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0. Introduction

Let X be a two-dimensional complex manifold and Y ⊂ X a (possibly singular)

compact complex curve. Also let Σ be a finite set of points of Y containing the

singularities of Y and set Y0 = Y \Σ. If there is some holomorphic action of the

tangent bundle of Y0 on the normal bundle of Y0 in X , then, by the Bott vanishing

theorem (see [4, 16]), the first Chern form for an appropriate connection of the

normal bundle vanishes on Y0. As a consequence, the first Chern class of the line

bundle associated to the divisor Y localizes at Σ and gives rise to a residue at

each point in Σ. This way we have a residue (index) formula saying that the self-

intersection number of Y is given as the sum of these residues.

Applications of this principle are given in the paper [15] (see also [12]) by the

second named author (where the action comes from Y being a leaf of a foliation

on X) and in the joint work [6] of the first named author with Tovena (where the

action comes from Y being the fixed points set of a non-degenerate holomorphic
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map of X into itself). These works were motivated by the earlier paper by Camacho

and Sad [8], in the first, and the one by Abate [2], in the second. In these papers,

Y was assumed to be non-singular and the index theorems were used to solve

problems about dynamics of germs of vector fields or maps. After these, some more

generalizations (both for foliations and maps) were proposed; here we refer the

interested reader to [16, 3, 5] and the bibliography therein.

In the case where X has singularities at some points of Y , there have been no

index theorems available. Usually in applications one is lead to first resolve the

singularities of X and then apply the above mentioned index theorems. In fact, this

is the way Camacho [7] proves the existence of separatrices for a germ of a vector

field at an isolated normal singular point of a two-dimensional variety, under the

hypothesis that the dual graph of the resolution is a tree, generalizing the result

in [8].

In order to generalize the result of [2], one would be tempted to mimic this strat-

egy even for proving the existence of petals for germs of biholomorphisms tangent

to the identity at an isolated singular point of a two-dimensional variety (with some

hypothesis on the type of singularity allowed). But she/he would fail. Indeed, first,

the method of desingularization exploited in [7] cannot be applied directly. Since

it is possible in general to lift the biholomorphism only after a one point blow-up

and not after the blow-up along a submanifold, and even in the case of one point

blow-up, it is not always possible to get a desirable lift (see [1]). Secondly (and

mainly) because of this intrinsic difference between maps and vector fields: a vector

field always has a singularity at a singular point of X whereas a biholomorphism

may not (for the definition of singularity of a biholomorphism see Sec. 2). Thus, in

order to solve the problem of the existence of petals for biholomorphisms tangent

to the identity at a singular point, one is forced to remain on singular varieties and

thus has to find a new way.

With the aim of giving an answer to such a problem, in this paper we present

an index theorem when X is a singular two-dimensional variety nicely embedded

in some complex manifold W .

The setting is as follows. Let W be a complex manifold, P ⊂W a non-singular

hypersurface and X a surface (two-dimensional subvariety) in W such that, if Y :=

X ∩P , then the singular set Sing(X) of X is a finite set in Y . Assume P intersects

Xr := X\Sing(X) generically transversally. This allows a natural extension of the

normal bundle of the regular part of Y in X , namely the restriction of the normal

bundle NP,W of P in W to Y . Moreover assume there exists a biholomorphic map f

of W into itself so that f(X) ⊂ X and f |P = IdP (one might substitute the map f

by a one-dimensional foliation leaving X and P invariant obtaining a similar result;

however we are not going to discuss further of it in here). Suppose f is tangential

(or non-degenerate) on the non-singular part of Y . Roughly speaking f is tangential

on Y if Y is “well-fixed” in X (see Sec. 2), and this condition is fulfilled whenever

it is so at only one point. Then we obtain an index theorem (see Theorem 2.2)
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stating that the evaluation of the first Chern class of NP,W on Y equals the sum

of the residues of f on Y . As often happens, an index theorem is useful only when

the residues are explicitly calculated, and we thus perform an explicit calculation

of such residues, see Eq. (2.7).

In order to express the index theorem and to apply it properly in our situation,

we develop local and global intersection theories of curves in singular surfaces in

Appendix. With these, we have a strict generalization of the Abate–Camacho–Sad

index theorem (see Theorem 2.6). Also in Sec. 3, we determine the behavior of our

residues under one point blow-ups, see formula (3.3). With such tools at hands we

can solve the question about the existence of petals for germs of biholomorphisms

tangent to the identity at a t-absolutely isolated point of X whose resolution graph is

a tree (see Theorem 4.1 and Sec. 1 for the terminology). The proof is strongly based

on our index theorem, which allows at each step of the desingularization process to

select the “good” points to be blown-up, until we find a nice configuration which

determines the existence of petals (see Sec. 4 for details).

1. Preliminaries

Let X be a complex analytic variety embedded in a complex manifold W and

suppose that X has only one isolated singularity p. The point p is said to be an

absolutely isolated singularity if it can be resolved by a finite number of blow-ups.

That is to say, if there exist

(1) complex manifolds W0 = W,W1, . . . ,Wm,

(2) varieties X0 = X,X1, . . . , Xm such that each Xj ⊂Wj has only isolated singu-

larities and Xm is non-singular,

(3) proper holomorphic maps πj : Wj → Wj−1 such that each πj : Wj → Wj−1 is

a blow-up with center a singularity of Xj−1 ⊂Wj−1 and the variety Xj is the

strict transform of Xj−1 under πj .

Thus π1 ◦ · · · ◦ πm : Xm → X is a resolution of p.

If X is a (abstract) variety, an isolated singularity p ∈ X is said to be an

absolutely isolated singularity if p can be resolved by finitely many blow-ups of a

local embedding of X near p.

In this paper, we consider absolutely isolated singularities satisfying also the

following:

(4) at each step of the above process, Xj intersects generically transversally the

exceptional divisor.

In the sequel, an absolutely isolated singularity satisfying (4) is simply called a

t-absolutely isolated singularity.

Example. The variety {(x, y, z) ∈ C3 : x2−y2 +z3 = 0} has a t-absolutely isolated

singularity at the origin 0, whereas the Du Val singularity {x2 + y3 + z3 = 0} at 0
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is an absolutely isolated singularity which does not satisfy (4). More generally the

family {x2 − y2 + z2r+1 = 0} with r ∈ N has a t-absolutely isolated singularity at

the origin of C3.

Let X be a surface (two-dimensional variety) and p ∈ X a t-absolutely isolated

singularity. Also, let f be a (germ of) biholomorphic self-map of X such that the

point p is an isolated fixed point of f and that dfp = Id; such a germ is sometimes

called a biholomorphism tangent to the identity at p. Let TpX be the Zariski tangent

space of X at p and assume TpX = Cr for some r. Then there exists an embedding

j : U → Cr of a neighborhood U of p in X with j(p) = 0.

Lemma 1.1. There exists a germ of holomorphic self-map F : Cr → Cr at 0 such

that F ◦ j = j ◦ f and dF0 = Id.

Proof. Let V ⊂ U be an open set with f(V ) ⊂ U and g : j(V ) → j(U) the map

defined by j ◦ f ◦ j−1|j(V ). Then g has components defined on the locally closed

set j(V ) and therefore they extend to some neighborhood of j(V ). Let F be the

germ defined by such extensions. By definition it follows that F ◦ j = j ◦ f . Thus

dF0 ◦ djp = djp. Since djp is an isomorphism (for TpX = Cr), we have dF0 = Id.

By Lemma 1.1, we may assume that X ⊂ Cr is a germ of surface with a t-

absolutely isolated singularity at 0, f is a germ of a biholomorphic self-map of Cr

at 0 such that f(X) ⊂ X , 0 is an isolated fixed point of f |X and df0 = Id.

Let W0 = Cr, X0 = X and π1 : W1 → W0 the quadratic blow-up centered

at 0. Let X1 := π−1
1 (X0\{0}) be the strict transform of X0, P1 := π−1(0), the

exceptional divisor and Y1 := X1 ∩ P1. Note that Y1 is a (possibly singular) curve.

Let Sing(X1) be the set of singular points of X1 and Xr
1 := X1\Sing(X1) the

regular (non-singular) part. Also let Xnt
1 := { p ∈ Xr

1 ∩ P1 : TpX
r
1 ⊂ TpP1 } be the

set of points where Xr
1 and P1 do not intersect transversally. By hypothesis, Xnt

1

is a discrete set in Xr
1 (in fact a finite set, by the following lemma).

Lemma 1.2. We have Xr
1 ∩ Sing(Y1) = Xnt

1 .

Proof. Clearly Xr
1 ∩ Sing(Y1) ⊂ Xnt

1 , for if X1 t P1 at p, Y1 is non-singular at p.

On the other hand suppose that p ∈ Xr
1 ∩ (Y1\Sing(Y1)). Then one can choose local

coordinates (z1, . . . , zr) on an open set U ⊂ W such that p ∈ U , p = (0, . . . , 0),

X1 ∩ U = {z2 = · · · = zr−1 = 0} and Y1 ∩ U = {z1 = · · · = zr−1 = 0}. In this

coordinate system, let P1 ∩U = {h(z1, . . . , zr) = 0} for some holomorphic function

h defined on U . The aim is to show that ∂h
∂z1

(0, . . . , 0) 6= 0 meaning that X1 t P1

at p. Since Y1 ∩U = P1 ∩X1 ∩U , h(z1, 0 . . . , 0, zr) = zt
1b(z1, zr) for some t ≥ 1 and

holomorphic function b such that b(0, zr) 6≡ 0. Moreover b(0, 0) 6= 0 for otherwise

p ∈ Sing(Y1). If t > 1, then, TqX1 ⊂ TqP1 for any q ∈ U ∩Y1 (and indeed this would

hold for all the connected components of Y1 containing p) against our assumption

on the kind of singularity of X1. Thus t = 1 and ∂h
∂z1

(0, . . . , 0) 6= 0 as wanted.
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We have Sing(X1) ⊂ Sing(Y1), for P1 is generically transversal to Xr
1 . Thus

Sing(Y1) = Sing(X1) ∪ Xnt
1 , by Lemma 1.2. We set X ′

1 := X1\(Sing(X1) ∪ Xnt
1 )

and Y ′
1 := Y1 ∩X ′

1 = Y1\Sing(Y1).

It is possible to define a holomorphic self-map f 1 : W1 → W1 near P1 in such

a way that π1 ◦ f1 = f ◦ π1 and f1(v) = df0(v) = v for any v ∈ P1 (see [1]). Thus

f1(X1) ⊂ X1 and f1 pointwise fixes P1. We call such a map f1 a lift of f .

Let NP1,W1
be the normal bundle of P1 in W1 so that we have the following

exact sequence:

0 → TP1 → TW1|P1

ρ−→ NP1,W1
→ 0 .

Also, letNY ′

1
,X′

1
be the normal bundle of Y ′

1 inX ′
1. Then it follows from the transver-

sality X ′
1 t P1 that NY ′

1
,X′

1
= NP1,W1

|Y ′

1
. Thus NY ′

1
,X′

1
has a natural extension over

Y1 given by NP1,W1
|Y1

.

Lemma 1.3. The map f1 acts as the identity on NY ′

1
,X′

1
.

Proof. By the previous remark, NY ′

1
,X′

1
= NP1,W1

|Y ′

1
and therefore we only

need to check that f1 acts as the identity on NP1,W1
. To see this, let us intro-

duce local coordinates (x, y) ∈ C × Cr−1 around 0 ∈ W0 in such a way that

f = (f1(x, y), f2(x, y)) ∈ C × Cr−1 is given by

f1(x, y) = x+Ah(x, y) + · · · ,

f2(x, y) = y +Bk(x, y) + · · · ,

where Ah : C × Cr−1 → C is a non-zero homogeneous polynomial of degree h ≥
2 and Bk : C × Cr−1 → Cr−1 is a vector whose coordinates are (not all zero)

homogeneous polynomial of degree k ≥ 2. Let (u, v) ∈ C×Cr−1 be local coordinates

on W1 so that π1(u, v) = (u, uv). In such coordinates, P1 = {u = 0}. If f1(u, v) =

(f1
1 (u, v), f1

2 (u, v)) ∈ C × Cr−1, from π1 ◦ f1 = f ◦ π1, we obtain

f1
1 (u, v) = u+ uhAh(1, v) + o(uh) ,

f1
2 (u, v) = v + uk−1Bk(1, v) − vuh−1Ah(1, v) + o(umin(k−1,h−1)) .

Thus the differential df1 on P1 is given by

df1
(0,v) =

(

1 0

∗ Id

)

,

where ∗ = uk−2Bk(1, v) − uh−2vAh(1, v) evaluated at u = 0 (it is 0 if, e.g. k >

2, h > 2). In these coordinates, ρ( ∂
∂u

) is a frame for NP1,W1
and the action of f1 on

NP1,W1
is given by

ρ

(

∂

∂u

)

7→ ρ

(

df1

(

∂

∂u

))

= ρ

(

∂

∂u

)

,

as wanted.
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2. Residues for Singular Pairs

Let W1, P1, X1 and Y1 be as in the previous section. As noted there, the normal

bundle NY ′

1
,X′

1
has an extension NP1,W1

to P1. We set NY1
= NP1,W1

|Y1
. In this

section we describe a method to localize the first Chern class of the bundle NY1

and to define residues at either the “singularities” of f 1 on Y ′
1 or those of Y1.

The general setting is as follows. Let W be a complex manifold of dimension

r, P ⊂ W a non-singular hypersurface and X a surface with isolated singularities

in W . Suppose P intersects X generically transversely. Let Xr be the non-singular

part of X and Xnt the set of non-transversal points in P ∩Xr, as before. Let Y be a

curve inX∩P (note that Y may not be the entireX∩P ). We setX ′ := Xr\Xnt and

Y ′ := Y ∩X ′ (note that Y ′ is a non-singular curve). We assume that Y is globally

irreducible, for otherwise one can work on each irreducible component separately.

Suppose f : W → W is a holomorphic map such that f |P = IdP , f(X) ⊂ X and

that f acts as the identity on the normal bundle NP,W of P in W . In this situation,

we consider the first Chern class c1(NY ) of the line bundle NY = NP,W |Y and will

see that it is localized at the singularities of Y and of f |X on Y ′.

First, in the above situation, we may construct a one-dimensional distribution

(with singularities) in TX |Y ′ as follows. Let V be a neighborhood of a point p ∈ Y ′

in W . Shrinking V if necessary, we endow V with local coordinates (z1, . . . , zr) in

such a way that P ∩ V = {z1 = 0}, X ′ ∩ V = {z3 = · · · = zr = 0} and hence

Y ′ ∩ V = {z1 = z3 = · · · = zr = 0}. Let g := f |X′ . By hypothesis g(X ′) ⊂ X ′

and g|Y ′ = Id. Moreover the transversality P t X ′ implies that NY ′,X′ = NP,W |Y ′ ,

and thus g acts as the identity on NY ′,X′ . In the local coordinates (z1, z2) on X ′,

setting g = (g1, g2), we may write

g1(z1, z2) = z1 + zν
1a1(z1, z2) , g2(z1, z2) = z2 + zµ

1 a2(z1, z2) , (2.1)

with a1(0, z2) 6≡ 0, a2(0, z2) 6≡ 0. Using the coherence of the sheaf of ideals of Y

one can show that νg := min(ν, µ) ≥ 1 is constant on each connected component of

Y ′, and, since Y is assumed to be globally irreducible, it is actually constant on Y ′.

We call νg the order of g on Y (see [2] or [6]). Let us define the (local) holomorphic

vector field

Xg := z
ν−νg

1 a1
∂

∂z1
+ z

µ−νg

1 a2
∂

∂z2
=
z1 ◦ g − z1

z
νg

1

∂

∂z1
+
z2 ◦ g − z2

z
νg

1

∂

∂z2
. (2.2)

To see what happens under a coordinate change, let (ẑ1, . . . , ẑr) be another local

coordinate system as above. Then, for j = 1, 2, we have

ẑj ◦ g − ẑj =

2
∑

k=1

∂ẑj

∂zk

(zk ◦ g − zk) +R2νg
, (2.3)

where R2νg
denotes a term divisible by z

2νg

1 . Now, there exists a nowhere vanishing

holomorphic function C such that ẑ1 = C(z1, z2)z1. Therefore by (2.3), if X̂g denotes
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the vector field defined as (2.2) in the ẑ coordinate system, we have

X̂g =

2
∑

j=1

ẑj ◦ g − ẑj

ẑ
νg

1

∂

∂ẑj

=
1

Cνg

2
∑

j=1

zj ◦ g − zj

z
νg

1

∂

∂zj

+Rνg
= C−νgXg +Rνg

. (2.4)

Thus if we let vg := Xg|Y ′ , it is determined uniquely up to multiplications by

non-vanishing holomorphic functions and the set

Sing(g) := { p ∈ Y ′ : vg(p) = 0 }
is well-defined. Also the vg ’s define a one-dimensional distribution (without singu-

larities) Ξg in TX |Y ′\Sing(g). We say that g is tangential (or non-degenerate, as in

[2, 6]) on Y ′ if Ξg = TY ′ on Y ′\Sing(g).

Note that, if g is given by (2.1), then g is tangential at p if and only if ν > νg

and µ = νg. Thus we recover the definition of non-degenerate map along a curve of

fixed points given in [2, 6]. From the coherence of the sheaf of ideals of Y ′ it follows

that g is tangential at one point if and only if it is tangential everywhere on the

connected component of Y ′ containing such a point (see [6]).

From the point of view of dynamics the non-tangential situation is trivial. First

we recall that a parabolic curve (sometimes called a petal) for a biholomorphism

f : W → W at a point p ∈ W is a holomorphic map ϕ : ∆ → W , where ∆ := {ζ ∈
C : |ζ| < 1}, such that ϕ ∈ C0(∆̄), p ∈ ϕ(∂∆), f(ϕ(∆)) ⊂ ϕ(∆) and for any ζ ∈ ∆

it holds limk→∞ f◦k(ϕ(ζ)) = p. Then we have (see [5]):

Proposition 2.1. Let M be a two-dimensional complex manifold , C ⊂M a non-

singular (possibly non-compact) curve and f : M → M a holomorphic map (6=
IdM ). Suppose f |C = IdC , f acts as the identity on the normal bundle NC,M and f

is non-tangential on C. Then for every but a discrete set of points in C there exist

parabolic curves for f .

Thus for our aim we assume that g is tangential on Y ′. In this case we may

write g locally as g = (g1, g2) with

g1(z1, z2) = z1 + z
νg+1
1 b1(z1, z2) , g2(z1, z2) = z2 + z

νg

1 b2(z1, z2) , (2.5)

where b1 = z
ν−νg−1
1 a1 and b2 = a2 (cf. (2.1)), and the vector field Xg is given by

Xg = z1b1
∂

∂z1
+ b2

∂

∂z2
.

Let Y0 := Y ′\Sing(g). We may define a holomorphic action (see, e.g. [16,

Chap. II, 9])

α : Ξg ×NY0,X′ → NY0,X′

as follows. Let ρ also denote the canonical projection TX ′|Y0
→ NY0,X′ . An element

v ∈ Ξg is given by v = ξXg |Y0
for some C∞ function ξ; an element w ∈ NY0,X′ is

given by w = ρ(w̃|Y0
) for some w̃ ∈ TX ′. Then we define

α(ξXg |Y0
, ρ(w̃|Y0

)) := ρ([ξXg, w̃]|Y0
) . (2.6)
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One easily sees that α is independent of the extension w̃ chosen to define it. Also,

whereas Xg depends on the local coordinates chosen, α does not. This is clear if

νg > 1 because of (2.4) and the very definition of α. To see that this is always the

case we need a refinement of (2.4) in the tangential case. In such a case, using the

notation as in (2.4) and taking into account that (z1 ◦ g − z1) is divisible by z
νg+1
1

and ẑ1 = C(z1, z2)z1, we have

ẑ1 ◦ g − ẑ1 =
2

∑

j=1

∂ẑ1
∂zj

(zj ◦ g − zj) +
2

∑

j,k=1

∂2ẑ1
∂zj∂zk

(zj ◦ g − zj)(zk ◦ g − zk) +R3νg

=

2
∑

j=1

∂ẑ1
∂zj

(zj ◦ g − zj) +R2νg+1 .

From this equation and from (2.3), we obtain

X̂g =

2
∑

j=1

ẑj ◦ g − ẑj

ẑ
νg

1

∂

∂ẑj

= C−νgXg + T1 +R2 ,

where T1 is a vector of the form κ(z1, z2)v with κ(0, z2) ≡ 0 and ρ(v|Y0
) = 0 and,

as usual, R2 is a vector whose coefficients are divisible by z2
1 . Using this expression

in the very definition of α it is easy to see that it is well-defined.

From the holomorphic action α we can define an α-connection for NY0,X′ on Y0

(see [16, Chap. II, 9]), that is a connection ∇0 such that (∇0)v(w) = α(v, w) for

v ∈ TY0 = Ξg and w ∈ NY0,X′ . If ∇0 is an α-connection for NY0,X′ on Y0 we have

the “Bott vanishing” c1(∇0) = 0, where c1 is the first Chern polynomial [4, 16].

Now using the Čech-de Rham cohomology we can localize c1(NP,W |Y ) as follows.

Let U0 be a tubular neighborhood of Y0 in P . If ∇0 is an α-connection for NY0,X′

on Y0, we may endow NP,W on U0 with the connection given by the pull-back of

∇0 by the retraction, which we also denote by ∇0. Let U1 be a neighborhood of

Σ := Sing(Y ) ∪ Sing(g) in P such that U1 is the union of disjoint open sets U1,γ

each of them containing exactly one point — say pγ — of Σ and that NP,W is

trivial on each U1,γ . Let R̃1,γ ⊂ U1,γ be a small real 2(r − 1)-dimensional closed

disk containing pγ in its interior and such that ∂R̃1,γ intersects transversally Y0.

Let R1,γ := R̃1,γ ∩ Y and Lγ := ∂R1,γ , which is the link of the singularity pγ of

Y . Let ∇1 be a connection for NP,W on U1. Since U1 is a trivializing set for NP,W ,

we may choose ∇1 to be trivial on each U1,γ with respect to some frame. We have

the Bott difference form c1(∇0,∇1) of the two connections, which is a 1-form on

U0∩U1 with dc1(∇0,∇1) = c1(∇1)−c1(∇0). Let H∗
D(U) denote the Čech-de Rham

cohomology associated to the covering U = {U0, U1} (see, e.g. [16, Chap. II, 3,

Chap. IV, 2], [17]). Then c1(NP,W ) in H2
D(U) is represented by the cocycle

(c1(∇0), c
1(∇1), c

1(∇0,∇1)) = (0, 0, c1(∇0,∇1)) ,

which defines a “localization” of c1(NP,W ) in the relative Čech-de Rham cohomol-

ogy H2
D(U , U0). The localization defines a “residue” for each γ and, if Y is compact,
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the sum of the residues is equal to
∫

Y
c1(NP,W ) (cf. [16, Chap. IV, Theorem 2.4]).

Since the last integral may be written as (X ∩P ) ·Y (see Appendix below), we have

the following “residue theorem”.

Theorem 2.2. Let W be a complex manifold , P ⊂W a non-singular hypersurface

and X a surface with isolated singularities in W . Suppose P intersects X generically

transversely. Let Y be a curve in X ∩ P . Suppose there exists a holomorphic map

f : W → W such that f |P = IdP , f(X) ⊂ X and f |X is tangential on the non-

singular part of Y . Let Σ := Sing(Y ) ∪ Sing(f |X). Then:

(1) For each point pγ in Σ, we have a residue Res(f, Y,X ∩ P ; pγ) ∈ C, which is

determined only by the local behavior of f near pγ and is given by

Res(f, Y,X ∩ P ; pγ) = −
∫

Lγ

c1(∇0,∇1) .

(2) If Y is compact , Σ is a finite set and we have
∑

γ

Res(f, Y,X ∩ P ; pγ) = (X ∩ P ) · Y .

Remark 2.3. In the above, (X ∩ P ) · Y denotes the (global) intersection number

of the curves X ∩P (which is Cartier) and Y (which may not be Cartier) in X and,

as noted above, is equal to
∫

Y
c1(NP,W ) (see Appendix A.4).

In particular, suppose that P is a projective space, as in the blow-up situation.

Then, denoting by H a hyperplane in P and by LH the associated line bundle, we

have NP,W = −LH . Thus we may write

(X ∩ P ) · Y =

∫

Y

c1(−LH) = −H · Y = −degY .

Now we wish to find an explicit expression for Res(f, Y,X ∩ P ; pγ). For this

purpose, let us recall briefly how the form c1(∇0,∇1) is defined. Consider the vector

bundle E := NP,W ×R over (U1 ∩U0)×R and let ∇̄ be the connection for E given

by ∇̄ := (1−t)∇0 +t∇1. Then c1(∇0,∇1) := β∗(c
1(∇̄)), where β∗ is the integration

along the fibers of the projection β : (U1 ∩ U0) × [0, 1] → U1 ∩ U0.

We may assume that there exists an open set V1,γ in W with local coordinates

(z1, . . . , zr) such that V1,γ ∩ P = U1,γ = {z1 = 0}. We may take ρ( ∂
∂z1

) as a frame

for NP,W and assume that ∇1 is ρ( ∂
∂z1

)-trivial, i.e. the connection form θ1 of ∇1

with respect to ρ( ∂
∂z1

) is zero; θ1 = 0. Therefore, if θ̄ is the connection form of ∇̄,

it follows θ̄ = (1 − t)θ0, where θ0 is the connection form of ∇0. Then we compute

c1(∇0,∇1) =

√
−1

2π
β∗dθ̄ =

1

2π
√
−1

θ0 .

By the parameterization theorem we may find a holomorphic function h on V1,γ

such that the restriction of dz1 ∧ dh to X ′ does not vanish on a neighborhood of

Y0∩U1,γ . Thus (z1, h) are local coordinates on X ′ and h is a local coordinate on Y ′,
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near each point of Y0∩U1,γ . Once the pair (z1, h) is chosen as above, the form θ0|Y0

can be calculated from the very definition of the action α. The restriction g = f |X′

is given by (2.5) with z2 replaced by h. Recall that ρ( ∂
∂z1

) is the frame chosen for

NP,W on U1,γ and θ0 is defined by ∇0(ρ(
∂

∂z1
)) = θ0 ⊗ ρ( ∂

∂z1
). From (2.6), setting

ξ := 1/b2(z1, h), we compute

(∇0) ∂
∂h
ρ

(

∂

∂z1

)

: = α

(

ξXg |Y0
, ρ

(

∂

∂z1

))

= ρ

([

b1(z1, h)

b2(z1, h)
z1

∂

∂z1
+

∂

∂h
,
∂

∂z1

]

|Y0

)

= −b1(0, h)
b2(0, h)

ρ(
∂

∂z1
) .

Therefore, noting that b1(z1, h) = (z1◦f−z1)|X

z
νg+1

1

and b2(z1, h) = (h◦f−h)|X
z

νg
1

, we get an

expression for θ0 on Y0 ∩ U1,γ :

θ0 = − (z1 ◦ f − z1)|X
z1(h ◦ f − h)|X

dh .

Hence we have

Res(f, Y,X ∩ P ; pγ) =
1

2π
√
−1

∫

Lγ

(z1 ◦ f − z1)|X
z1(h ◦ f − h)|X

dh . (2.7)

Note that the residue as defined above is “additive” with respect to decompo-

sitions of Y . Namely, let Y = ∪Yλ be a local decomposition of Y at pγ , with the

Yλ’s curves with no common irreducible components, then

Res(f, Y,X ∩ P ; pγ) =
∑

λ

Res(f, Yλ, X ∩ P ; pγ) , (2.8)

since the link Lγ is a disjoint union of those of the Yλ’s.

Lemma 2.4. If dfpγ
6= Id then Res(f, Y,X ∩ P ; pγ) = 0.

Proof. By (2.7), it follows that if h ◦ f − h = cz1 + O(z2
1) for some function c of

(z2, . . . , zr) with c(pγ) 6= 0, then Res(f, Y,X ∩P ; pγ) = 0. Since dfpγ
|Tpγ P = Id and

z1 ◦ f − z1 is divisible by (at least) z2
1 (for f is tangential on Y ) we have

dfpγ
=

(

1 0

a Id

)

,

for some r − 1 vector a. Assume that a2 6= 0. If h ◦ f − h = O(z2
1) then consider

the function h̃(z) = h(z) + ψ(z2) with ψ holomorphic in a neighborhood of pγ ,

depending only on z2 and ψ′(pγ) 6= 0. Then h̃ ◦ f − h̃ = cz1 +O(z2
1) with c(pγ) 6= 0

and for a suitable choice of ψ we can still assume that dh̃ ∧ dz1|X′ 6= 0 near Y 0.

Calculating the residue as in (2.7) using h̃ instead of h we get the result.

Remark 2.5. Suppose that pγ is a non-singular point of X . If z1 is a defining

equation of Y inX , i.e. if Y = X∩P near pγ , then the residue in (2.7) coincides with

the index Ind(f, Y ; pγ) defined in [2] in case Y is non-singular at pγ , and with the one
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defined in [6, Definition 6] in case Y is singular at pγ (see also [5]). More generally

if pγ is a non-singular point of X , the residue coincides with Ind(f, Y,X ∩ P ; pγ)

in [6, Definition 5]. It would be interesting but seems to be difficult to define an

“absolute” residue on Y when pγ is a singular point of X . We can do it in case the

singularity is absolutely isolated as we now show.

Assume we are in the hypotheses of Theorem 2.2 and assume we can write

X∩P = Y ∪(
⋃s

j=1 Yj) as union of finitely many components. Let pγ be an absolutely

isolated singularity of X . Then by Appendix A.6, we can well define the local

intersection numbers (Y ·Yj)pγ
and, if Y is compact, the global intersection numbers

Y · Y and Y · Yj , for j = 1, . . . , s. Thus in such a situation we define:

Res(f, Y ; pγ) := Res(f, Y,X ∩ P ; pγ) −
s

∑

j=1

(Y · Yj)pγ
. (2.9)

Since

(X ∩ P ) · Y = Y · Y +

s
∑

j=1

Y · Yj ,

if Y is compact, from Theorem 2.2, we have

Theorem 2.6. In the situation of Theorem 2.2, suppose also that X has only

absolutely isolated singularities on Y . Then:

(1) For each point pγ in Σ, we have a residue Res(f, Y ; pγ) ∈ C, which is deter-

mined only by the local behavior of f near pγ and is given by (2.9).

(2) If Y is compact , Σ is a finite set and we have
∑

γ

Res(f, Y ; pγ) = Y · Y .

Explicit formulas for Res(f, Y ; pγ) are obtained using formulas (2.7) and (A.1).

We leave the actual calculation to the interested reader. If X is non-singular, the

above theorem reduces to [6, Theorem 2], see also [5, Theorem 6.2].

3. Behavior of Residues under Blow-Ups

In this section we examine how the residues introduced in the previous section

behave under blow-ups. We use the same notation as in Sec. 2. Let p ∈ Σ be such

that Res(f, Y,X ∩ P ; p) 6= 0.

Let π : W̃ → W be the blowing-up at p. Let D := π−1(p). Thus π : W̃\D →
W\{p} is biholomorphic. Let X̃ , Ỹ and P̃ be the strict transforms of X , Y and P ,

respectively. By construction, Ỹ is a curve in X̃ ∩ P̃ satisfying the conditions as Y

in the previous section. In view of Lemma 2.4, we have dfp = Id. Thus there exists a

holomorphic map f̃ : W̃ → W̃ such that f̃ |D = Id and π ◦ f̃ = f ◦π. Note that f̃ |X̃′

is tangential on Ỹ ′. First suppose that Y is irreducible at p. Thus Ỹ ∩ D := {q}.
We wish to calculate Res(f̃ , Ỹ , X̃ ∩ P̃ ; q). To do that, let us introduce coordinates
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(z1, . . . , zr) in a neighborhood V of p in W so that P ∩V = {z1 = 0}, the restriction

of dz1 ∧ dzr to X ′ does not vanish near Y ∩V and the hyperplane zr = 0 is general

with respect to Y (see Appendix A.2). Then zr is a local coordinate around each

point in Y ′. Let (w1, . . . , wr−1, u) be local coordinates on W̃ in such a way that

π(w1, . . . , wr−1, u) = (uw1, . . . , uwr−1, u). Thus P̃ = {w1 = 0} and D = {u = 0}.
Moreover the restriction of dw1 ∧ du to X̃ ′\{q} does not vanish near Ỹ for, since

the restriction π|X̃′ of π is biholomorphic outside D,

0 6= (π|X̃′)
∗(dz1 ∧ dzr) = d(uw1) ∧ du = udw1 ∧ du .

Thus by (2.7), we have

Res(f̃ , Ỹ , X̃ ∩ P̃ ; q) =
1

2π
√
−1

∫

L̃

(w1 ◦ f̃ − w1)|X̃
w1(u ◦ f̃ − u)|X̃

du ,

where L̃ is the link of the singularity q of Ỹ . Note that L̃ = π∗L, with L the link

of the singularity p of Y . Since w1 = u−1(z1 ◦ π) and f̃ = π−1 ◦ f ◦ π outside D we

have (omitting to write |X̃ in the integrands)
∫

L̃

w1 ◦ f̃ − w1

w1(u ◦ f̃ − u)
du

=

∫

π∗L

z1 ◦ f ◦ π
z1 ◦ π

· u
−1 ◦ f̃ − u−1

u−1(u ◦ f̃ − u)
du+

∫

π∗L

π∗

(

z1 ◦ f − z1
z1(zr ◦ f − zr)

dzr

)

=

∫

π∗L

u−1 ◦ f̃ − u−1

u−1(u ◦ f̃ − u)
du+ 2π

√
−1 · Res(f, Y,X ∩ P ; p) . (3.1)

Now f̃ |X̃ = Id + w1H for some holomorphic map H = (H1, H2) near Ỹ . Thus,

indicating by 〈., .〉 the scalar product between vectors, we have

u−1 ◦ f̃ − u−1

u−1(u ◦ f̃ − u)
=

w1〈∂u−1, H〉 + o(w1)

u−1w1〈∂u,H〉 + o(w1)
= − 1 + o(1)

u+ o(1)
.

Therefore
∫

π∗L

u−1 ◦ f̃ − u−1

u−1(u ◦ f̃ − u)
du = −

∫

π∗L

du

u
= −

∫

L

dzr

zr

= −2π
√
−1 ·m(Y, p) , (3.2)

where m(Y, p) ≥ 1 is the multiplicity of Y at p (see Appendix A.2). From (3.1) and

(3.2), we obtain

Res(f̃ , Ỹ , X̃ ∩ P̃ ; q) = Res(f, Y,X ∩ P ; p) −m(Y, p) . (3.3)

Remark 3.1. In case p ∈ Xr, we have (z1 ◦ π)|X̃ = umv, where v is a defining

function of Ỹ in X̃ and m = m(Y, p). Thus w1|X̃ = um−1v. Therefore, arguing as

before,

Res(f̃ , Ỹ , X̃ ∩ P̃ ; q) =
1

2π
√
−1

(
∫

L̃

v ◦ f̃ − v

v(u ◦ f̃ − u)
du+ (m(Y, p) − 1)

∫

L̃

du

u

)

= Ind(f̃ , Ỹ ; q) +m(Y, p)(m(Y, p) − 1) ,
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where Ind(f̃ , Ỹ ; q) is the index defined in [6]. Therefore in such a case, from Re-

mark 2.5 and (3.3), we recover [6, (5)], that is

Ind(f̃ , Ỹ ; q) = Ind(f, Y ; p) −m(Y, p)2 .

Now suppose Y may not be irreducible at p and let Y = ∪N
λ=1Yλ be the irre-

ducible decomposition at p. Then the link L is a disjoint union L = ∪N
λ=1Lλ, with

Lλ the link of Yλ, and we have the identity (2.8). Let m(Yλ, p) be the multiplicity

of Yλ at p. We set Ỹ ∩D = {q1, . . . , qs} (note that N ≥ s). Then from the relation

obtained by replacing Y (respectively Ỹ ) with Yλ (respectively Ỹλ) in (3.3) and the

identity (2.8), we have

s
∑

j=1

Res(f̃ , Ỹ , X̃ ∩ P̃ ; qj) = Res(f, Y,X ∩ P ; p) −
N

∑

λ=1

m(Yλ, p) . (3.4)

4. Existence of Parabolic Curves for t-absolutely Isolated

Singularities whose Resolution Graph is a Tree

The aim of this section is to prove the following result:

Theorem 4.1. Let X be a surface with an irreducible t-absolutely isolated singu-

larity p ∈ X whose resolution graph is a tree. Let f : X → X be a holomorphic map

such that p is an isolated fixed point of f and dfp = Id. Then there exists at least

one parabolic curve for f at p.

By the consideration of Sec. 1, we may assume that X ⊂ Cr = W0. Blow up

the point p. We find an r-dimensional complex manifold W1, a holomorphic map

f1 : W1 → W1 and an (r − 1)-dimensional projective space P1 ⊂ W1 such that

f1|P1
= IdP1

and f1 acts as the identity on NP1,W1
. Moreover there is a surface

X1 ⊂ W1, the strict transform of X , so that f1(X1) ⊂ X1, Sing(X1) ∪ Xnt
1 is

a finite set contained in X1 ∩ P1 and X ′
1 := X1\(Sing(X1) ∪ Xnt

1 ) intersects P1

transversally.

If f1|X1∩P1
is non-tangential on the non-singular part of some irreducible com-

ponent of X1 ∩ P1, there exist infinitely many parabolic curves for f1 contained in

X1 by Proposition 2.1. Those parabolic curves project down to parabolic curves

in X for f at p. Thus assume f1 is tangential on the non-singular part of each

irreducible component of X1 ∩ P1. Let us write X1 ∩ P1 = ∪s1

k1=1Y1,k1
with each

Y1,k1
globally irreducible (note that each Y1,k1

is also locally irreducible for the

hypothesis on the dual graph of the resolution of X at p).

We first recall the following result from [2, 5]:

Proposition 4.2. Assume f is a germ of holomorphic self map of C2 at 0. Let E

be the set of fixed points of f at 0. Suppose that E is a non-singular curve passing

through 0 and f is tangential on E. If Res(f, E; 0) 6∈ Q+ ∪ {0} then there exists at

least one parabolic curve for f at 0.
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Therefore if there exists a point q belonging to the non-singular part of ex-

actly one component Y1,k1
such that Res(f1, Y1,k1

, X1 ∩ P1; q) 6∈ Q+ ∪ {0}, then by

Remark 2.5 and Proposition 4.2, there exists a parabolic curve for f1 at q which

projects down to a parabolic curve for f at p.

Thus we may assume that all points where the residue is not rational positive

nor zero are contained in Sing(X1) ∪Xnt
1 . Now the idea is to blow-up one by one

the points for which the residue is not positive rational nor zero (note that, by

Theorem 2.2, there always exists such a point and that, by Lemma 2.4, we can well

define the lift of f1 at that point).

We show that, after a finite number of blow-ups, we find either a component of

an irreducible curve where the lift of f1 is non-tangential or a point where we can

apply Proposition 4.2. The proof will be by contradiction.

As a matter of notation, let us denote by Xj the strict transform of X at the

jth blow-up and by Pi the exceptional divisor born at the ith blow-up and all its

strict transforms at the subsequent blow-ups. Also, let us denote by ∪sj

kj=1Yj,kj
the

union in irreducible components of the intersection between Xj and Pj at the jth

blow-up. We also denote by the same symbol Yj,kj
the strict transform of the curve

Yj,kj
after blow-ups. Note that, for j > i, Xj ∩ Pi (the intersection of Xj and the

strict transform of Pi) is equal to ∪si

ki=1Yi,ki
(see Lemma A.6 below). We also denote

by fj the lift of f at the jth blow-up.

As said, we blow up a point q ∈ Xj if

Res(fj , Yi,ki
, Xj ∩ Pi; q) 6∈ Q+ ∪ {0} ,

for some i ≤ j and ki ∈ {1, . . . , si}. We remark once more that by Lemma 2.4, it

follows that (dfj)q = Id and therefore we can well define the lift fj+1. Note also

that by (3.3), if q̃ is the point of intersection between the strict transform of Yi,ki

and the exceptional divisor Pj+1,

Res(fj+1, Yi,ki
, Xj+1 ∩ Pi; q̃) 6∈ Q+ ∪ {0} .

Therefore if we do not find either a component of an irreducible curve where

the blow-up of fj is non-tangential or a point where we can apply Proposition 4.2,

we keep on blowing up.

Notice that if q ∈ Y1 ∩ Y2 for some Y1, Y2 ∈ {Yi,ki
}, i = 1, . . . , j, ki = 1, . . . , si,

but q 6∈ Sing(Xj) then necessarily (dfj)q = Id. One way to see this is to consider the

two residues r1 := Res(fj , Y1; q) and r12 := Res(fj , Y1, Y1 ∪ Y2; q), which coincide

with the ones defined in [6] for X is non-singular at q, see Remark 2.5. Since

r12 = r1+(Y1 ·Y2)q , r1 and r12 cannot be both equal to zero. However, if (dfj)q 6= Id,

then by Lemma 2.4 it would follow r1 = r12 = 0. Thus (dfj)q = Id and we can freely

blow-up at q.

Then we can assume that after a certain number — say m — of blow-ups, the

strict transform Xm contains a family of irreducible curves {Yj,kj
}, j = 1, . . . , r,

kj = 1, . . . , sj such that, outside Sing(Xm), the family has only normal crossing

intersections, i.e. if q 6∈ Sing(Xm) and q ∈ Yi,ki
then there exists at most one curve
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Yj,kj
such that Yi,ki

intersects transversally Yj,kj
at q. Moreover if q is such a point

of transversal intersection between two components we can define (as in (2.9)) the

intrinsic residue Res(fm, Yj,kj
; q) by subtracting from Res(fm, Yj,kj

, Xm∩Pj ; q) the

“excess” given by the intersection number at q between (Xm ∩ Pj)\Yj,kj
and Yi,ki

.

Note that if Res(fm, Yj,kj
, Xm∩Pj ; q) 6∈ Q+∪{0} then this is so for Res(fm, Yj,kj

; q).

Also, by Remarks 2.5 and 3.1, it follows that Res(fm, Yj,kj
; q) is the index defined

in [2, 5].

In particular, blowing up some more if necessary, we can exploit the reduction

theorem of singularities for fm (see [2, Theorem 2.3], [5, Theorem 3.3, Lemma 7.2])

which, in our settings, reads as follows. If q 6∈ Sing(Xm) and q ∈ Yi,ki
∩ Yj,kj

then

either

Res(fm, Yi,ki
; q) · Res(fm, Yj,kj

; q) = 1 , or (∗1)

Res(fm, Yi,ki
; q) = 0 , Res(fm, Yj,kj

; q) 6= 0 . (∗2)

Summing up, we have a surface Xm, a holomorphic map fm : Xm → Xm fixing

a family of irreducible curves {Yj,kj
} and being tangential on the non-singular part

of such curves. Outside Sing(Xm), the family {Yj,kj
} has only normal crossing

intersections. Also, by the hypothesis on the dual graph of the resolution, each

two curves intersect each other in at most one point (three or more curves might

intersect at one point only if such a point is in Sing(Xm)). The residues of fm at

points not belonging to the normal crossing intersections of the family {Yj,kj
} are

all positive rational or zero, while the intrinsic residues at crossings are of type (∗1)

or (∗2). Note that the residue at each point in Sing(Xm) is also positive rational or

zero so that, even if we blow up the point, we may not be able to lift fm.

If Sing(Xm) = ∅, one might argue as in the proof of [7, Proposition 3.3] to find

a contradiction. However in general we have points in Sing(Xm) which might not

be resolved (for the map cannot be lifted there) and we have to argue differently.

We define a new family {Zi} from the family {Yj,kj
} as follows. We say that

Yj1,kj1
, . . . , Yjt,kjt

form a chain if j1 = · · · = jt and there exist {q1, . . . , qt−1} ⊂
Sing(Xm) such that Yj1 ,kj1

∩ Yj2,kj2
= {q1}, . . ., Yjt−1,kjt−1

∩ Yjt ,kjt
= {qt−1}. We

give an equivalence relation on {Yj,kj
} saying that Yi,ki

∼ Yj,kj
if there exists a

chain joining Yi,ki
and Yj,kj

(also, by definition, each curve is equivalent to itself).

In particular if two curves are equivalent then they were born at the same blow-up.

We define the Zj ’s to be the union of equivalent curves. Thus, for instance, Z1 is the

union of Y1,1 and all the curves Y1,k1
equivalent to Y1,1. Note that by hypotheses

on the dual graph of the resolution, for any i 6= j, Zj intersects Zi in at most one

point (but three or more Zj ’s might intersect at one point of Sing(Xm)).

Now we want to select a “good” subfamily of {Zj}. We say that Zj is younger

than Zi if there exists q ∈ Sing(Xm) such that Zi ∩ Zj = {q} and if Yj,kj
⊂ Zj ,

Yi,ki
⊂ Zi it follows that j > i. Note that given Zi, Zj , either Zi ∩ Zj 6∈ Sing(Xm)

or Zi is younger than Zj or Zj is younger than Zi. In other words we say that Zj

is younger than Zi if they intersect at one singular point of Xm and Zj is made
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of curves generated by a blow-up happened after the blow-up which generated the

curves contained in Zi.

Remark 4.3. By definition, if the element Zj is the union of curves generated at

the ith blow-up and q ∈ Sing(Xm)∩Zj , then Zj is the youngest element at q if and

only if Zj = Xm ∩ Pi at q.

Lemma 4.4. There exists a subfamily B = {Zja
} of {Zj} such that

(1)
⋃

Zja
is connected ,

(2) Zja
is not younger than Zjb

for any ja, jb,

(3) if Zi 6∈ B intersects Zj ∈ B at q, then q ∈ Sing(Xm) and Zj is younger than

Zi.

Proof. We prove by induction on the number N of singularities of Xm contained

in at least two different Zj ’s. If N = 0, then we are done with B = {Zj}. Suppose

N > 0 and let q be a singularity of Xm contained in two (or more) different Zj ’s.

Let Zj0 be the youngest element passing through q. Then discard all the other Zk’s

containing q. Since the dual graph of the resolution of the singularity is a tree,

eliminating those Zk’s divides the dual graph of {Zj} into (at least) two connected

components. Take the one containing Zj0 , where we have at most N−1 singularities

of Xm contained in (at least) two different Zj ’s.

Note that two elements of B either do not intersect or intersect transversally at

one point; thus the dual graph of B is a tree. Also, by Corollary A.8, the intersection

matrix (Zja
· Zjb

) is negative definite.

Now, for any element Zja
of the family B, we define the intrinsic residue at a

point q ∈ Zja
as follows. If q 6∈ Sing(Xm) then Res(fm, Zja

; q) = Res(fm, Yj,kj
; q),

provided q ∈ Yj,kj
⊂ Zja

(by construction there is only one curve in Zja
passing

through q in such a case). If q ∈ Sing(Xm) then

Res(fm, Zja
; q) =

∑

kj |q∈Yj,kj
⊂Zja

Res(fm, Yj,kj
, Xm ∩ Pj ; q) ,

which is rational positive or 0. By Remark 4.3 and Theorem 2.6, for any Zja
∈ B

we have then
∑

q∈Zja

Res(fm, Zja
; q) = Zja

· Zja
. (4.1)

Now we can argue as in the [7, Proof of Proposition 3.3] to reach the contradic-

tion. We recall such an argument here for the reader convenience.

Fix an element Z in B. Since the dual graph of B is a tree, we can give it an

order so that Z is the maximal element. We define the level of each element in B as

in [7] and suppose Z is at level N (that is, the highest). In general, an element Zja

is at level `, if the (only) element that is greater than Zja
and is intersecting with

(is connected to) Zja
is at level `+ 1. The minimal elements are at level 0 (that is,
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the lowest). In what follows, we denote by Z`,k`
, k` = 1, 2, . . ., the elements at level

`. Since the matrix (Zja
·Zjb

) is negative definite and either Zja
does not intersect

Zjb
or Zja

intersects transversally Zjb
at one point, by [7, Proposition 2.1], there

exists a function h : B → R− such that

(1) h(Z`,k`
) < 0, for any `, k`,

(2) h(Z0,k0
) = Z0,k0

· Z0,k0
, for any k0,

(3) if ` ≥ 1, h(Z`,k`
) = Z`,k`

· Z`,k`
− ∑t

k=1
1

h(Z`−1,k) , for any k`, where Z`−1,k,

k = 1, . . . , t, are all the elements at level `− 1 intersecting with Z`,k`
.

Recall again that all the residues of fm outside the points of intersections of

two Zja
’s are rational positive or zero. Let Z1,k1

be an element at level one and let

Z0,k, k = 1, . . . , t, be all the elements at level 0 intersecting with Z1,k1
. We denote

by qk the points of intersection of Z1,k1
and Z0,k. By (4.1) it follows that

Res(fm, Z0,k; qk) ≤ Z0,k · Z0,k = h(Z0,k).

Since the residues at qk satisfy (∗1) or (∗2), for k = 1, . . . , t,

Res(fm, Z1,k1
; qk) ≥ 1

h(Z0,k)
.

Let Z2,k2
be the element at level two intersecting with Z1,k1

and q the point of

intersection. By (4.1), it follows

Res(fm, Z1,k1
; q) ≤ Z1,k1

· Z1,k1
−

t
∑

k=1

Res(fm, Z1,k1
; qk)

≤ Z1,k1
· Z1,k1

−
t

∑

k=1

1

h(Z0,k)
= h(Z1,k1

) .

Thus

Res(fm, Z2,k2
; q) ≥ 1

h(Z1,k1
)
.

Proceeding by induction, if ZN−1,k, k = 1, . . . , s, are the elements at level N−1

(each of them intersects with Z) and if pk is the point of intersection of Z and

ZN−1,k,

s
∑

k=1

Res(fm, Z; pk) ≥
s

∑

k=1

1

h(ZN−1,k)
= Z · Z − h(Z) > Z · Z ,

which contradicts (4.1), proving the theorem.

Appendix A. Intersection Theory on Singular Surfaces

In the sequel, a variety will be a reduced analytic space. A curve or a surface will

be a variety of pure dimension one or two, respectively. For a subvariety V and

a divisor D in a complex manifold W , we denote by D · V the pull-back ι∗D of
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D by the embedding ι : V ↪→ W . We use the symbol ∩ to denote set theoretic

intersections.

A.1. Grothendieck residues relative to a subvariety

Let U be a neighborhood of 0 in Cr and V a subvariety of pure dimension n in

U which contains 0 as at most an isolated singular point. Also, let f1, . . . , fn be

holomorphic functions on U with
⋂n

i=1{p ∈ U : fi(p) = 0} ∩ V = {0}. For a

holomorphic n-form ω on U , the Grothendieck residue relative to V is defined by

Res0

[

ω

f1, . . . , fn

]

V

=

(

1

2π
√
−1

)n ∫

Γ

ω

f1 · · · fn

,

where Γ is an n-cycle in V defined by Γ =
⋂n

i=1{p ∈ U : |fi(p)| = εi} ∩ V with εi

small positive numbers (cf. [16, Chap. IV, 8], [18]).

A.2. Multiplicities

Let V be as above and let C0(V ) denote the tangent cone of V at 0. Recall that

C0(V ) is an analytic space whose support is the zero set of all the leading homoge-

neous polynomials of germs in the ideal of V at 0, and has the same dimension as

V (see, e.g. [19]). We say that a collection of hyperplanes (H1, . . . , Hi) through 0,

1 ≤ i ≤ n, is general with respect to V if dimC0(V ) ∩H1 ∩ · · · ∩Hi = n− i.

We define the multiplicity of V at 0 by

m(V, 0) = Res0

[

d`1 ∧ · · · ∧ d`n
`1, . . . , `n

]

V

,

where `1, . . . , `n denote defining linear functions of n hyperplanes general with

respect to V . This definition of multiplicity coincides with the one in [9, p. 79]:

Lemma A.1. Let PC0(V ) denote the projective cone of V at 0 (which is in Pr−1).

Then

m(V, 0) = degPC0(V ) .

We give a proof in the case necessary for our purpose in A5 below (a similar

proof works in general case).

A.3. Intersections, local theory

Let X be a surface in a small neighborhood U of 0 in Cr possibly with an isolated

singularity at 0. Let D1 and D2 be (effective, for simplicity) Cartier divisors on X .

Defining functions for D1 and D2 are the restrictions of holomorphic functions f1

and f2 on U . Suppose f1 and f2 have no common irreducible factors at 0. Then the

intersection number of D1 and D2 at 0 is defined by

(D1 ·D2)0 = Res0

[

df1 ∧ df2
f1, f2

]

X

.



June 25, 2004 19:8 WSPC/133-IJM 00237

Residues for Singular Pairs 461

In particular, we may write

m(X, 0) = (H ′
1 ·H ′

2)0 ,

where (H1, H2) is a pair of hyperplanes general with respect to X and H ′
i = Hi ·X ,

i = 1, 2 (note that H ′
i may have a non-reduced structure).

IfD is a Cartier divisor defined by f and if Y is a Cartier curve, by the projection

formula, we have

(D · Y )0 = Res0

[

df

f

]

Y

,

which may be used to define the intersection number of D and Y , even if Y is not

Cartier. In particular, for a curve Y (which may not be Cartier) in X ,

m(Y, 0) = (H ′ · Y )0,

where H is a hyperplane general with respect to Y and X , and H ′ = H ·X . From

the above arguments, we have

Lemma A.2. Let P be a non-singular hypersurface (through 0) in a neighborhood

of 0 in Cr. If P intersects transversely X\{0} near 0 and set Y = X ∩ P, then

m(Y, 0) = m(X, 0) .

A.4. Intersections, global theory

Let X be a surface with isolated singularities in a complex manifold W . Let D

be a Cartier divisor on X and denote by LD the associated line bundle over X .

The bundle LD admits a canonical section s and its first Chern class c1(LD) is

localized at the support |D| of D. We denote the localization by c1(LD, s), which

is in H2(X,X\|D|) (cf. [16–18]). If |D| is compact, we have the Alexander homo-

morphism

H2(X,X\|D|) → H2(|D|) ,

which sends c1(LD, s) to the class [D] of the Weil divisor associated to D (this can

be proved in the framework of the Čech-de Rham cohomology as in [17]).

Let D1 and D2 be Cartier divisors on X such that the support of at least one of

them, say D2, is compact (X may not be compact). Then the (global) intersection

number of D1 and D2 in X is defined by

D1 ·D2 =

∫

X

c1(LD1
) · c1(LD2

, s2) .

In the algebraic category this definition coincides with the one in [9]. We may

also write

D1 ·D2 = c1(LD1
) _ [D2] ,
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which makes sense even ifD2 is not Cartier, but only Weil. IfD1 extends to a divisor

on W and if D1 and D2 do not have common components, then the Čech-de Rham

theory applies (see, e.g. [16, 17]) so that we have

D1 ·D2 =
∑

p

(D1 ·D2)p ,

where p runs through the intersection points of D1 and D2.

The self-intersection number of a Cartier divisor D with compact support in X

is given by

D ·D = c1(LD) _ [D] .

A.5. Effect of blowing-up

Let X be a surface with isolated singularities in W , as in the previous section, and

p a point of X . Let π : W̃ → W be the blowing-up of W at p, D = π−1(p) the

exceptional divisor, X̃ the strict transform of X and ρ : X̃ → X the restriction of

π. We set E = D · X̃. Note that the support of E is π−1(p)∩ X̃ = ρ−1(p) and as an

analytic subspace of D = Pr−1, it coincides with the projective cone PCp(X) of X

at p. It is also considered as a Cartier divisor in X̃. In the sequel, we assume that

X̃ has only isolated singularities.

Before we proceed further, we give:

Proof of Lemma A.1 in the case n = 2. Let H1 and H2 be two hyperplanes

through p, general with respect to X , and set H ′
i = Hi ·X , i = 1, 2. Let H̃i be the

strict transform of Hi and set H̃ ′
i = H̃i · X̃. Then, from π∗H1 = H̃1 +D, we may

write ρ∗H ′
1 = H̃ ′

1 +E. Since H̃ ′
1 · H̃ ′

2 = 0, we have

m(X, p) = (H ′
1 ·H ′

2)p = ρ∗H ′
1 · H̃ ′

2 = E · H̃ ′
2 = deg(PCp(X)) .

Let Y be a curve through p in X . Note that the strict transform of Y by ρ is

equal to that of Y by π, which is denoted by Ỹ .

Lemma A.3. We have

m(Y, p) = E · Ỹ .

Proof. Let H be a hyperplane through p, general with respect to Y and X , and

set H ′ = H ·X . Let H̃ be the strict transform of H and set H̃ ′ = H̃ · X̃. Then we

have ρ∗H ′ = H̃ ′ +E, as above. Since H̃ ′ · Ỹ = 0, we have

m(Y, p) = (H ′ · Y )p = ρ∗H ′ · Ỹ = E · Ỹ .
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Lemma A.4. If Y is Cartier , the multiplicity m(Y, p) is divisible by m(X, p) and

if we set m(Y,X ; p) = m(Y, p)/m(X, p), we have

ρ∗Y = Ỹ +m(Y,X ; p)E .

Proof. Since Y is Cartier, we may write ρ∗Y = Ỹ + kE for some integer k. Let

H , H ′ and H̃ ′ be as in the proof of Lemma A.4. Then, since Ỹ · H̃ ′ = 0, we have

m(Y, p) = (Y ·H ′)p = ρ∗Y · H̃ ′ = kE · H̃ ′ ,

where E · H̃ ′ = m(X, p) by Lemma A.1.

From Lemmas A.3 and A.4, we have the following

Theorem A.5. Let ρ : X̃ → X be the blowing-up at p, as above.

(1) Let Y1 and Y2 be curves in X near p. Suppose Y1 ∩ Y2 = {p} and Y1 is Cartier.

Then

(Y1 · Y2)p =
∑

q∈ρ−1(p)

(Ỹ1 · Ỹ2)q +m(Y1, X ; p) ·m(Y2, p) .

(2) Let Y1 be a compact Cartier curve in X and Y2 a curve in X (which may be

equal to Y1). Suppose Y1 ∩ Y2 = {p}. Then

Y1 · Y2 = Ỹ1 · Ỹ2 +m(Y1, X ; p) ·m(Y2, p) .

We give the following expression for the multiplicity:

m(X, p) = −E · E ,

which follows from E · E = c1(LD) _ [E] and the fact that LD = − hyperplane

bundle.

We finish this section with

Lemma A.6. Let P be a non-singular hypersurface in W . Suppose P intersects

generically transversely (the non-singular part of ) X and set Y = X ∩ P . Let

π : W̃ →W be the blowing-up at p and let P̃ , X̃ and Ỹ be the strict transforms of P,

X and Y, respectively. Then P̃ intersects generically transversely X̃ and Ỹ = X̃∩P̃ .

Proof. From Lemmas A.2 and A.4, we have ρ∗Y = Ỹ + E. On the other hand,

from π∗P = P̃ +D, we compute

P̃ · X̃ = π∗P · X̃ −E = ρ∗Y −E = Ỹ .
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A.6. Intersections of Weil curves

Let X be a surface in a complex manifold W . In this section, we assume that X

has only absolutely isolated singularities. Let Y1 and Y2 be two (distinct) curves

in X . If at least one of them is Cartier, the previous Secs. A.3 and A.4 give a way

to define the local and global intersection numbers of Y1 and Y2. If Y1 and Y2 are

only Weil curves, we proceed as follows. Let p ∈ Y1 ∩ Y2 and let π : W̃ →W be the

blowing-up at p. We use the notation of the Sec. A.5 for strict transforms etc. In

view of Theorem A.5, we define

(Y1 · Y2)p =
∑

q∈ρ−1(p)

(Ỹ1 · Ỹ2)q +
m(Y1, p) ·m(Y2, p)

m(X, p)
, (A.1)

where (Ỹ1 · Ỹ2)q is defined as in the Sec. A.3, if Ỹ1 or Ỹ2 is Cartier at q, or by

recursion of the above formula if either is not Cartier at q.

If at least one of Y1 and Y2 is compact, define

Y1 · Y2 =
∑

p∈Y1∩Y2

(Y1 · Y2)p . (A.2)

Note that if either of Y1 and Y2 is not Cartier at p then (Y1 · Y2)p is only a

rational number, in general, for m(X, p) might not divide m(Y1, p) ·m(Y2, p).

Also, in view of Lemma A.4, for a compact curve Y in X , we define the inverse

image (total transform) by

ρ∗Y = Ỹ +
m(Y, p)

m(X, p)
E .

Then we can define by recursion the self-intersection number of Y as

Y · Y = ρ∗Y · ρ∗Y . (A.3)

Note that, in the above, we need not to resolve the singularities of X , we only

need to take blowing-ups sufficiently many times so that the curve becomes Cartier.

Note also that our definitions (A.2) and (A.3) coincide with those of [13] (see also

[14]).

We finish this appendix by stating some results about the negative definiteness

of the intersection matrix of the resolution of a t-absolutely isolated singularity at

each step of the resolution process. The proof of this fact is essentially that of [14,

Theorem 1.2]. However we sketch it here for the reader convenience.

Let p ∈ X be a t-absolutely isolated singularity. As in Sec. 4, let Xj denote the

strict transform of X at the jth blow-up. Also, let us denote by Pj the exceptional

divisor at the jth blow-up and Yj = Xj ∩ Pj . If k > j, we still denote by Yj the

strict transform of Yj at the kth blow-up. We also write Yj = ∪sj

kj=1Yj,kj
for the

decomposition in (global) irreducible components.

Theorem A.7. Let n ∈ N. The matrix (Yi,ki
· Yj,kj

) with i, j = 1, . . . , n and

ki = 1, . . . , si, kj = 1, . . . , sj , is negative definite.
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Proof. Let Y1, . . . , Yr be the irreducible components at the nth blow-up. Blow-up

one point and let ρ : X̃ → X be the blow-up morphism. Denote by Ỹj the strict

transform of Yj , j = 1, . . . , r. Also, let Z1, . . . , Zs be the irreducible curves coming

from the last blow-up. Using (A.1) and performing symmetric operations one can

see that the intersection matrix of {Ỹj , Zi} is equivalent to the matrix
(

(ρ∗Yi · ρ∗Yj)i,j=1,...,r 0

0 (Zi · Zj)i,j=1,...,s

)

=

(

(Yi · Yj) 0

0 (Zi · Zj)

)

.

Proceeding this way until X has been desingularized, Grauert’s theorem (see, e.g.

[11]) implies that each block is negative definite and in particular (Yi · Yj) < 0 as

wanted.

Now fix N ∈ N and for j = 1, . . . , N let Zj be the sum of distinct irreducible

curves Yj,kj
in such a way that Zi ∩ Zj for i 6= j does not contain any curve.

Corollary A.8. The intersection matrix (Zi · Zj)i,j=1,...,N is negative definite.

Proof. Let V be the real vector space generated by the Yj,kj
’s; V =

⊕

RYj,kj
. Let

β : V × V → R be the bilinear form defined by bilinearly extending the function β

defined on the natural basis of V as β(Yj,kj
, Yi,ki

) = Yj,kj
· Yi,ki

. By Theorem A.7,

the form β is negative definite. Let U be the subspace of V generated by Zj . Then

β|U is negative definite and its matrix in the basis {Zj} is exactly (Zi · Zj), which

is thus negative definite as wanted.
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sità di Roma “Tor Vergata” and Hokkaido University for their generous hospitality

and support.

The first author is partially supported by Progetto MIUR di Rilevante Interesse
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