by
√

A, one gets

(I − 1√
A

U−1)(c′) = − 1√
A

U−1(a′)

which is invertible. Now solve

Ac1 + Re a1 + i‖a′‖2 + 2i
√

A〈U(c′), a′〉 = c1

using the fact that
√

AU(c′) = (I − (
√

AU)−1)−1(a′).

Therefore using an appropriate translation as in (3.5), the map Ψ can be conjugated

to an automorphism whose fixed points are 0 and ∞, i.e. to

(3.9) Ψ0(z) = (Az1,
√

AU(z′)).

Moreover, by linear algebra Ψ0 can be further conjugated via a unitary matrix so

that U becomes diagonal.

Our open problem can be rephrased as

Open Problem 11. Given a holomorphic self-map Φ of HN without fixed points

in HN , such that its Denjoy-Wolff point is ∞, and which is of hyperbolic type with

dilation coefficient A > 1, does there exist a unitary trasformation U of CN−1 and a

conjugation σ (also a self-map of HN) such that

σ ◦ Φ = Ψ0 ◦ σ

where Ψ0 is as in (3.9), and so that σ has some degree of regularity at infinity to be

determined (something along the lines of semi-conformality)?
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In a recent preprint [BG03] the result of Bourdon and Shapiro has been generalized

to several complex variable, i.e., Valiron’s conjugation is established under some

smoothness assumptions at infinity for Φ.

What we can show is a partial answer to Open Problem 10 which resembles Lemma

4 in the one-dimensional case. Namely, we can show that the orbits of Φ always remain

in a Korányi approach region at infinity, see definition below (the fact that the orbits

of Ψ0 remain in a Korányi approach region at infinity can easily be verified).

3.5. Korányi approach of the orbits. Back in the ball setting, let φ be a holo-

morphic self-map of B without fixed points in B, such that its Denjoy-Wolff point is

e1, and which is of hyperbolic type with dilation coefficient c < 1.

Given a parameter M > 0 the Korányi regions at e1 of amplitude M are the sets

K(R) =

{
z ∈ B :

|1− z1|
1− ‖z‖2

< R

}
.

We need a preliminary result.

Claim 12. If c < 3 − √8, then the orbit zn = φn(0) tends to e1 while staying in a

Korányi approach region, i.e.,

Ln =
|1− (zn, e1)|
1− ‖zn‖2

=
|1− z1

n|
1− ‖zn‖2

≤ M < ∞

for some constant M < ∞.

Assuming Claim 12 for the moment, we show the Korányi approach of the orbit

zn = φn(0). Using (3.4), we can find an integer N large enough so that cN < 3−√8,

and Claim 12 implies that zkN , k = 1, 2, 3 · · · , stays in a Korányi region. However,

for j = 1, . . . , N − 1, d(zkN+j, zkN) ≤ d(0, zj), by Schwarz’s Lemma. Hence, since the

hyperbolic neighborhood of a Korányi region is still a Korányi region, we find that

the whole orbit zn remains in a Korányi region. Moreover, by the same argument,

any orbit φn(z0) has the same property.

Proof Claim 12: We rewrite (3.3) as

(3.10) Sn =

∣∣∣∣
1− z1

n+1

1− z1
n

∣∣∣∣ ≤ c
Ln

Ln+1

.

Recalling the definition and monotonicity property of Q(a, b) given in (3.2), we see

that Q(zn, zn+1) is decreasing and thus

(3.11) Q(zn, zn+1) =
|1− (zn, zn+1)|2

(1− ‖zn‖2)(1− ‖zn+1‖2)
≤ Q(z0, z1) =

1

1− ‖z1‖2
< ∞.

Notice that

1− (zn, zn+1) = (e1 − zn, e1) + (e1, e1 − zn+1)− (e1 − zn, e1 − zn+1).
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Therefore,

|1− (zn, zn+1)| ≥ |(1− z1
n) + (1− z1

n+1)| − ‖e1 − zn‖‖e1 − zn+1‖.

Expanding the square, we have

‖e1 − zn‖2

1− ‖zn‖2
= 2

1− Re z1
n

1− ‖zn‖2
− 1 ≤ 2Ln.

So, after a square root and the triangle inequality, (3.11) becomes

(3.12)
|(1− z1

n) + (1− z1
n+1)|√

1− ‖zn‖2
√

1− ‖zn+1‖2
− 2

√
LnLn+1 ≤

√
Q(z0, z1).

Now suppose that

lim sup
n→∞

Ln = +∞.

Then one can find a subsequence LN such that LN ≤ LN+1 and LN → +∞. By

(3.10), lim supN→∞ SN ≤ c. On the other hand, dividing by
√

LNLN+1 and letting

N tend to infinity in (3.12), we also have

lim sup
N→∞

|(1− z1
n) + (1− z1

n+1)|√
|1− z1

N |
√
|1− z1

N+1|
≤ 2.

Squaring both sides and reorganizing

lim sup
N→∞

|1− SN ||1− 1

SN

| ≤ 4.

So if S is a sublimit of SN it must satisfy S ≤ c and

(1− S)2 ≤ 4S,

i.e., 3 −√8 ≤ S ≤ 3 +
√

8. In particular, if c happens to be less than 3 −√8, then

no sublimit of SN can exists and therefore Ln remains bounded. ¤

3.6. Conclusion. The problem one encounters after this claim is established is that

one would like to use the Julia-Carathéodory Theorem for self-maps of the ball. Such

result exists, see [Ab89] Theorem (2.2.29), however in order to use it one would need

a much more restrictive approach for the orbit of φ: “special and restricted”. Of

course, even the orbits of the automorphism Ψ0 do not have this property in general,

but there is always one orbit that does. Our hope is to be able to produce at least one

orbit of φ that has a special and restricted approach and then renormalize φ using

this orbit.

There is a different approach which seems to bypass the unitary matrix U of Open

Problem 11.
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Open Problem 13. Given a holomorphic self-map Φ of HN without fixed points

in HN , such that its Denjoy-Wolff point is ∞, and which is of hyperbolic type with

dilation coefficient A > 1, does there exist a conjugation η : HN −→ H such that

η ◦ Φ = Aη,

and so that σ has some degree of regularity at infinity to be determined (something

along the lines of semi-conformality)?

Of course if one can find σ which solves Open Problem 11 then η = π1 ◦ σ, where

π1(z1, z′) = z1, will solve Open Problem 13.
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