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1. THE STOKES THEOREM AND THE DERHAM THEOREM

1.1. The Stokes Theorem.Let M be aC* manifold of dimensionn. LetU C M be an open
subset ofAM/. We indicate byA?(U) the vector space of complex-valugeforms onU. More

precisely, ifT'M is the tangent bundle aof/ and7CA = T ®@p C is the complexified tangent
bundle of)M, acomplex-valueg-formon U is aC* section of the vector bundlg’(TCM)* onU.

If U is a coordinate set witfiz,, ..., z,,} local coordinates then@> sectionw of A?(TCM)*
onU is given by

w = Z f“zp(l’)dl’“ VANPIRIAN d[[‘ip,
1<i1<...<ip<m
for some complex-valued functionsf;, ; defined on’.

A set R C M is amanifold of dimensionn with C* boundaryif Int R is a m-dimensional
manifold and for anyp € OR there exists a open coordinate §&tn M with local coordinates
{z1,...;zn}such thatR N U = {q € Ulx1(q) < 0} andORNU = {q € Ulzi(q) = 0}.
ThusoR is a(m — 1)-dimensional manifold. Moreover i#/ is oriented and the above system
of local coordinateqz, ..., x,,} is positive, we give)R the orientation coming from declaring
{z3,...,x,} to be a positive system of local coordinates ddt.

Theorem 1.1.1(Stokes) SupposéV/ is oriented. LetR C M be anm-dimensional manifold with
C* boundary and let : R — M be the inclusion map. Let € A™~'(M). Then

/dw:/ w.
R OR

1.2. The de Rham cohomology.The exterior derivativel of forms gives rise to a cohomological
complex, thede Rham complex
o= AN S AP(M) D AP (M) s

Let us define the group gf-closedforms asZ?(M) := Kerd? and the group of-exactforms as
BP(M) := ImdP~!. SincedPodP~! = 0thenB?(M) C ZP(M) and we can define the quotient group
HY(M) := ZP(M)/BP(M) which is called the-th de Rham cohomologyf M. If w € ZP(M),
we denote byw] € HY (M) its image by the canonical projectiéft (M) — HY(M).

Note that if M is connected the®°(M) = {0} and Z°(M) contains only constant functions,
thereforeH°(M) ~ C. Also we have the well known
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Lemma 1.2.1(Poincag). The de Rham cohomologd;(R™) = 0 for p > 1.

More generally, let{? (M, C) = H,(M, C)* whereH,(M, C) is thep-th homology with complex
coefficients onV/, for instance, consider the singular homology witttoefficients onV/. Then

Theorem 1.2.2(de Rham) HY (M) ~ H?(M, C), the isomorphism being given by

e o fn ).

whereA? is the standarg-simplex andr : A? — M is any singular simplex.

SupposeV/ is oriented and compact (ard/ = (). Letw € B™(M). Therefore there exists
6 € A™~1(M) such thaif = w. By Stokes’ theorem it follows

[w=[a=[ o0
M M oM

since the boundary ai/ is empty. Thus the operatd, : A™(M) — C induces a well-defined
operator, calledhtegration
/ H' (M) — C,
M
[w

|— | w.
M

2. THE CECH-DE RHAM COHOMOLOGY

The Cech-de Rham cohomology is defined for any coverings of a manifolalit for simplicity
here we only consider a covering df given by only two open sets.

2.1. Cech-de Rham cohomology.let M/ be aC'* manifold of dimensionn. Leti/ := {U,, U;}
be an open covering dff. Let Uy, := Uy N U;. Define a vector spacé?(U/) as follows:

AP(Z/{) = Ap(Uo) D Ap(Ul) D Ap_l(U(n).

Therefore an element € AP(U) is given by a triples = (0, 01, 0¢1) such thaw, is ap-form on
Uy, o1 is ap-form onU; andoy, is a(p — 1)-form onUy;.
Let us define the following operatady:

D AP(U) — APYHUY) = AP (Uy) @ APYH(UY) @ AP(Up,)
0 = (00,017001) — (d00>d01701 — 0p — d001)-

One can check thdd o D = 0. This allows to define a cohomological compléxe Cech-de Rham

complex
DP~

o A S A ) 2 A )
Let Z8(U) := KerD?, BY,(U) := ImDP~1. SinceD o D = 0 the groupB},(U) C Z¥(U). thus we
can define the quotient group
Hp(U) = ZpU)/BpMU),
called thep-th Cech-de Rham cohomology with respedat/to
The canonical projectioa?, (i) — HY(U) is denoted by — [o].
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Theorem 2.1.1.The map
AP(M) — AP(U)
wr— (w,w,0)
induces an isomorphism
(2.1) a: HY (M) =S HY(U).

Proof. First we have to show that is well-defined. That is to say we have to show that

(1) if dw = 0thenD(w,w,0) =0and
(2) if w = df for somel € AP~!(M) then(w,w,0) = Dt for somer € AP~ (U).

The first one is immediate. As for the second define- (6,6, 0) and check that this does the job.

Now we have to prove that is surjective. Letr := (0¢,01,001) be such thatDo = 0. Let
{po, p1} be a partition of unity subordinated to the coveridgi.e., p, is aC* function on/ with
supportinU; (j = 1,2) andp; (p) + p2(p) = 1 foranyp € M. Definew := pyoo+ p101 — dpo A oos.
Clearlyw € AP(M). Sincedo; = 0onU; (j = 0,1) ando; = oy + dog; on Uy, it is easy to see
thatdw = 0 on M. Moreover|(w,w,0)] = [o], i.e,, (w,w,0) = o + DO for somef = (6, 61,001) €
AP=Y(U/). To see this we first show that there existpa- 1)-form 6, on U, such thaty = o + db
onU,. OnU, — U, the functionpy = 1 andp; = 0 andw = g4. OnU, N U; it follows from Do = 0
that

w = poogy + p1(oog + dog) — dpo N 0o1 = 00 + prdogs + dpy A 001 = ¢ + d(p1001).

Therefore once we defin®g := p,o0; € AP~*(Uy), we are done. Similarly one can check that
01 := —pooor Works forw = o7 + df; onU;. Finally if we takefy; = 0, 8 = (6y,0:,0) does the
job.

It is left to show thatx is injective, but this follows easily and we skip its proof. O

2.2. Integration. Suppose that the:-dimensional manifold\/ is orientedand compactand let
U = {Uy, U, } be a covering of\/. Let Ry, Ry C M be two compact manifolds of dimensiom
with C>° boundary with the following properties:

(1) RjcU;forj=0,1,

(2) IntRyNIntR; = () and

(3) RiURy, = M.

Let Ry1 := Ry N R; and give Ry; the orientation coming from being the boundary i, i.e.,
Ro1 = ORy. equivalently giveRy, the opposite orientation coming from being the boundarizof
i.e, Ryy = —0R;. Define the following integration operator:

/M AMU) — C

U_(UO,017001)’—>/ Ui_/ Uo—i‘/ 01+/ 0o1-
M Ro Ry Ro1

Lemma 2.2.1. The operator/,, has the following properties:

(1) Leto € A™(U). If Do = 0then [, o is independent of Ry, R; }.
(2) Leto € A™(U). If o = D7 for somer € A*~'(Yf) then[,, o = 0.

Proof. Apply The Stokes theorem. OJ
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Corollary 2.2.2. The operator/,, defined onA™ () induces an operator

HyU) — C

: [a]H/Ma.

Note that ifw € H*(M) anda(w) € HE(U) then

(22) /M a(w) = /M o,

2.3. Relative Cech-de Rham cohomologyLet M be am-dimensional manifold/ := {U,, Uy}
a covering ofM. Let us define

AP(U,Uy) = {o = (00, 01,001) € AP(U)|oy = 0}.
By the very definition ofD, if o € AP(U,Us) thenDo € AP(U,U,). This gives rise to another
complex, called theelative Cech-de Rham complex
o AN U ST A, U 2 A U, Uy) —

Similarly to what we did before, we define theh relativeCech-de Rham cohomology with respect
to (U, Uy) as

HY (U, Uy) := KerD? /ImDP~ 1.
The relativeCech-de Rham cohomology is indeed a topological invariadt of
Lemma 2.3.1. There is a natural isomorphism
Hp)(U,Uy) =~ H (M, Up; C),
where H? (M, Uy; C) is thep-th group of the relative conomology with complex coefficients.

2.4. Integration. SupposeV is anm-dimensional oriented manifold (not necessarily compact).
LetS € M be acompact subsetdf. LetU, := M — S and letU; be an open neighborhood 6f

Let R, be a compact manifold of dimensianwith C'*° boundary such that C IntR; C R; C Uj.

Let R, := M —IntR;. Note thatR, C Uy. The integral operatof, , (which is not defined in general
for A™(U) unlessM is compact) is well defined oA? (U, Uy):

/ A™U,Uy) — C
M

02(0,01,001)»—>/ J::/ 01+/ 001,
M Ry Ro1

and induces an operatdy, : 7 (U, Uy) — C.
If M is compactang* : H(U,Uy) — HE(U) is the map induces by the injection, then for any
o€ Hp(U,Uy) it follows

(2.3) /M () = /M -
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Example 2.4.1.Let M = R™ andS = {0}. ThenU, = R™ — {0} ~ S™ ! andU; = R™.
We first calculateH% (U, Uy). If o € AU, U,) theno = (0, f,0) for some smooth function
defined onlU;. If Do = 0 by definition f = 0 and therefore7% (U, Uy) = {0}. Forp = 1, let

o € AYU,Uy). Theno = (0, 0y, f) wheres, is al-form onU; andf is aC*™ function onU N Uj.

If o is a cocycle thenlo, = 0 on U, anddf = o, on U, N U;. By the Poinca& lemma the first
condition implies that; = dg for someC* function g on U; and the second condition implies
that f = ¢ + ¢ for somec € C. Thereforef has a smooth extension—still denoted foy-at {0}
ando = (0,df, f) = D(0, f,0). Hence every cocycle is a coboundary a@ig(i, U,) = {0}. For

p > 2 the map

Hy ™' (Uo) — Hp(U, Uo)
w] = [(0,0, —w)]
is an isomorphism (we left the details to the reader) and therefore by the de Rham Theorem for
p > 2 it follows
C for p=m

HP (U. Uy) ~ H YU, ~ HP1(S™ 1) =
pU,Uo) a (Uo) ( ) Ofor p=2,...,m—1.

In particular, whenn = 2, identifying R* with C = {z}, an explicit generator of/? (U, Uy) ~
H}(Uy) is given by the Cauchy kern%dz—z.
3. CHARACTERISTIC CLASSES OF COMPLEX VECTOR BUNDLES

_ Inthis section we are going to discuss the Chern-Weil theory adapted to the previously introduced
Cech-de Rham cohomology.

3.1. Connections on complex vector bundlesLet M be aC> manifold of dimensionn and let
E — M be a complex vector bundle of rankLet U be a open subset éff and let us indicate by
AP(U, F) the vector space gf-forms onU with coefficients inE. In other words A?(U, E) is the
space ofC> sections of the bundla?(TM)* ® E onU. This means that locally an element of

AP(U, F) is given by
sz’ & S,

where thew;’s arep-th forms onUU and thes;’s areC* sections of the bundl& onU.

Note thatA!(M, E) is the space of th€> sections of the vector bundig“*M)* @ F ~
Hom(TM, E). Also A°(M) indicates the space ¢ functions onM and A°(M, E) the space
of C'*° sections of the bundI&'.

Definition 3.1.1. A connectiorfor E is aC-linear map
V:A"M,E) — AY(M,E)
satisfying the following_eibnitz rule
V(fs)=df @ s+ fV(s),
forany f € A°(M) ands € A°(M, E).
Example 3.1.2.Let K = M x C. ThenA?(M, E) = AP(M) andV := d is a connection oik.

Now we recall some basic facts about connections coming out from the very definition.
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Lemma 3.1.3. A connectionV on £ is a local operator,j.e, if U C M is a open set and ¢
A°(M, E) is such thats)y = 0 thenVs =0onU.

The previous lemma allows to restrict a connecfiofor £ to an open sel/ C M giving rise to
well-defined connectioW ;; for £y .

Lemma 3.1.4.SupposéV/y, ..., V, are connections foF and f1, ..., f, are C* functions onM
suchthat_; f; =1 thenZ?z1 [;V; is a connection for.

Using partitions of unity subordinated to a trivializing covering of a vector bundle the previous
Lemma as a very strong consequence:

Corollary 3.1.5. Every complex vector bundle admits a connection.
One may also “derive” forms of higher degree BnFor our purposes we only need to define
V:A M, E) — A*(M,E).
To do this we note that any element 4f()M, E) is a linear combination of elements of the form
w® sforw e AY(M) ands € A°(M, E). Therefore we define
Viw®s—dw®s—wAVs,
forw € A'(M) ands € A°(M, E) and extend for linearity to the other elements®f M, E).
Definition 3.1.6. Thecurvatureof Vis K := Vo V.

Note thatK # 0 in general, and it actually measures how far from the trivial burdis.

It is easy to show thak'(fs) = fK(s) forany f € A°(M) ands € A°(M, E).

Let U be a open set a¥/ trivializing £, i.e, Ejy ~ U x C". Letsy,...,s, ber sections oft/
onU linearly independent at each point©@f(just take for instance; to be the inverse image of the
j-th element of a basis d&" under the diffeomorphisni;; ~ U x C"). The sef€ := (sy,...,s,)
is called aframefor £ onU.

LetS := (s1,...,s.) be a frame forE on U. Note that any section off on U is a linear
combination (withC'* coefficients) ofsq, .. ., s,.. Then we may write

VSZ' = ZHU X Sj,
7j=1

for somel-forms ¢,; defined onU. The matrixd := (¢,;) is called theconnection matrixvith
respect td.
Similarly for the curvaturd< we may write

K(si)) =) kij®s;,
j=1

wherek;; are2-forms onU. The matrixk = (k;;) is thecurvature matrixwith respect tcs.
FromK = V o V it follows

(3.2) kij = dOy; — Z O N Ok,
k=1

or, in matrix notationk = dé — 9 A 6.
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Now letS" = (s},...,s.) be a frame on a open sEt and suppose thdf N U’ # (). Then there

»er

existC* functionsa,; onU N U’ such that

S; = Z CLiij,
j=1

and the matrix4d = (a;;) is pointwise invertible i/ N U".
Proposition 3.1.7.Let " be the connection matrix with respect3band &’ the curvature matrix
with respect t®'. Then

(1) 0 =dA- A7+ ADATY,

(2) k' = ARA™L,

The proof is left to the reader.

3.2. Chern forms. Let M be aC* manifold, E a rankr complex vector bundle oA/ andV a
connection forE.

LetS be a frame fotE' on a open sel/ and letk = (k;;) the curvature matrix with respect
We define &i-form o;(k) onU by

det(I + k) =1+ 01(k) + o9(k) + ... + o.(k).

Note that since thg;;’s are even forms and the wedge product of two even forms is symmetric then
the determinant of + £ is well defined. Also note that, (k) = tr(k) ando, (k) = det k.

If S"is a frame forE on U’ with U N U’ # () andk’ is the curvature matrix with respect$6then
oi(k') = o;(k) onU N U’ by Proposition 3.1.7.2. Therefore we can patch together the forths
defined on the open sets trivializiigin order to obtain a globai-form, denoted by; (V).

Definition 3.2.1. The2;-form ‘
Pyp— _1 Z

is thei-th Chern form

The normalization is chosen in such a way that the first Chern class of the hyperplane bundle on
the projctive space is.
Lemma 3.2.2. The Chern forms have the following properties:

(1) For any connectiorV for E it holdsdc;(V) = 0 for everyi.
(2) If V, V' are two connections foE then there exists &i — 1)-form¢,(V, V')—called the
Bott difference form—such that

dci(V, V’) = Cl’(V/) — Cl(V)

The previous Lemma implies that(V) defines a clasg;(V)] € H% (M) and that this class is
independent of the connectidn (but depends only oft). Therefore we can define

ci(E) = [ci(V)]
and called it the-th Chern class ofv.

Remark3.2.3 One may define;(E) by means of obstruction theory. Roughly speakif(d) is
the first obstruction to constructing— ¢ + 1 global sections o which are pointwise linearly
independent.
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Now we generalize the previous construction to symmetric polynomialsy lbet a symmetric
polynomial in the variables,, z-, . . ., z;. Leto; be thei-th elementary symmetric function. Recall
that the elementary symmetric functions are defined by

l

j=1

=oo(x1,..., 1) +or(x1,..., 1)+ oa(xy,. .., @) + ...

By a well known result, every symmetric polynomial can be written as a polynomial in the variables
o1,...,0,. Therefore there exists a polynomjasuch thatp = p(oy, ..., 0;). We define

o(V) :=p(c1(V),c2(V),...,a(V)).

Since ther;(V)’s are closed forms, thetipy(V) = 0. Moreover ifV, V' are two connections of
there exists a fornp(V, V') such that

p(V) = (V') = dp(V, V).
Thusy(V) defines a class if/; (M) independent oV:
p(E) = [p(V)] € Hy(M).

3.3. Characteristic classes in the€Cech-de Rham cohomologyl et M be anm-dimensional man-
ifold and let/ := {U,, U,} be an open covering af/. Let E — M be a rank- complex vector
bundle on)/. Let V; be a connection foE;,. Letc;(V.,) be the element ofi* (/) given by

C,‘(V*) = (Ci(v()>7 Ci(vl)a Ci(v()v V1)),

wherec;(Vy, V1) is the Bott difference form of the restrictionsig N U, of the connection¥, V;
for Ejyynu, - ThenDe; (V) = 0. Therefore this defines a clagg(V..)| € Hf (U).

Theorem 3.3.1.The classc;(V.)] € H#(U) corresponds to the Chern clasgF) € H3 (M)
under the isomorphisi{2.1).

4. COMPLEX MANIFOLD AND THE GROTHENDIECK RESIDUE

4.1. Complex manifolds. Let U C C" be a open set. Recall that a magp U — C is called
holomorphicif f can be expressed as the sum of a convergent power series in a neighborhood of
each point ofU. A complex manifolaf dimensionn is a topological space together with an atlas
{Ua, pa} such thatp, (U, ) is an open set o™ for any« and the transiction functions, o 9051 are
holomorphic.

Let M be a complex manifold of dimensiom, and let(z,...,z,) be local coordinates on
U cC M. Thenz;, = z; + v—1y; for z;,y; € Randi = 1,...,n and the local coordinates
(21,91, ---,%n, yn) ONU give rise to a structure dn-dimensional real manifold of/.

Let us indicate byl}, M the real tangent space (of dimensiby) of M atp € M, and byI'M the
real tangent bundle af/. OnU with local coordinate$z; = x1+v—1y1, ..., 20 = Tn+vV—1yn },
the vector spac, M is spanned by ;2-, a%> e, %}, evaluated gp. LetT "M := T,M @ C

be the complexified tangent spaceMfatp € M and letT*M := TM ® C be the complexified
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tangent bundle of/. Thus a basis fof,* M is given by{;%-,..., 52, %, ... ;=}, where

0 1/ 0 — 0

o 1[0 0
0z 2 (8% M _18%) |

We indicate byTl',M := sparf{ %, ..., 52} and byT,M := spar{3;%, ...
TeM =T,M & T,M.

, af . Therefore

The vector spac&), M is called theholomorphic partof T;,CM and the vector spacg, M is called
theanti-holomorphic parof 7, M. Note thatT, M is an-dimensional complex vector space.

By the Cauchy-Riemmann equations this decomposition is independent of the local coordinates
chosen. Thus we have a decomposition of the complex tangent bundle

T°M = TM @ TM.

Note thatT M has a natural structure bblomorphic vector bundjeé.e., it has a system of holomor-
phic transiction functions which gives it a structure of complex manifold.
A C* section of T M is locally given by

)
U= ; fia?’
with the f;’s beingC> complex valued functions.

Proposition 4.1.1. There is a real isomorphism (as real bundl@'SM ~ T'M, locally given by

(4.1) v:§:f F+§:RQ‘ +§:mv

Proof. One can check easily that (4.1) is a real isomorphism. Then, using Cauchy-Riemann equa-
tions, one can show that it gives rise to a vector bundle isomorphism. O

Example 4.1.2.In C = {z} we havez . — 2 +y5- and=* — (2° — y°) & + 22y
We say that a section= ) fi£ of TM is aholomorphic vector field the f;'s are holomorphic,

i.e, if vis a holomorphic section of the holomorphic vector buritlé .
Similarly we have a decomposition of the complexified cotangent bundlé:of

AYM) = (T°M)* = TM* © TM*.

In local coordinates a basis f@rM/* is given by{dz, ..., dz,} and a basis foff M* is given by
{dz1,...,dz,}, where

dz; ==dx; + v —1dy;
dz; :=dx; — v/ —1dy;.

Accordingly we have a decomposition for forms of higher degree. That is to sayfam w <
A"(M) can be written as
o= S

ptq=r
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wherew?? is aform of type(p, ¢). In local coordinates
wh? = Z fil ..... iplyees jqdzil VANRAN dZin A\ dEjl VANPIAN dzjn,

where thef;, ;... ;'S areC> complex valued functions.

Note thatTM* A ... TM* has a natural structure of holomorphic vector bundle.

We say that a formv of type (p, 0) is holomorphicif locally w = " f;, i, dz;, A ... Adz;, with
,,,,, i,'S holomorphic functions, that isy is a holomorphic section of the holomorphic bundle
TM* AN ... NTM* (p-times).

4.2. Grothendieck residue. Let U C C" be an open set containing the origin= (0,...,0) €
C". Letfy,..., fn : U — C be holomorphic functions such thgi € U|f;(p) =0,i =1,...,n} =
{O}. Letw = hdz; A ... A dz, be a holomorphia-form onU. The Grothendieck residuat O of
w with respect tofy, .. ., f,, is given by

w . 1 " w
w2l ma) [mw

wherel' :={p e U : |fi(p)| = €&,i=1,...,n} fore; > 0 so small thal" is compact. Note that for
generice; small enough, the sétis a compact reat-dimensional manifold and we orient it so that
d(arg fi1) A ... ANd(arg f,) > 0.

Example 4.2.1.Letw = hdz with h holomorphic neaf, and letf be a holomorphic function in a
neighborhood 06 so thatf(p) = 0 impliesp = 0. Then

Res {w} = # Edz
/=1 Jypeg

5. LOCALIZATION OF THE TOPCHERN CLASS

Let M be a complex manifold of dimension Let £ be a complex vector bundle of ranlover
M. Lets : M — FE be a non-vanishing section éf, i.e., s is aC*™ map fromM to £ such that
s(x) € E, ands(x) # 0 foranyz € M.

Definition 5.0.2. A connectionV for E is s-trivial if Vs = 0.

Given a non-vanishing sectioiof F it is always possible to define artrivial connectionV for
E (simply defineVs = 0).

Proposition 5.0.3.1f V is an s-trivial connection forE thenc,.(V) = 0.

Proof. LetU C M be an open set such th&f;, ~ U x C". Sinces # 0 everywhere o/, we may
take a franS = (sy,...,s,) onU so thats; = s. Then the connection and the curvature matrices
of V with respect t& are of the form
0...0
*

and since:,. (V) = det k up to a constant, then (V) = 0. O
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5.1. The case rank® =dim /. Suppose now that the ramlof £ coincides with the dimension of
M,ie,r =n.

Let S be a closed set i/ and lets be a section off non-vanishing on\/ — S. We want to
computer, (E). LetU, := M — S, letU; be a neighborhood & in M and let/ := {U,, U, }. Let
V., be a connection foE onU;, i = 0, 1. By Theorem 3.3.1 the Chern class E) is represented in
HZ'(U) by the element, (V.) € A*"(U) given by

cn(Vs) == (n(Vo), cn(V1), cn(Vo, V1)),
wherec,, (Vy, V) is the Bott difference form oV, V, onUy N Uj.

Remark5.1.1 Sinces is hon-vanishing oii/,, one can assume is ans-trivial connection fork
on Uy. Thus by Proposition 5.0.3 we havg(V,) = 0 and actuallyc,(V.) € A?"(U,U,). This
defines a class it %' (U, Uy) which we denote by, (E, s) and call thelocalization ofc,,(F) with
respect tos.

Now supposes is compact and lefS, } ., be the set of connected componentssofFor each
A € J, let Ry be a compaof’> manifold with boundary containing, and such thatzy N R, = ()
for \,u € J, A # p. Let Ryy := —0R,. Then

/M (B, s) =Y (/& cn(Vh) + /Rw Cn(Vo,Vl)) .

aeJ

One can easily show that the addends on the right-hand side of the previous formula are independent
of R, and therefore we may define

(5.1) Res (s, E,S,) := /

R

cn(Vl) + / Cn(VQ, V1>
A Rox
Proposition 5.1.2.1f M is compact

> Res, (s,E,5)) = / cn(E).

AeJ M
Proof. Apply formulas (2.2) and (2.3). O

5.2. The calculation of the residue for a point and a holomorphic section.SupposeF is a
holomorphic vector bundle andis a holomorphic section o). We are going to calculate the
residue Res (s, F, S)) whenS, = {p}. In this situation we may take, to be a trivializing set for
FE and also we may assume that) # 0 for anyq € U, — {p}. LetS := (sy,...,s,) be a frame
for EonU,. Thens = Y " | fis; for some holomorphic functiong defined onl/;. Sincep is an
isolated zero of, it follows that{p} = {¢ € U; : fi(q) =0,i=1,...,n},

Theorem 5.2.1.Res, (s, E,p) = Res {dflfA A /}df”}
1y-++sJn
Proof. We give the proof for. = 1 (for n > 1 one needs th€ech-de Rham cohomology theory for
(n + 1)-open sets). Thus = fs; for some holomorphic functiogi on U;.
Let R be a closed “disc” contained iri; and containing. By definition

Re§(s,E,p):/cl(Vl)Jr/_aRcl(Vo,Vl).

R
One may assum¥; as ans;-trivial connection orl/;, thusc, (V) = 0. Therefore Regs, £, p) =
— f@R 01<V0, Vl)
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Now we recall how the Bott difference form(V,, V) is defined. Letr := E x R be the trivial
bundle overM x R, and lett be the coordinate oR. Define a connection foE on Uy, x R by
V= (1 —t)Vo+tVy. Letw : Uy x [0,1] — Uy be the canonical projection and let be the
integration along the fibers af. That is to say, letv be a2-form on Uy, x R given locally by
w = dt N Hy + H,, with H; a1-form andH, a 2-form given by a linear combination of terms of
the formdz; A dz; (i.e., not containingit). Thenr, (w) := fol dt N\ H, gives rise to d-form onUy;.
Thus we define

01(VQ, Vl) = W*Cl(V).

In our case, we led; be the connection matrix &F;, 7 = 0, 1 (on Up;) with respect to the frame;.
Thereforef); = 0 butd, # 0 (it would be zero in the frame). Thus the connection matrix for
is given byd := (1 — t)d,. Note that if¢}, = 0 is the connection matrix fo¥, with respect to the
frames, sinces = fs;, then by Proposition 3.1.7.1 we have

df

77

from which it follows ¢, = —%. Henced = (1 — t)6, = (¢ — 1)% and by equation (3.1), ¥ is the
curvature matrix oV, we have

0=0p=0,+

F=di— 676 =dt %
Thus
o (V) = %dt A % Gk %% =: ¢1(Vo, V1)
Therefore
as wanted. 0

6. INDICES OF VECTOR FIELDS AND RESIDUES OF SINGULAR FOLIATIONS

6.1. The Poincare-Hopf Theorem. Let M be aC'> compact manifold of dimension. Letv be

a vector field on\/ with only isolated zeros. Lei € M and fix a coordinate open set with local
coordinates{zy, ..., z,} aroundp. In this open set = ", aia% for someC* functionsa,.
There exists a small open bdll (contained in the coordinate set) such that U, andv(q) # 0
for everyq € U, — {p}. LetS. = 9U, ~ S™~!. Consider the map

Yy 1S — S

(a1(9), - -, an(q))
I(ax(q), - - an(@)]"

We define thd?oincaé-Hopf indexof v atp as

qr—

PH(v,p) := the mapping degree of,.
Note thatP H (v, p) = 0 if v(p) # 0.
Example 6.1.1.If v = 22 +y £ thenP(v,0) = 1. If v = (2” —y?) & +2zy - thenP H (v,0) = 2,
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Theorem 6.1.2.1f v is a vector field on\/ with only isolated zerog,, . .., p. then
Y PH(v,p;) = x(M),
=1

wherey (M) is the Euler number of/.

We want to give a sketch of the proof of such a theorem wheis complex and is holomorphic
using the “principle of localization of characteristic classes”.

Suppose first that/ is a compact complex-dimensional manifold and is aC vector fields.
Recall that

(6.1) /M cn(TM) = x(M).

Let S = S(v) be the zero set of. Suppose thab is compact and le{.S)},c, be the set of
connected components §f We localizec,, (T M) with respect ta as in Remark 5.1.1 to get a class
co(TM,v) € HE (U, Uy) wherel, := M — S, U, is an open neighborhood sfandi/ = {U, U, }.
Then we may define residues Re®, TM, Sy) as in (5.1). Thus by Proposition 5.1.2 and (6.1) we
have

(62) ZRG$7L(U,TM, S)\) = X(M)7
Aed
which generalizes the Poiné&aHopf Theorem.

Now supposes, = {p,} for each\ € J. Fixp € S. Suppose is a holomorphic vector field,
given byv = """ | aia% locally aroundp, for some holomorphic functions. By Theorem 5.2.1
dai N ... Nday,

ar,y...,0n
term is equal taPH (v, p). This gives Theorem 6.1.2 in casés holomorphic.

we have Res (v, TM,p) = Res and a direct calculation shows that this last

6.2. Non singular Foliations and the Bott vanishing Theorem.Let M be a complex manifold of
dimensionn.

Definition 6.2.1. A rank one holomorphic subbundfe of TM is a one dimensionalon-singular
foliation.

Let /" be a one-dimensional non-singular foliationah A (one dimensional) complex manifold
L C M is called aleafof F'if T,L = F, for everyp € L. Note that by Frobenius’ Theorem each
point of M is contained in a unique leaf and that actually the leaves fofrm a partition of)M .

Definition 6.2.2. A holomorphic vector bundlé’ is an F’-bundleif there exists &-linear mapa,
calleda holomorphic action

a: A%M,F) x A°(M,E) — A°(M, E)
with the following properties:
Q) a([u,v)),s) = a(u,a(v,s)) — a(v,au, s)) foranyu,v € A°(M, F) ands € A°(M, E),
(2) a(fu,s) = fa(u,s)forany f € A°(M),u € A°(M, F),s € A°(M, E),
(3) a(u, fs) =u(f)s + fa(u,s) forany f € A°(M),u € A°(M,F),s e A°(M, E),
@) if ue A°(M, F),s € A°(M, E) are holomorphic then(u, s) is holomorphic.

Let £ be a holomorphic vector bundle dd and letV be a connection foE. We say tha¥ is of
type(1,0) if the connection matrix o¥ in every (holomorphic) frame of has only(1, 0)-forms
as entries.
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Definition 6.2.3. Suppose&? is an F-bundle. A connection foFE is an F-connectionif
(1) (Vs)(u) = a(u, s) foranyu € A°(M, F) ands € A°(M, E),
(2) Vis of type(1,0).
If £ is anF-bundle it is always possible to define &rconnection forE (defineV,s = a(u, s)
forue A°(M, F), s € A°(M, E) and extend it).

Theorem 6.2.4(Bott vanishing Theorem)Let M be a complex.-dimensional manifold. Lef be

a holomorphic vector bundle al/, F' a one-dimensional non-singular foliation d and suppose
E is an F-bundle. LetV be anF'-connection forE. For any symmetric homogeneous polynomial
¢ of degreen it follows (V) = 0.

In casefl’ is a non-singular foliation of dimensign(i.e., F' is an involutive rankp holomorphic
subbundle ofl' M) then the Bott vanishing theorem holds for symmetric homogeneous polynomial
of degree> n — p.

Sketch of the proof of Theorem 6.21l4t r be the rank of£. In a neighborhood of each point we
may choose local coordinatés, .. ., z,} so thatF' is generated bg—l. From the very definition
of holomorphic action we may find a local frafSe= (sy,...,s,) of £ so thata(a%, s;) = 0 for
anys. ThusV% = 0. Letd = (¢,;) be the connection matrix &¥ in the frameS. SinceV is of

type (1,0) then thed,;’s are(1, 0)-forms and%(a%) =0fori,j =1,...,r. This means that each
9;; is of the form> ", fidz for someC> functionsf;,. Hence each entry of the curvature matix
of V is of the form} ;" , n, A dz, for somel-formsy,. Therefore since> has degree, it follows
(k) =0. O

6.3. The Baum-Bott Residue Theorem.

Definition 6.3.1. A one dimensionadingular foliation.7 on M is determined by the following data:
(1) a open coveringU,, } of M,
(2) a family of holomorphic vector fieldév, } such that,, is defined ort/,, and
(3) afamily of holomorphic non-vanishing functioqg,s} such thatf, s is defined or/, N U;
(once non-empty),

with the property that, it/, N Us # 0 thenvs = fo50,.

Let S(v,) := {p € Ua|va(p) = 0}. Sincevs = fopv, thenS(v,) N Uz = S(vg) N U, and thus
we may consider theingular setS = S(F) of F defined as

S =S(F):={pe€ M3a:v,(p) =0}.

Let My := M — S.

The functions{ f.s} satisfy the cocycle conditions relative to the coveriiig,} and therefore
they define a rank one holomorphic vector bunélecalled thetangent bundle ofF. We have the
vector bundle homomorphism

1: F— TM.
A sectionf of F'is given locally o, by aC> function f,, and onU,NUs # Qitholds f, = fas/s-
The mapi is locally defined as
i:(fa) = faVa
Since onU, N Ug it holds f,, = fa.3fs andv, = fs,vs3, One can easily check thats well defined.

Note that the map is injective only onM,. ThusF, := i(F|y,) is a rank one holomorphic
subbundle ofl' M,,;, and thereforeF gives rise to a non-singular foliation av,. We define the
quotient vector bundl&/, := TM,/F, on M, and call it thenormal bundleof the foliationF.
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Remark6.3.2 One may consider the sheaf of holomorphic sections-efstill denoted by —and
the sheab,, of holomorphic sections df M. Thus one gets an injective map— ©,, (basically
because the singular s&{F) has at least codimensidnin M), and one may consider the exact
sequence of sheaves

0—F —0Oy—Nr—0,
whereNr is the quotient sheaf. Howevérr is not locally free (actually it is locally free only on
M,) and therefore it is not the sheaf of section of a vector bundle (if one restiet® M, then
one get the sheaf of holomorphic sections\gf).

By the very definition, on\/, we have the following exact sequence of vector bundles:
(6.3) 0— Fy > TMy = Ng, — 0.
One can check the following lemma.

Lemma 6.3.3. The vector bundléVy, is an Fy-bundle with the action
A°(My, Fy) x A°(My, Ng,) — A°(My, Ng,)
(u, m(w)) = 7 ([u, w]).
We define thevirtual normal bundlev~ of F as
vg:=TM — F,

in the sense of( -theory.
If £ is a complex vector bundle ai, thetotal Chern clas®f £ is by definition

c(E)=1+c(E)+...+c(E),

which is an invertible element i *(M, C), the inverse being given by expandinhg:(E) (note that
this is actually a finite sum sindé?(M, C) = 0 for p > n).
For the virtual normal bundler the total Chern class is defined as
_ ATM)
C(V}—) T C(F) )

and thei-th Chern class;(vr) is the component of(vr) in H* (M, C). Thus ifp is a symmetric
polynomial we defineo(vx) as a polynomial in the Chern classes/gf
Let ¢ be a symmetric homogeneous polynomial of degre€hus

o(vr) = Z @i(TM)yi(F)

where thep;(TM)’s are polynomials in;(TM ) and they,;(F')’s are polynomials ir; (F').

Let U; be a neighborhood of in M, U, := M, and{ := {U,, U, }. Let VM be a connection for
TM onU,;, i = 0,1, let VI be a connection fof' on U;, i = 0,1 and letV be anF,-connection
for Ng, on U in such a way that the tripléVy, V3 V) is compatiblewith the exact sequence
6.3. This means thaf}! ow = (1 @ w) o V& andV o = (1 @ 7) o V}!. Such a triple can
be constructed starting from df-connectionV for Ny, (see Lemma 6.3.3), defining a connection
compatible toV for a complement ofo(F') in TM, extending this to all M and finally defining a
connection forF’ compatible with the previous ones.

Let

P(V3) =Y @i(VIN(VT),
P(VE) =D @iV WiV,
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As in Lemma 3.2.2, one can show—and for this the compatibility condition does not play any
role—thatdp(V?) = 0,7 = 0, 1 and there exists @n — 1)-form ¢(V§, V1) such that

p(V1) = (V5) = dp(Vi, V1),

Thus[(¢(V}), v(V3), 0(V3, V1)) € HE(U) and one can check that it correspondgtor) under
the isomorphism (2.1).

Now by the compatibility conditionp(V§) = ¢(V) and by the Bott vanishing Theorem 6.2.4
©(V) = 0. Thereforep(vr) is represented by0, o(V3), o(V§, V3)) € A*"(U,U,), whose class
o(ve, F) € HE(U, My) is called thdocalization ofy(v£) with respect taF.

For each compact connected componggtof S(F) one can define th8aum-Bott residue
Res,(F, vz, Sy) similarly to what we did in (5.1). I/ is compact, by (2.2) and (2.3), we have the
Baum-Bott residue formuia

ZRG%(f’V}—’S)\):/N[SD(V}—).

Remark6.3.4 (1) If Sy, = {p} the Bott residue is again expressed in terms of a Grothendieck
residue.
(2) If Fis generated by a global vector fieldheny(vx) = o(TM). Indeed in this casé’ has
a global non-vanishing section (—~ v(z)) and therefore it is trivial. Hence(F') = 1 and
the result follows from the very definition of total Chern class. Alsg; i ¢, we recover
the Poincag-Hopf theorem.

6.4. Residues relative to invariant submanifolds.Let 1 be a(n + k)-dimensional complex ma-
nifold and letA/ € W be a complex submanifold of dimensien SupposeF is a one dimensional
singular foliation onlv’. Assume thatr, C TM, foranyx € M, i.e, M isinvariantby 7. Thus
F induces a singular foliatiosF,; on M. LetS := S(Fy) == S(F)NM, My := M — S. LetF
be the tangent bundle of. Let Fy;, := Fjy, and letNy, := TW)y,/TM, be the normal bundle
of M, (this coincides with the restriction of the normal bundle\éf Ny, := TW /T M, to My).
Thus we have the following exact sequence of vector bundles:

0 — TMy — TWa — Nagy — 0.
Lemma 6.4.1. There exists a holomorphic action B%,, on N, given by
A°(My, Fpp,) x A°(My, Nayg,) — A°(My, Nag,)
(u, v) = a(u, v) == n([a, D)),
wheret, @ are any vector fields oi such thati|y, = v andn ()|, = w.

Let ¢ be a symmetric homogeneous polynomial of degrekeet U; be an open neighborhood of
S andi := { My, U, }. Let V, be anFy-connection forV,, on M. By the Bott vanishing Theorem
6.2.4,0(V,) = 0. Let V; be a connection fol,, on U;. The isomorphism 2.1 allows to represent
©(Nyr) by the class(0, o(V1), ¢(Vo, V1)] € HEY(U, My), thelocalization ofe with respect taF,
denoted byp(Ny, F).

If a connected componenst, of S is compact then one may define the residue,RESN,,, S))
(see (5.1)). IfM is compact (as in Proposition 5.1.2) the followiggneralized Camacho-Sad
formulaholds:

ZRG%(f’NMﬂx) Z/ ©(Nur).
S M
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Now suppose, = {p} and let{z, ..., z,.} be local coordinates on an open &et_ 1V contain-
ing p in such away thad/ := {q € Ulz,11(q) = ... = z,11(q) = 0}. SupposeF is generated by
o= 3" a; -2 onU. SinceM is invariant forZ then is tangent ta/, i.e.,

k
An4i = E CijZn+ij, for ¢« = 1,... ,/{:.
J=1

For ak x k-matrix A we defines;(A) to be given by the following relation:
det(I +tA) =14 to(A) + ... + t"on(A).

Thus, ifp = p(o1, 09, . ..), thenp(A) := p(o1(A), 02(A),...).
LetC = (¢;;). Itis possible to show that

o(C)dzy N ... Ndz,
a1y ..., 0y '

Re%(./f, N]y[,]?) = Re%J

7. CHARACTERISTIC CLASSES ON SINGULAR VARIETIES
7.1. Locally complete intersection. Let W be a(n + k)-dimensional complex manifold.

Definition 7.1.1. A closed set” C W is avarietyin IV (or subvarietyor analytic se} if for any
p € V there exist an open neighborhobdof p in W and f, .. ., f. holomorphic functions o/
such that

VU ={qeUlfilg)=... = frlg) =0}
The functiond f1, . . ., f,) are called a set afefining functiongor V.
A pointp € V isregularif there exists a set of defining functiof, . . ., f,.) aroundp such that
rank2UL=tr) -

By the implicit function theorem, ip € V' is a regular point theW is (in a neighborhood gf) a
(n + k — r)-dimensional complex manifold.

A pointp € V which is not a regular point is calledsingular point We denote by Sing’) the
set of singular points df” and byV’ := V' — Sing(V'). Note thatl’’ is a complex submanifold d#
(possibly not connected). We define the dimensiow db be the maximum of the dimensions of
the connected componentsof. We say that” is pure dimensiorif all the connected components
of V/ have the same dimension. The varigtys saidirreducibleif V' is connected.

Example 7.1.2.Let W = C? with coordinate z, 2, }.

(1) The functionf(z1, z2) := 2122 defines a subvariety such that Sing/’) = {(0,0)}. To see
that(0, 0) is a singular point one can show that for ahgimensional spher&?® centered at
(0,0) the intersectio N S® consists of two connected components.

(2) The functionf (21, z;) := 23 — 22 defines a subvariefly with an isolated singularity &0, 0).
Note that in this case for ar§¢dimensional spherg? the intersection’” N 52 is connected.

If W = CP"** andV is a variety given (globally) as the zero set of a finite number of homoge-
neous polynomials, thevi is said aprojective algebraic varietyA theorem of Chow says that any
compact variety irCP"** is algebraic.

Definition 7.1.3. Let V' be a closed set it"** andU' ¢ C"** an open set containing. We say
that V' is complete intersectioif there exists a set of defining functiofs,, ..., k) for V onU
such thatthy A ... Adhy Z00nV.
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If V ¢ U C C"** is a complete intersection variety defined/y. . ., h, then SingV) = {q €
V i dhy A ... Ndhig(q) = 0}. Also note thatl”’ is a complex manifold of dimension. Thus
one could equivalently define a complete intersection vafiety U C C"** as ann-dimensional
variety with a set of: (independent) defining functions @h

Definition 7.1.4. Let W be a(n + k)-dimensional complex manifold. A variely C 1V is alocal
complete intersection (L.C.l.) defined by a sectfdhere exist a rank holomorphic vector bundle
N overW and a holomorphic section: W — N such that for any € V there exist a open sét
in W, p € U, and a (holomorphic) framgs,, . . ., s) for N so that, ifs = 2% | h;s;, thenV N T
is a complete intersection defined By, . . . , hx).

If V' is a L.C.I. defined by a section : W — N then the normal vector bundl®&y. :=
TWy./TV' on V' coincides with the restrictioV,» of N to V’. Thus N extends the normal
vector bundle ol to W.

7.2. Grothendieck residue relative to a subvariety. Let V be a subvariety of™"* of pure dimen-
sionn contained in an open sét ¢ C** and suppose it has an isolated singularity at the oriin
Let f1, ..., f, be holomorphic functions ofif such that/ N {f; = ... = f, = 0} = {O}. Letw
be a holomorphia-form. Then we define th&rothendieck residuas

e [0l = ) L
fl,..-,fnv. 271'\/—_1 I‘fl"'fn’

wherel' .= {z € U : |fi(2)| = e;,i = 1,...,n} NV, for smalle; > 0, oriented so thad(arg f;) A
.. ANd(arg f,) > 0. Note that for generic smad} > 0 then-cycleI" is a submanifold of.
If V' is a complete intersection defined by, ..., hx) on U then by theprojection formulawe
have

w w A dhy .Ndhy
7.1 Re — Res) .
(7.1) @{fl,...,fn]v [fl,...,fn,hl,...,hk]

7.3. Residues on normal bundles.Let W be a(n + k)-dimensional complex manifold; a L.C.I.
defined by a section of the rakkholomorphic vector bundl®&’ overlV. Let F be a one dimensional
holomorphic foliation ori" leavingV” invariant,i.e., the vectors irF},» are tangent t¢”’. We want
to computep (V) for a symmetric homogeneous polynomjabf degreen.

Let 7y be the foliation or’” induced byF. Let S := S(F,V) := (S(F) N V) U SingV)). Let
Vo=V -=ScCV' Let U, be a tubular neighborhood &f, p : Uy — V; the C* retraction and let
U, be an open neighborhood §fin . Leti/ := {Uo, Ul} U Uy UU,.

Let I be the one dimensional tangent bundleAp F, := Fjy,. By Lemma 6.4.1 there is a
holomorphic action off;, on Vy,. Let V be anFy-connection forNy,. Let V, be a connection
for N on U; and letV, := p*(V) be a connection forv on Uy. By (2.1) the classp(N ) is
represented by (V.) := (¢(Vo), ©(V1),9(Vo, V1)) € A*"(U). By the Bott vanishing Theorem
6.2.4 it follows thaty (V) = p*(¢(V)) = 0 and actuallyp(V.) € A2 (U, Uy).

Now supposeS is a compact. For each connected comporgnof S let Ry be a2(n + k)-
dimensional compaet™ manifold with boundary such that, is contained in the interior oR,,
Ry NS =S5, anddR, is transverse t& atV N R,. Let R, := R\ NV andRyy := —OR,. Define

Res (£, v S i= [ o(V)+ [ ¢V, V)
Ry Rox
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One can easily show that the number is independent of the choigg &f,,. Thus
/ p(V.) =) Res(F,Ny,Sh).
4 A

Also, if V' is compact, by formulas similar to (2.2), (2.3), one getgeaeral Camacho-Sad type
formula

/V¢(N) = Res,(F, Ny, 5)).

SupposeS, = {p}. Let F be generated by the vector fieichearp and let(h,, ..., h;) be a set of
defining functions fol” nearp. SinceV is F-invariantthen for = 1,... k
k

() =Y cihy,

j=1
for some holomorphic functions;. LetC' = (c¢;;).
Lemma 7.3.1(Existence of good local coordinates)here exists a local system of coordinates
{21, .., zn4x} nearp such that, ifi = 3" a;72, then{a, = ... = a, = 0} NV = {p}.
In a local coordinates system as in Lemma 7.3.1 by (7.1) we have
e(C)dzy AL A dzn] ~ Res, {@(C)dzl A...Ndzy Ndhy ... N\ dhy,
Vv

A1y ..,y Q1yeeeyCpyhyy .o hy

Re%(‘/fa Nva) = Re%
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