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RESIDUES FOR HOLOMORPHIC

FOLIATIONS OF SINGULAR PAIRS

Filippo Bracci† and Tatsuo Suwa‡

Abstract. Let X be a (possibly singular) subvariety of a complex manifold M and Y
a subvariety of X. We assume that Y is the intersection locus of X with a submanifold
P ⊂ M and this intersection is generically transverse. For such a pair (X, Y ), we
prove a generalization of the classical Camacho-Sad residue theorem, in case there
exists a holomorphic foliation F of X leaving Y invariant. Also, we compute explicitly
the residues at isolated singular points.

Introduction
The classical Camacho-Sad residue (or index) theorem [CS] states that if

X is a two dimensional complex manifold, Y ⊂ X a non-singular compact com-
plex curve invariant by a holomorphic foliation F of X, then the first Chern class
c1(NY,X) of the normal bundle NY,X of Y in X localizes at the singularities of F
in Y . That is to say, to each point p in Y ∩ Sing(F) one can associate a complex
number Res(F , Y ; p), called the residue of F at p relative to Y , depending only on
the behavior of F near p, such that

∑
Res(F , Y ; p) =

∫
Y

c1(NY,X). C. Camacho
and P. Sad used their theorem to settle a problem raised by Poincaré on the exis-
tence of separatrices for germs of holomorphic foliations in C2. On the other hand
the Camacho-Sad theorem can be seen as an obstruction to the existence of folia-
tions having a given curve as invariant. Especially in this optic, the Camacho-Sad
theorem has been generalized by several authors. Just to name a few, A. Lins Neto
[Li] for the case of a singular curve Y in X = CP2, the second named author [Su2]
for the general case Y singular, and D. Lehmann and the second named author [LS]
for the case X is a complex manifold of arbitrary dimension and Y is an arbitrary
(co)dimensional strongly locally complete intersection in X (we refer to [Su3] for a
detailed history). Very recently, a paper by V. Cavalier, D. Lehmann and M. Soares
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[CLS] generalizes the Camacho-Sad theorem to the case Y is an arbitrary singular
subvariety of a complex manifold X.

The basic idea in all these papers (which is however rather hidden in the
first three) is that a holomorphic foliation F provides a vanishing of certain char-
acteristic classes away from the singular locus of Y and F . Provided that there
exists a “good extension” of NY,X on such a singular locus, the Čech-de Rham the-
ory produces localization at some cohomological level and Poincaré and Alexander
duality give then the residue theorems. Thus, taking this machinery for granted, to
have a Camacho-Sad type theorem one has to face two problems: find an extension
(“natural” to some extent) of the normal bundle of Y in X to all the singularities
of Y , and then find some “good action” of F on such extension in order to get some
vanishing theorems. According to this picture, in order to solve problems in discrete
dynamics, the first named author together with M. Abate and F. Tovena (see [Ab],
[Br], [BT], [ABT]) developed a way to obtain generalizations of the Camacho-Sad
theorem in case the foliation F is replaced by a holomorphic map f : X → X
pointwise fixing Y .

In all the previous works the ambient manifold X is supposed to be non-
singular, which allows to have natural extensions of NY,X . The next step would be
then to allow some singularities for X. This is not, however, just a merely technical
game. Indeed, in some dynamical problems one has to face a singular ambient space.
In the case of foliations (see [Ca]), this does not cause really a serious problem, for
one can always resolve the singularities and pull back the foliation to a non-singular
ambient; however, in the case of holomorphic maps this is no longer possible. Thus
in [BS], for answering a question of discrete dynamics, the authors were forced to
define residues for a singular X of dimension two and proved a Camacho-Sad type
theorem in that case. The aim of this paper is to give a general version of the
residue theorem introduced in [BS] with no restrictions on the dimension of X and
(co)dimension of Y .

The setting is as follows. We let X be an analytic variety in a complex man-
ifold M and Y a subvariety of X. We assume that Y is presented as the intersection
of X with a submanifold P ⊂ M , in such a way that the intersection is generically
transverse and dim P +dim X = dim M +dim Y . We call such a pair (X,Y ) an ad-
equate singular pair (see Definition 1.2). Many examples of algebraic varieties come
up this way. Note that if (X,Y ) is an adequate singular pair, the bundle NY,X ,
defined only on the non-singular part of Y in X, has a natural extension given by
NP,M |Y . If F is a holomorphic foliation of X (actually, we do not need it to be
defined outside X as required in [BS]) leaving Y invariant, we prove a localization
theorem for ϕ(NP,M |Y ) near the singularities of Y and of F in Y , where ϕ is a
homogeneous symmetric polynomial of an appropriate degree (see Theorem 2.1).
This can be seen as a natural generalization of the Camacho-Sad theorem for the
case X is singular. We also compute explicitly the residues at isolated singular
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points in the top degree case (see Theorem 3.1).
In the first section of the paper we recall some basic facts about holomorphic

foliations and introduce the main objects of our study, i.e., adequate singular pairs;
in particular we discuss of their singularities. In the second section we derive our
main residues theorem. In the third section we provide a computation of residues
at isolated points.

Part of this work was done while both authors were staying at Università di
Firenze. We would like to thank, in particular, Professor Graziano Gentili for the
generous hospitality and support.

We also want to thank the anonymous referee for many useful comments
improving the manuscript.

1. Preliminaries
Let M be a connected complex manifold. The symbol C∞M will denote the

sheaf of C∞-functions on M , while OM is the sheaf of holomorphic functions. If E is
a (complex) vector bundle on M we denote by C∞(E) the sheaf of C∞-sections of E
while we reserve the script symbol E = OM (E) to denote the sheaf of holomorphic
sections of E. Moreover we denote by TM the holomorphic tangent bundle of M
and by ΘM = OM (TM) the sheaf of germs of holomorphic vectors fields on M .

1.1 Foliations.

Definition 1.1. A (singular) foliation of M is a coherent subsheaf F ⊂ ΘM which
is involutive, i.e., for any p ∈ M ,

[Fp,Fp] ⊆ Fp.

Let Q := ΘM/F be the quotient sheaf. The singular set Sing(F) of a
foliation is defined as

Sing(F) = { p ∈ M : Qp is not OM,p-free }.

Note that Sing(F) is a closed subvariety of M . The dimension of F is the rank of
Fp at some (and hence any) point p ∈ M \ Sing(F).
Remarks 1. If Qp is OM,p-free, then so is Fp. Therefore on M0 = M \ Sing(F)
there exists a holomorphic vector bundle F ⊂ TM0 whose germs of holomorphic
sections form F|M0 .
2. Sometimes the definition of foliation requires that F be also reduced (or full).
This is a technical condition meaning that, for any open set U ⊂ M and any section
s ∈ Γ(U,ΘM ), if sp ∈ Fp for all p ∈ U \ Sing(F), then actually s is in Γ(U,F).
However there is a canonical way to obtain a reduced foliation from a non-reduced
one (see [BB], [Su1]).
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Let X be a possibly singular subvariety in M . We denote by Sing(X)
the singular set of X and by X ′ = X \ Sing(X) the non-singular part. In the
following we need holomorphic foliations on X. First we need to define the sheaf
of holomorphic “tangent vectors” ΘX to X. Let OX be the sheaf of holomorphic
functions on X. This is defined as OX = OM/IX , where IX ⊂ OM is the ideal
sheaf of germs of holomorphic functions identically vanishing on X. Then ΘX is
defined as HomOX

(ΩX ,OX) with ΩX being given by the following exact sequence
of OX -modules:

IX/I2
X −→ ΩM ⊗OM

OX −→ ΩX −→ 0,

where ΩM = OM (T ∗M) and the first morphism is given by [f ] 7→ df ⊗ 1. Note
that on X ′, ΘX = OX(TX ′). Note also that ΘX acts on OX as derivations,
as in the case of non-singular base spaces. A holomorphic foliation on X is a
coherent subsheaf F ⊂ ΘX such that F|X′ is a holomorphic foliation. We set
Sing(F) = Sing(F|X′) ∪ Sing(X).

First examples of holomorphic foliations on X come from restriction of
foliations of M . Namely, let F be a holomorphic foliation of M . We say that X is
F-invariant if every vector v in F leaves the ideal IX invariant, which is equivalent
to saying that v is tangent to X ′. We denote by F|X the image of F ⊗OM OX

in ΘM ⊗OM OX . If X is F-invariant, then actually F|X ⊂ ΘX and if, moreover,
dim(Sing(F) ∩X) < dimX, then F|X is a foliation of X of the same dimension as
F (cf. [Su3, Ch.VI, 6]).

Other natural examples of foliations on X come from the case X is pointwise
fixed by a (nontrivial) holomorphic self-map of M (see [ABT]).

1.2 Adequate singular pairs.
Let M be a complex manifold of dimension m and let P ⊂ M be a complex

submanifold of dimension r. We denote by NP,M the normal bundle of P in M
defined by the following exact sequence of holomorphic vector bundles:

0 −→ TP −→ TM |P −→ NP,M −→ 0.

Assume X is a complex submanifold of M of dimension n which intersects P along
a submanifold Y ⊂ M of dimension n + r −m and such intersection is everywhere
transversal. Then it is easy to see that the normal bundle NY,X = NP,M |Y . This
apparently harmless observation will allow us to obtain extensions of the Camacho-
Sad index theorem even in the case X and Y are singular. To make things precise
we need some works. We begin with a definition.

Definition 1.2. Let M be a complex manifold of dimension m. Let X ⊂ M be an
analytic variety of pure dimension n > 0, Y ⊂ X a subvariety of pure dimension
l > 0. We say that (X,Y ) is an adequate singular pair in M if there exists a
submanifold P ⊂ M of dimension r = m + l − n such that
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(1) Y = X ∩ P (set-theoretically),
(2) dim(Sing(X) ∩ P ) < l,
(3) X ′ intersects P generically transversally.

Remark Assume M, X,P, Y are as in Definition 1.2 and Y ∩ X ′ is connected.
If conditions (1) and (2) are satisfied but condition (3) is not then X ′ intersects
nontransversally P everywhere. Indeed, let N ⊂ Y ∩ X ′ be defined as follows:
x ∈ N if there exists an open neighborhood U ⊂ Y ∩X ′ of x such that X intersects
nontransversally P at every p ∈ N . Clearly N is open and closed in X ′ ∩ Y .
Therefore condition (3) means exactly N = ∅ on each connected component of
Y ∩X ′.

Example 1.1. Let X be an n-dimensional algebraic subvariety of CPm and P ⊂
CPm an r-dimensional general linear subspace (with r−m+n > 0). Then (X, X∩P )
is an adequate singular pair in CPm.

Example 1.2. Let X1 ⊂ Cm be a germ of a singular variety of dimension n at
the origin O. Assume that the singularity of X1 at O is isolated. Blow up the
point O and let X be the strict transform of X1 and P the exceptional divisor. Let
Ỹ = P ∩X, and let Y be a connected component of Ỹ . If dim(Sing(X)∩P ) < dim Y
then by the previous remark, either X ′ intersects nontransversally P everywhere
on a connected component of Y ∩X ′ or (X, Y ) is an adequate singular pair in the
blow up of Cm at O.

We examine more closely the singularities of adequate singular pairs. We
set Y ′ = (Y \ Sing(Y )) ∩X ′ and

(1.1) Y nt = { q ∈ X ′ ∩ P : dim(TqX
′ + TqP ) < n + r − l}.

Thus Y nt is the set where X ′ and P are not transverse. In [BS] the following lemma
is proved for n = 2 and r = m− 1.

Lemma 1.1. If (X, Y ) is an adequate singular pair, then Y nt = X ′ ∩ Sing(Y ).

Proof. Clearly X ′ ∩ Sing(Y ) ⊂ Y nt, for if X ′ is transverse to P at a point q, then
Y is non-singular at q. Conversely, suppose q ∈ Y ′. We wish to show that X ′

intersects transversally P at q. Let (z1, . . . , zm) be local coordinates on an open
set U ⊂ M such that q ∈ U , X ∩U = {zn+1 = . . . = zm = 0} and Y ∩U = {zl+1 =
. . . = zm = 0}, where we recall that l = n + r −m ≥ 1. There exist holomorphic
functions h1, . . . , hm−r on U such that P ∩ U = {h1(z) = . . . = hm−r(z) = 0}.
Then the goal is to show that

(1.2) det
(

∂hj

∂zk

)
(q) 6= 0,



6 F. Bracci and T. Suwa

where, 1 ≤ j ≤ m− r and l + 1 ≤ k ≤ n. Let hj := hj |X , for j = 1, . . . , m− r. Let
IY ⊂ OX be the ideal sheaf of holomorphic functions on X identically vanishing on
Y . Note that IY nearby q is generated in OX by zl+1, . . . , zn. Since hj ∈ IY,q, there
exist holomorphic germs ajk ∈ OX,q on X, for j = 1, . . . ,m−r and k = l+1, . . . , n,
such that hj =

∑n
k=l+1 ajkzk. Since

det
(

∂hj

∂zk

)
(q) = det

(
∂hj

∂zk

)
(q)

and the latter term is non-zero if and only if

(1.3) det(ajk)(q) 6= 0,

we are then left to prove (1.3). For any point p ∈ U ∩ Y let Gp ⊂ OX,p be the ideal
generated by h1, . . . , hm−r. Shrinking U if necessary, we note that

(1.4) IY,p = Gp

if and only if det(ajk)(p) 6= 0 and thus (1.4) is equivalent to X being transverse to
P at p. Therefore we are left to prove that (1.4) holds for p = q. Note also that,
by the Hilbert Nullstellensatz, IY,p =

√Gp, where
√Gp denotes the radical of Gp.

We are thus left to show that Gq =
√Gq.

Since Y is locally complete intersection in X it follows that OX,q/Gq is
a Cohen-Macaulay ring. Thus if OX,q/Gq is not reduced (which corresponds to
Gq 6=

√Gq = IY,q) then OX,p/Gp is not reduced (and then Gp 6= IY,p) for any point
p in a suitable open neighborhood of q (see, e.g., [Lo, p.50]). By (1.4) this means
that X is non-transversal to P on an open set in Y , against our hypothesis (3). ¤

As a corollary of Lemma 1.1 we have

Corollary 1.2. The subvariety Y nt ⊂ Y is made of connected components isolated
in Y .

Remark Assume (X,Y ) is an adequate singular pair in M , Y = X ∩ P . Then
NP,M |Y coincides with NY,X on the open set U ⊂ Y where Y is nonsingular and
X intersects P transversally. Let Z be another complex manifold and z0 ∈ Z. Let
M̃ = M×Z, X̃ = X×{z0}, Ỹ = Y ×{z0} and P̃ = P ×{z0}. Then (X̃, Ỹ ) satisfies
hypotheses (1), (2) and (3) in Definition 1.2 but it is not an adequate singular pair
according to our definition for dim P̃ < dim M̃ + dim Ỹ − dim X̃. In particular
note that NP̃ ,M̃ has rank greater than that of NỸ ′,X̃′ and thus NP̃ ,M̃ does not
provide an extension of NỸ ,X̃ . However, if π1 : M̃ → M is the natural projection,
the bundle N = π∗1(NP,M ), which can naturally be thought of as a subbundle of
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NP̃ ,M̃ , coincides with NỸ ,X̃ on π−1
1 (U)∩ Ỹ . Therefore in such a case one can easily

extend the results presented in this paper for the case of adequate singular pairs.
We warmly thank the referee for pointing out this example.

In general if X, Y, P,M are as in Definition 1.2 except r < m − n + l, it
does not seem natural to ask for the existence of a subbundle N of NP,M which
extends NY ′,X′ in order to include the previous example in the definition of adequate
singular pairs. Also, Lemma 1.1 seems to heavily rely on the property of local
complete intersection coming from the hypothesis r = m + n− l.

2. Residue theorems for foliations of adequate singular pairs

In this section we state and prove our main theorem. We use the notations
previously introduced about adequate singular pairs.

Theorem 2.1. Let (X, Y ) be an adequate singular pair in M and let F be a fo-
liation of X of dimension d ≤ l which leaves Y invariant. Let Σ = (Sing(F) ∪
Sing(Y )) ∩ Y and assume that dimΣ < l. Let Σ = ∪γΣγ be the decomposition
into connected components and let ιγ : Σγ ↪→ Y denote the inclusion. Let ϕ be a
symmetric homogeneous polynomial of degree t > l − d. Then
(i) For each compact connected component Σγ there exists a class Resϕ(F , Y ; Σγ) ∈
H2l−2t(Σγ ;C), called “residue”, which depends only on the local behavior of F
near Σγ .
(ii) If Y is compact we have

∑
γ

(ιγ)∗Resϕ(F , Y ; Σγ) = ϕ(NP,M ) a [Y ] in H2l−2t(Y ;C).

Remarks 1. If (X, Y ) is an adequate singular pair in M , by the very definition, it
follows that dim(Sing(Y )∪ Sing(X))∩ Y = dim(Y nt ∪ Sing(X))∩ Y < l. Therefore
the hypothesis that dim Σ < l in Theorem 2.1 refers only to the singularities of the
foliation F .
2. Let σ1, . . . , σs denote the elementary symmetric functions in the s variables
X1, . . . , Xs. If ϕ ∈ C[X1, . . . , Xs] is a symmetric homogeneous polynomial of degree
t then there exists a unique polynomial ϕ̃ in the variables σ1, . . . , σs such that
ϕ = ϕ̃(σ1, . . . , σs). If cj(NP,M ) ∈ H2j(P ;C) denotes the j-th Chern class of NP,M

then one defines ϕ(NP,M ) = ϕ̃(c1(NP,M ), . . . , cs(NP,M )) ∈ H2t(P ;C).
3. The residues appearing in part (i) of Theorem 2.1 have often intrinsic relations
with the “dynamics” of the foliation F (see [ABT], [BS], [Ca] and [CS] for more
about this). The rest of this section is devoted to the proof of Theorem 2.1. In the
next section we give an explicit expression for the residue Resϕ(F , Y ; Σγ).

2.1 The proof of Theorem 2.1. The proof of this theorem is made in two
steps. The first step consists in defining a “good connection” for the bundle NP,M
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on Y \ Σ in such a way that its curvature is vanishing. The second step consists
in using the Čech-de Rham theory to localize ϕ(NP,M |Y ) around Σ exploiting the
previous constructed connection. This strategy is rather well known after the works
of Lehmann [Le] and Lehmann and the second named author [LS]. However, for the
reader convenience, we describe it in here.

2.1.1 The Bott vanishing theorem. Let X0 := X ′ \Sing(F) and Y 0 := Y ′∩X0.
Let F ⊂ TX0 denote the holomorphic bundle associated to F . One can define an
operator Ξ : C∞(F |Y 0)× C∞(NY 0,X0) → C∞(NY 0,X0) called a holomorphic action
of F |Y 0 on NY 0,X0 as follows. For u ∈ F|Y 0 and s ∈ C∞(NY 0,X0) the operator Ξ is
defined as

(2.1) Ξ(u, s) = χ([ũ, s̃]|Y ),

where ũ ∈ F is such that ũ|Y = u, s̃ ∈ C∞(TX0) and χ(s̃|Y ) = s, where χ :
TX0|Y → NY 0,X0 is the canonical projection. One can prove that Ξ depends only
on u and s and not on the extensions ũ, s̃ chosen to define it. Also one can extend
naturally Ξ to C∞(F |Y 0), for F|Y 0 generates C∞(F |Y 0) as a C∞Y 0 -module. The map
Ξ satisfies the following properties:
(i) Ξ([u, v], s) = Ξ(u, Ξ(v, s))− Ξ(v, Ξ(u, s)) for u, v ∈ C∞(F |Y 0), s ∈ C∞(NY 0,X0),
(ii) Ξ(hu, s) = hΞ(u, s) for h ∈ C∞Y 0 , u ∈ C∞(F |Y 0), s ∈ C∞(NY 0,X0),
(iii) Ξ(u, hs) = hΞ(u, s) + u(h)s for h ∈ C∞Y 0 , u ∈ C∞(F |Y 0), s ∈ C∞(NY 0,X0),
(iv) Ξ(u, s) ∈ OY (NY 0,X0) for u ∈ ΘY 0 , s ∈ OY (NY 0,X0).

Properties (ii) and (iii) above say that the pair (Ξ, F |Y 0) can be viewed as a
partial connection in the sense of Bott for NY 0,X0 . Namely, Ξ defines a C-linear map
δ from C∞(F |Y 0) to C∞(F |∗Y 0⊗NY 0,X0) such that for f ∈ C∞Y 0 and s ∈ C∞(NY 0,X0)

δ(fs) = df ⊗ s + fδs.

This latter can be extended (not uniquely) to a (1, 0)-connection ∇0 for NY 0,X0

such that
(∇0)u· = δ(u) = Ξ(u, ·)

for any u ∈ C∞(F |Y 0) (see [BB, p. 291]). We call a Ξ-connection any such con-
nection ∇0. For any symmetric homogeneous polynomial ϕ of degree t > l− d and
Ξ-connection ∇0 for NY 0,X0 , we have the so-called “Bott vanishing theorem”:

(2.2) ϕ(∇0) = 0.

Formula (2.2) follows from properties (i), (iv) of Ξ (see [BB, p. 295] or [Su3, Ch.
II.9] for details).
2.1.2 Čech-de Rham theory and localization. Let U0 be a tubular neighbor-
hood of Y 0 in P , and let ρ : U0 → Y 0 be the C∞-retraction. Since NP,M |Y 0 =
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NY 0,X0 , we can take ∇0 a Ξ-connection for NP,M |Y 0 on Y 0 as explained in 2.1.1
and consider the connection ρ∗(∇0) for ρ∗(NP,M ) on U0. Note that ρ∗(NP,M |Y 0)
is C∞-equivalent to NP,M on U0. With some abuse of notation we simply denote
ρ∗(NP,M |Y 0) by NP,M and also we denote by ∇0 its connection ρ∗(∇0).

We set Σ := (Sing(F) ∪ Sing(Y )) ∩ Y , which is a subvariety of dimension
strictly less than l in Y by hypothesis. Let U1 be an open neighborhood of Σ
in P such that U1 is union of disjoint open sets U1,γ each of them containing
exactly one connected component—say Σγ—of Σ and such that U1,γ is a regular
neighborhood of Σγ for every γ (this is possible by Corollary 1.2). Moreover we
may assume that U0 ∪U1 is a regular neighborhood of Y in P . On U1 we choose an
arbitrary connection ∇1 for NP,M . Let H∗

D(U) be the Čech-de Rham cohomology
associated to the covering U = {U0, U1}. We recall briefly how this is defined
(see, e.g., [Su3, Ch.II,3, Ch.IV,2, Ch.VI,4] for details). For any p > 0 define the
C-vector space Ap(U) = Ap(U0) ⊕ Ap(U0) ⊕ Ap−1(U0 ∩ U1), where Ap(V ) is the
space of p-forms on the open set V ⊂ P . Thus an element α ∈ Ap(U) is a triple
(α0, α1, α01) such that αj ∈ C∞(∧pT ∗P ;Uj) for j = 0, 1 and α01 is a p − 1 form
on U0 ∩ U1. One defines an operator D : Ap(U) → Ap+1(U) given by Dα =
D(α0, α1, α01) = (dα0, dα1, α1 − α0 − dα01). It can be checked that D ◦D = 0 and
thus {A∗(U), D} is a complex, called the Čech-de Rham complex. Its cohomology
H∗

D(U) is called the Čech-de Rham cohomology. One feature of this cohomology
is that the natural map Ap(U0 ∪ U1) 3 ω 7→ (ω|U0 , ω|U1 , 0) ∈ Ap(U) induces an
isomorphism Hp(U0 ∪ U1;C) ' Hp

D(U), and therefore, since U0 ∪ U1 is a regular
neighborhood of Y , an isomorphism Hp(Y ;C) ' Hp

D(U). Also, one can consider
the sub-complex A∗(U , U0) = A∗(U1) ⊕ A∗−1(U0 ∩ U1). Namely, an element α =
(α0, α1, α01) ∈ A∗(U , U0) if and only if α0 ≡ 0. Its cohomology H∗

D(U , U0) is the
relative Čech-de Rham cohomology. It holds H∗

D(U , U0) ' H∗(Y, Y \ Σ;C). If E
is a complex vector bundle on U0 ∪ U1 and ∇j is a connection for E|Uj , j = 0, 1,
there exists a (2t− 1)-form ϕ(∇0,∇1) on U0 ∩ U1, called the Bott difference form,
such that dϕ(∇0,∇1) = ϕ(∇1)−ϕ(∇0) and the class of (ϕ(∇0), ϕ(∇1), ϕ(∇0,∇1))
in H2t(U) corresponds to ϕ(E) ∈ H2t(U0 ∪ U1;C).

In our situation, from (2.1), it follows that ϕ(NP,M ) ∈ H2t(U0 ∪ U1;C) is
represented in H2t

D (U) by the cocycle

(2.2) ϕ(∇∗) = (ϕ(∇0), ϕ(∇1), ϕ(∇0,∇1)) = (0, ϕ(∇1), ϕ(∇0,∇1)).

Therefore [ϕ(∇∗)] ∈ H2t
D (U , U0). Then we have a first localization of ϕ(NP,M |Y ) ∈

H2t(Y ;C) at cohomology level, which we denote by ϕΣ(NP,M ) ∈ H2t(Y, Y \ Σ;C).
Since H2t(Y, Y \ Σ;C) =

⊕
γ H2t(Y, Y \ Σγ ;C) we can also write ϕΣ(NP,M ) =∑

γ ϕΣγ (NP,M ). If Σγ is compact we can consider the Alexander homomorphism

Aγ : H∗(Y, Y \ Σγ ;C) → H2l−∗(Σγ ;C).
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Alexander homomorphism is defined as follows. Let R̃1,γ be a compact real 2r-
dimensional manifold with C∞ boundary in U1,γ such that Σγ is contained in the
interior of R̃1,γ and such that the boundary ∂R̃1,γ is transverse to Y . We set
R1,γ = R̃1,γ ∩ Y . If θ ∈ Hp(Y, Y \ Σγ ;C), it is represented by a couple (θ1, θ01) ∈
Ap(U , U0), with θ1 a p-form on U1,γ and θ01 a (p−1)-form on U1,γ∩U0. Then Aγ(θ)
is represented by a (2l − p)-cycle C in Σγ such that for any closed (2l − p)-form τ1

on U1,γ one has

(2.3)
∫

C

τ1 =
∫

R1,γ

θ1 ∧ τ1 −
∫

∂R1,γ

θ01 ∧ τ1.

The image of Aγ(ϕΣγ (NP,M )) ∈ H2l−2t(Σγ ;C) is denoted by Resϕ(F , Y ; Σγ). Let
ιγ : Σγ ↪→ Y denote the inclusion and (ιγ)∗ the morphism induced in homology by
ιγ . If Y is compact, we have

∑
γ

(ιγ)∗Resϕ(F , Y ; Σγ) = Poi(ϕ(NP,M |Y )),

where Poi : H∗(Y ;C) → H2l−∗(Y ;C) denotes the Poincaré homomorphism, which
is given by the cap product with the fundamental cycle [Y ] of Y . Theorem 2.1 is
thus proved.

3. Computation of residues.

In this section we compute the residues given by Theorem (2.1) in some
special cases and compare them with the ones obtained by [Le] and [LS] when X is
non-singular. We retain the notation introduced in the previous sections.

First we write the general expression for Res(F , Y ; Σγ). Let U = {U0, U1},
R̃1,γ , R1,γ be as in section 2. By (2.3) it follows that Resϕ(F , Y ; Σγ) is represented
by a (2l − 2t)-cycle C in Σγ such that for any closed (2l − 2t)-form τ1 on U1,γ one
has

(3.1)
∫

C

τ1 =
∫

R1,γ

ϕ(∇1) ∧ τ1 −
∫

∂R1,γ

ϕ(∇0,∇1) ∧ τ1,

where ∇0,∇1 and ϕ(∇0,∇1) are as in (2.2). In particular if t = l, then the residue
is a complex number.

Our aim is to compute explicitly the residue in case t = l, d = 1 and
Σγ = {qγ}. Moreover we assume Fqγ is generated on OX,qγ by a single element of
ΘX,qγ .

Since Σγ is reduced to one point, we can take Ũ1,γ an open neighborhood
of qγ with local coordinates {z1, . . . , zm} centered at qγ and such that P ∩ Ũ1,γ =
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{zr+1 = . . . = zm = 0}. Moreover we may assume that on U1,γ := Ũ1,γ ∩ P the
bundle NP,M |U1,γ

is holomorphically trivial and both X and Y are non-singular on
Ũ1,γ \ {qγ}. Let σ : TM |P −→ NP,M be the canonical projection. Let δj := σ( ∂

∂zj
)

for j = r +1, . . . , m. Then {δr+1, . . . , δm} is a holomorphic base frame of NP,M on
U1,γ .

We can take ∇1 to be the trivial connection for NP,M with respect to the
frame {δr+1, . . . , δm}. Thus ϕ(∇1) = 0 and

(3.2) Resϕ(F , Y ; {qγ}) = −
∫

∂R1,γ

ϕ(∇0,∇1).

Now we find “good coordinates” to express the Bott difference form. First, by
the local parameterization theorem, we can find an open set Ũ0 in M containing
Y 0 ∩ Ũ1,γ and holomorphic functions h1, . . . , hl ∈ OM (Ũ1,γ) such that, if j : X ↪→
M , then

(3.3) j∗(dh1 ∧ . . . ∧ dhl ∧ dzr+1 ∧ . . . ∧ dzm|Ũ0∩X) 6= 0.

This means that {h1, . . . , hl, zr+1, . . . , zm} can be thought of as local coordinates
of X0 and {h1, . . . , hl} as local coordinates of Y 0 on Ũ0.

¿From the coherence of F and since Fqγ is generated by only one element of
ΘX,qγ , up to shrink Ũ1,γ we can assume that on Ũ1,γ∩X the foliation F is generated
by the holomorphic vector field ξ ∈ ΘX . With a slight abuse of notation, by (3.3),
we can write ξ on Ũ0 ∩X as

(3.4) ξ =
m∑

j=r+1

ξ(zj)
∂

∂zj
+

l∑

i=1

ξ(hi)
∂

∂hi
,

where, for ξ(zj) and ξ(hi) to make sense, one should think of zj and hi as elements
of OX via the surjection OM → OX .

Remark 3.1. In case F comes from the restriction of a foliation of M given in
Ũ1,γ by a vector field ξ̂, then F on X0 ∩ Ũ1,γ is given by

(3.5) ξ = ξ̂|X0 =
m∑

j=r+1

ξ̂(zj)|X ∂

∂zj
+

l∑

i=1

ξ̂(hi)|X ∂

∂hi
.

Note that, since qγ is an isolated singularity, ξ(p) 6= 0 for p ∈ X0 ∩ Ũ1,γ ,
and thus

m⋂

j=r+1

{p ∈ Ũ0|ξ(zj)(p) = 0}
l⋂

i=1

{p ∈ Ũ0|ξ(hi)(p) = 0} = ∅.
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Let M be the (m − r)-square matrix with entries ∂ξ(zj)
∂zk

for j, k = r +
1, . . . ,m. Recall that for a symmetric homogeneous polynomial ϕ =

∑
ckσjk

k with
σk elementary symmetric functions, ck ∈ C and jk ∈ N, one can define ϕ(M) :=∑

ckσjk

k (M) where σk(M) are defined by means of the following relation

det(I + tM) = 1 + tσ1(M) + . . . + tm−rσm−r(M).

With the above notation we have

Theorem 3.1. Let d = 1, l = t and Σγ = {qγ}. Assume that F is generated by
ξ ∈ ΘX near qγ . Then there exists a small ε > 0 such that

Resϕ(F , Y ; {qγ}) =
(

1
2π
√−1

)l ∫

Γ

ϕ(M)dh1 ∧ . . . ∧ dhl

ξ(h1) · · · ξ(hl)
,

where Γ = { p ∈ U0 ∩ Y : |ξ(hi)(p)| = ε, i = 1, . . . , l} is a real l-cycle oriented so
that d(arg ξ(h1) ∧ . . . ∧ d(arg ξ(hl)) ≥ 0.

The proof of Theorem 3.1 for l = 1, n = 2 can be inferred from that
of [BT, eq. (2.7)]. We also explicitly note that once appropriate coordinates are
introduced as before the argument is similar to the one in [LS, Thm. 1’]. However
for the sake of clearness we give here a proof of Theorem 3.1 for l = 2. For l > 2
the argument is the same and is left to the reader.

Proof of Theorem 3.1 for l = 2. Let U = Ũ0∩Y . Let Wj = { p ∈ U : ξ(hj)(p) 6= 0 },
j = 1, 2. Note that W1 ∪ W2 = U . Let W = {W1,W2}. Let {A∗(W), D} be the
Čech-de Rham complex associated to W as defined in section 2.1.2. Recall that an
element α ∈ Ak(W) is made of a triple (α1, α2, α12) with αj a differential form of
Y of degree k on Wj (j = 1, 2) and α12 a differential form of Y of degree k − 1 on
W1 ∩W2. The differential D of A∗(W) is given by

D(α1, α2, α12) = (dα1, dα2, α2 − α1 − dα12).

One can define a linear operator
∫

∂R1,γ
: A3(W) → C as follows. Let T1 = { p ∈

∂R1,γ : |ξ(h1)(p)| ≥ |ξ(h2)(p)| } with positive orientation, T2 = { p ∈ ∂R1,γ :
|ξ(h2)(p)| ≥ |ξ(h1)(p)| } with positive orientation and Γ defined as in Theorem 3.1.
Then ∫

∂R1,γ

(α1, α2, α12) :=
∫

T1

α1 +
∫

T2

α2 +
∫

Γ

α12.

It is easy to show that
∫

∂R1,γ
◦D = 0.

Recall that ϕ(∇0,∇1) is a (2t − 1)-form of P on U0 ∩ U1 and we need
to integrate it on ∂R1,γ ⊂ Y . Thus we can consider the restriction ϕ(∇0,∇1)|Y ,
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denoted by κ(∇0,∇1). Thus κ(∇0,∇1) is a (2l−1)-form (that is a 3-form) on Y ∩U .
Hence

(κ(∇0,∇1)|W1 , κ(∇0,∇1)|W2 , 0)

defines an element $ ∈ A3(W). Note that, since

dκ(∇0,∇1) = ϕ(∇1)− ϕ(∇0) = 0− 0 = 0,

D$ = 0. On the other hand on W1 ∩ W2 we have the l-form (that is a 2-form)
ϕ(M) dh1∧dh2

ξ(h1)ξ(h2)
. We can consider the element φ ∈ A3(W) given by

φ = (0, 0, (2π
√−1)−2ϕ(M)

dh1 ∧ dh2

ξ(h1)ξ(h2)
).

Since the form ϕ(M) dh1∧dh2
ξ(h1)ξ(h2)

is holomorphic on W1 ∩W2 it follows that Dφ = 0.
The aim is now to show that there exists τ ∈ A2(W) such that

(3.6) φ−$ = Dτ.

Suppose we proved (3.6). Then
∫

∂R1,γ
$ =

∫
∂R1,γ

φ and the result follows.
Thus we are left to prove (3.6). On W1, since ξ(h1) 6= 0, a basis of TY is

given by {ξ|Y , ∂
∂h2

}. Similarly, on W2, {ξ|Y , ∂
∂h1

} is a basis of TY . On Wi, i = 1, 2,
we define the following Ξ-connection ∇i of type (1, 0):

∇i
ξ|Y δj = Ξ(ξ|Y , δj),

∇i
∂

∂hk

δj = 0,

for k = i+1 mod (2), j = r+1, . . . , m (here we recall that Ξ is defined by (2.1) and
{δr+1, . . . , δm} is the holomorphic frame for NP,M on Ũ1,γ fixed at the beginning
of this section). Recall that for k ≤ 2l = 4 connections ∇̃j ’s for a vector bundle E

over some open set of Y , one can define a 2l− k + 1-form ϕ(∇̃1, . . . , ∇̃k) (see, e.g.,
[Su3,p.69]), such that

(3.7)
k∑

a=1

(−1)a−1ϕ(∇̃1, . . . , ̂̃∇a, . . . , ∇̃k) + (−1)k−1dϕ(∇̃1, . . . , ∇̃k) = 0.

Moreover, if all ∇̃1, . . . , ∇̃k are α-connection with respect to some holomorphic
action α on E, then ϕ(∇̃1, . . . , ∇̃k) = 0 (see, e.g., [Su3, Ch.II,Thm. 9.11]). Going
back to our situation, we define

τ = (ϕ(∇0,∇1,∇1), ϕ(∇0,∇1,∇2), ϕ(∇0,∇1,∇1,∇2)),
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where we recall that ∇0 is the original Ξ-connection for NY 0,X0 = NP,M |Y 0 on
U0 ∩Y and ∇1 is the trivial connection for NP,M on U1,γ with respect to the frame
{δr+1, . . . , δm} (and here we consider its restriction to Y ). Now we calculate Dτ .
By (3.7) we get

dϕ(∇0,∇1,∇1) = −ϕ(∇1,∇1) + ϕ(∇0,∇1)− ϕ(∇0,∇1) = −ϕ(∇0,∇1),

for ∇1,∇1 are both α1-connections with respect to the trivial action given by
α1( ∂

∂z1
, δj) = 0, and ∇0,∇1 are both Ξ-connections. Similarly we get

dϕ(∇0,∇1,∇2) = −ϕ(∇0,∇1).

Finally by (3.7) and since ∇0,∇1,∇2 are all Ξ-connections

ϕ(∇0,∇1,∇2)− ϕ(∇0,∇1,∇1)− dϕ(∇0,∇1,∇1,∇2)

=− ϕ(∇1,∇1,∇2) + ϕ(∇0,∇1,∇2) = −ϕ(∇1,∇1,∇2).

Thus
Dτ = (−ϕ(∇0,∇1),−ϕ(∇0,∇1),−ϕ(∇1,∇1,∇2)).

Therefore (3.6) will follow as soon as we show that

(3.8) −ϕ(∇1,∇1,∇2) = (2π
√−1)−2ϕ(M)

dh1 ∧ dh2

ξ(h1)ξ(h2)
.

To prove (3.6) we first calculate the connection matrices θ1, θ
1, θ2 of ∇1,∇1,∇2

with respect to the frame {δr+1, . . . , δm}. Clearly θ1 ≡ 0. As for θ1 (and similarly
for θ2) we have

(3.9) Ξ(ξ|Y , δj) = ∇1
ξ|Y δj = ∇1

ξ(h1)
∂

∂h1
+ξ(h2)

∂
∂h2

δj = ξ(h1)∇1
∂

∂h1
δj .

Now, by the very definition of Ξ (see (2.1) and (3.4)) we have

Ξ(ξ|Y , δj) = χ([ξ,
∂

∂zj
]|Y ) = χ([

m∑

k=r+1

ξ(zk)
∂

∂zj
+

2∑

i=1

ξ(hi)
∂

∂hi
,

∂

∂zj
]|Y )

= −
m∑

k=r+1

∂ξ(zk)
∂zj

|Y δk.(3.10)

¿From (3.9) and (3.10) we find

θi = − dhi

ξ(hi)
M, i = 1, 2.
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Now let ∇̃ denote the connection for the bundle TY ×R2 over W1∩W2×R2 defined
by ∇̃ = (1 −∑2

k=1 tk)∇1 +
∑2

j=1 tj∇j . The connection matrix of ∇̃ is then given
by θ̃ = −∑2

i=1 ti/ξ(hi)M dhi and the curvature matrix K̃ is

K̃ = −
2∑

i=1

dti ∧ dhi

ξ(hi)
M + terms not containing dti.

Let ∆2 be the standard 2-simplex in R2 and denote by β : Y × ∆2 → Y the
projection. By the very definition ϕ(∇1,∇1,∇2) is given by (2π

√−1)−2β∗(ϕ(K̃)),
where β∗ : Ω∗(Y ×∆2) → Ω∗−2(Y ) denotes the integration along the fibers. From
the expression of K̃ formula (3.8) follows and we are done. ¤
Final Remarks 1. When {qγ} is such that qγ ∈ X ′, then one can take h1, . . . , hl

to be part of local coordinates in an open (in M) neighborhood of qγ . Thus in
such a case Theorem (3.1) reduced to [LS, Thm.2], which indeed is the classical
Camacho-Sad formula for l = 1, n = 2.
2. When l = n − 1, instead of a foliation F of X one can consider a holomorphic
self-map f : X → X which pointwise fixes Y . Generically (see [ABT]) this allows
to define a one-dimensional foliation Ff of Y and a holomorphic action Ξf of Ff

on NY ′,X′ outside some “singularities” of f on Y . Arguing as in section 2 one has
a residue theorem for this case as well, which generalizes [BS, Thm. 2.2] where
this result was achieved for l = 1, n = 2 and under the assumption that f were a
holomorphic self-map of all the ambient M pointwise fixing P as well.
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