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ABSTRACT. In this paper we study commuting families of holomorphic
mappings inC™ which form abelian semigroups with respect to their real
parameter. Linearization models for holomorphic mappings are used in
the spirit of Schdder’s classical functional equation.

The one-dimensional linearization models for holomorphic mappings and
semigroups, based on Soéker’s and Abel’s functional equation have been
studied by many mathematicians for more than a century.

These models are powerful tools in investigations of asymptotic behavior
of semigroups, geometric properties of holomorphic mappings and their
applications to Markov’s stochastic branching processes.

It turns out that solvability as well as constructions of the solution of
Schibder’s or Abel’s functional equations properly, depend on the location
of the so-called Denjoy—Wolff point of the given mappings or semigroups.
In particular, recently many efforts were directed to the study of semigroups
with a boundary Denjoy—Wolff point [4, 14, 2, 12]. The existence and non-
existence of common fixed points for semigroups (and, more generally, for
families of commuting holomorphic mappings) has been studied in [11]
(see also, [13]).

Multidimensional cases are more delicate even when the Denjoy—Wolff
point is inside the underlying domain. It appears that the existence of the
solution (the so-called Koenigs’ function) of a multidimensional 8der’s
equation depends also on the resonant properties of the linear part of a given
mapping (or generator), and its relation to homogeneous polynomials of
higher degrees.

In parallel, the study of commuting mappings (or semigroups) is of inter-
est to many mathematicians and goes back to the classical theory of linear
operators, differential equations and evolution problems.

This research is part of the European Science Foundation Networking Programme
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In this paper we consider, in particular, the rigidity property of two com-
muting semigroups. Namely, the question we study is whether those semi-
groups coincide whenever the linear parts of their generators at their com-
mon null point are the same.

Let D be a domain inC". We denote the set of holomorphic map-
pings onD which take values in a s€ C C™ by Hol(D,(2). For each
f € Hol(D,C™), the Freckt derivative off at a pointz € D (which is
understood as a linear operator acting frémto C™ or n x m-matrix) will
be denoted byff..

For brevity, we writeHol(D) for Hol(D, D). The seftol(D) is a semi-
group with respect to composition operation.

Definition 1. AfamilyS = {¢:}+>0 C Hol(D) of holomorphic self-mappings
of D is called aone-parameter continuous semigrdighe following con-
ditions are satisfied:

() s = 010, forall s, t > 0;

(i) th%l+ pi(z) = zforall z € D.

It is more or less known that condition (ii) (the right continuity of a
semigroup at zero) actually implies its continuity (right and left) on all of
R* = [0, c0). Moreover, in this case the semigroup is differentiabléRon
with respect to the parameter> 0 (see [4, 14, 2, 12]). Thus, for each
z € D there exists the limit

@ i PEVZE g,

which belongs tddol(D,C™). The mappingf € Hol(D,C") defined by
(1) is called the(infinitesimal) generatoof S = {¢;},~-

Furthermore, the semigroup can be defined as a (unique) solution of
the Cauchy problem:

{ agpt(Z) - f(gpt(z)), t=> 07

ot
wo(z) =2, z€D.

(2)

The reader may refer to the book [13] for a recent description of the
semigroup theory.

Definition 2. We say that a semigroufp, } -, is linearizablef there is a
biholomorphic mapping. € Hol(D,C") and a linear semigroug e},
such that{, },., conjugates witH ¢ } ., by h, namely} o ¢, = 1, o h for
allt > 0. - -
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Linearization methods for semigroups on the open unit digk (g C')
have been studied by many mathematicians (see, for example, [16, 15, 8]).
At the same time, little is known about multi-dimensional cases. For exam-
ple, in [9] and [7] the problem has been studied for some special class of
the so-called one-dimensional type semigroups.

In this paper, we will concentrate on the case when a semigroup has a
(unique) interior attractive fixed point, i.etlixgo wi(z) =1 € D c Cforall
z € D. Itis well known that this condition is equivalent to that fact that the
spectrunu(A) of the linear operator (matrix) defined byA := df; liesin
the open left half-plane (see [1] and [12]) ai(d,), = e**. Usually, such
semigroups are namexd dilation type Thus, for the one-dimensional case,
it is possible to linearize the semigroup by solving $cdar’'s functional
equation:

h(pi(2)) = e D'h(2)

(see, for example, [16, 14]).
Remark 1. It should be noted that the latter equation involves the eigen-

value problem for the linear semigroy’: },., of composition operators
on the spacélol(D, C) defined byC; : h — ho ;.

It is easy to show that the solvability of a higher dimensional analog of
Schibder’s functional equation

(3) h ((pt(z)) - eAth’(Z)a A= df'ra
is equivalent to a generalized differential equation:
4) dh.f(z) = Ah(2).

It seems that in general useful criteria (necessary and sufficient condi-
tions) for solvability of (4) are unknown.
Without loss of generality, let us assume that 0.

Proposition 1. Equation (3), or equivalently, (4) is solvable if and only
if there is a polynomial mapping : C" — C" with Q(O) = O and
dQo = id, such that the limit

lim ™% Q(¢u(2)) = h(2), z€ D,
exists.

This proposition is based on the following notation and lemma.
By A\(A) we denote the spectrum distortion index of the mattpi.e.,

max |Req]
aco(A)
min |Rea|
ao(A)

AA) =
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Lemma 1 (see [6]) Let g € Hol(D,C™) admit the expansiony(z) =
> Qu(z), whereQ), is a homogenous polynomial of ordeandm > A(A).

>m

Then
lim e *g(py(2)) = O, forall z € D.

t—o0

In many cases (and always — in the one dimensional case), a polynomial
@ in Proposition 1 can be chosen to be the identity mapping,) = =
for all z. Moreover, in this casé (¢,(z)) = eAh(z), i.e., the mapping
h(z) = tlirglo ep(z) forms a conjugation of a given semigrogp, },-,

with the linear semigrouge?'} _ .

Definition 3. LetS = {y: }+>0 be a continuous one-parameter semigroup
of holomorphic self-mappings on a domaih ¢ C". We say thatS is
normally linearizableaf the limit

h(z) = tlim e Mpy(2), zeD,
exists.
A consequence of Lemma 1 is the following assertion.

Proposition 2. LetS = {¢; }+>0 be a one-parameter semigroup of holo-
morphic self-mappings on adomaihC C" generated by € Hol(D,C").
If f admits the expansion on the series of homogenous polynoryijals=

Az + > Qu(z), where@, is a homogenous polynomial of ordérand
>m
m > A(A), then the semigroug is normally linearizable.

In contrast with the one-dimensional case,fax 1 there are semigroups
which are not normally linearizable.
Example 1. Let{; };>0 be a semigroup if©? defined by
zyexp (—(1 +4)t)
pilar, 22) = [a212i (e —1)+ 22} e~ (2+i)t

Itis easy to see that
2
lim e Y, (2) = lim ‘ 1
t—o00 t—oo \ az%i(exp(—it) — 1) + 29

does not exist. Thus, this semigroup is not normally linearizable.
Just differentiatingp; att = 0" we find the semigroup generator:

B —(1+14)x
f(z1,2) = ( 24 i)t an? ) .
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For this generator we hava(A) = m = 2, i.e., f does not satisfy the
conditions of Proposition 2.

Proposition 3. Let D C C" be a domain containing. Let{y;} be a
continuous dilation semigroup which is normally linearizable. If for some
to > 0 the semigroup element,, is a linear map, then all the elements
g, t >0, are linear.

Proof. Denoteh(z) := 1tlim e 4, (z). Then for alls > 0 obviously

h(ips(2)) = e lim ™4 (ipy(2)) = ™°h(2),

t—o0
i.e., his a linearizing conjugation fofy, },-,. Sincey,, = e, we have
Yion = €™ and

B(z) = lim e A (2) = =,

n—oo

soh is the identity mapping. Therefore, (z) = A= (e**h(z)) = e”*z for
all s > 0. O

Example 1 above shows that this fact is not generally true. Indeed, for
eacht, = 2n(, ( € Z, the semigroup element,, is a linear mapping. Yet
all other elements,, t # 27/, are not linear.

An additional problem is that that with exception of the one-dimensional
case, linearizing conjugations may not be unique.

Definition 4. Let F = {¢,},. 4 be a family of holomorphic self-mappings
of D. We say thafF is uniquely linearizablé there is a unique mapping
biholomorphic inD and normalized by,(O) = O, dho = id, such that

hOQOS:BSOh, SG.A,
where{B,} ., is an appropriate family of linear operators d'.
Remark 2. Actually, it follows by the chain rule thad, = d(¢s)o-

Remark 3. A family 7 may consist of a single mappirtg € Hol(D) as
well as a discrete or continuous semigroup of holomorphic self-mappings
onD.

Our next example shows that even linear diagonal mappings may not be
uniquely linearizable.

Example 2. Consider a linear mapping = (v, 12) with

21 22

Y1 (21, 20) = 5 Vo(21,20) = 1
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and a holomorphic normalized mapping defined by

21
h(Zl,ZQ) = 22+Z .
1 2

Thenh oy = o h, i.e.,h and also the identity mapping linearize.

Actually, the question whether a linear mapping:) = Bz is uniquely
linearizable can be formulated as the following rigidity problem:
When do the conditions

QoB=Bo@ and Q'(0)=0
on a holomorphic mappin@ imply that@ = O ?
Remark 4. In fact, it can be seen that if a matri¥ is diagonalizable and

o(B) = {b1,...,0,} C A, theny is uniquely linearizable if and only if
B BM B £ piforall j =1,...,nandk € N™.

Theorem 1. Let D C C™ be a domain containing. LetS = {¢:},-,
be a continuous semigroup of dilation type, and«Jebe a holomorphic
self-mapping oD commuting withS such that

(5) Yoy =0
for all ¢ > 0. If ¢ is uniquely linearizable by a biholomorphic mapping

h : D — C", then all of the elements of the semigratijare linearizable
by the same mapping

Proof. Let B denote a linear operator @' defined byB = dio. Also we
denoteA = df,, wheref is the infinitesimal generator of the semigrasip
First, by differentiating (5) ab we obtain(dyp) o et = et o dipo, i.e., B
commutes with the linear semigrodp'},_ = (in fact, B commutes with
A). -
By our assumption, o ) = B o h. Therefore, for alt > 0 we have
hotop, = Bohop,.
On the other handy o ¢ o o, = h o ; 0 1) by (5). Thus,
e_AtohogptogZ;:e_AtoBohogpt:Boe_Atohogpt.
Denotingh, := e~4* o h o i, One rewrites the latter equality in the form
hl o 2/} =Bo hl-

Sinceh;(0) = O, d(h1)o = id andi) is uniquely linearizable by, we
conclude that, = e o ho y, = h, or

hoy, =eoh,
The proof is complete. O
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Corollary 1. LetD C C™ be a domain containing. LetS = {¢;},., be
a continuous semigroup of dilation type. If there exists 0 such thaty;,
is uniquely linearizable by a biholomorphic mappihg D — C", then all
the elements af are linearizable by the same mappihgvhich is a unique
solution of the differential equation (4)

dh.f(z) = Ah(2),
normalized by the conditionsO) = O, dho = id.

Corollary 2. LetD C C" be adomain containing. LetS; = {¢;},., and
Sy = {1 },-, be two continuous semigroups éhgenerated by mappings
f1 and f,, respectively. Suppose thétf,)o = d(f2)o = AwithReo(A) <
0 and that there existg, > 0 such that

(1) ¥4, is uniquely linearizable and

(i) ¥ s, commutes with the semigro$p such that),, o p; = ¢ 01, for
allt > 0.

Then the semigroups coincide.

Proof. By our assumption, there is a unique biholomorphic mappingr-
malized byh(O) = O, dho = id, such that

ho,, = e oh.

Then Theorem 1 (or Corollary 1) implies that ), = e4*oh forall s > 0.
Since the mapping is biholomorphic, we have:

Ys=h"lo (eAS o h) .
The commutativity of the mapping,, and the semigrous; implies by

the same Theorem 1 that all of the elementsSpfare linearizable by the
mappingh, that is,h o ¢, = e4* o h forall t > 0. Thus

wr=h"1to (eAtoh).
O

Remark 5. If the semigroupsS; = {¢;},., andS, = {¢1},., commute

in the sense:y, o 1, = 1, o ¢, for all t,s > 0, then the conclusion
that they coincide holds under a formally weaker than condition (i) re-
guirement that differential equation (4) has a unique solution normalized
by h(O) = O, dhp = id.

Corollary 3. LetD C C™ be adomain containing. LetS; = {¢,},., and
Sy = {1 },~, be two commuting semigroups éhgenerated by mappings
f1 and f,, respectively. Suppose th#tf,)o = d(f2)o = AwithReo(A) <

0. If A(A) < 2 then the semigroups coincide.
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The use of the PoincarDulac theorem (see, for example, [3]) is another
approach to solve a linearization problem.

For simplicity, we assume in the sequel thgis a diagonal matrixA =
diag(av ..., a,) WithRea,, < ... <Rea; < 0.

Letk := (ki,...,k,) € N" be such thatk| := > k; > 2.

Definition 5. We say thatA is resonanfor the n-tuple (a4, . . . ;) of the
eigenvalues oAl is resonant) if forsomé=1,...,n

(o, k) = Zk‘jaj = .
j=1

Such arelation is called asonanceThe numbefk| is called theorderof
the resonance.

If oy = («, k), we call any mag+ : C" — C™ resonant monomiéiit has
the formG(z) = (g1(2), . . ., gn(2)) With g; = 0 for j # ¢ andg,(z) = az*.

Lemma?2.If Rea,, < ... < Rea; < 0thenthere is at most a finite number
of resonances fot. Moreover, ifo; = (k, ) thenk; = ... =k, = 0.

Proof. Both statements follow from the simple observation thatif =
(k,a), thenRea; = (k,Re ), and by the ordering af;. O

For simplicity of notation, let
0, ifthereis nok with a; = (k, o),
a { max{[k| : a; = (0, k)} otherwise
andM(a) :=max{M,;:j=1,...,n}.

A vector polynomial magk : C" — C", R(O) = O, is triangularif by
switching coordinate®(z) = (Ry(2), ..., R.(z)) assumes the form

Ri(2) =a;zj +ri(z1,...,2-1), j=1,...,n
wherer; is a polynomial.

Theorem 2. Let D ¢ C" be a domain containing. Let{y;}:>0 be a
continuous dilation type semigroup generated py= Hol(D,C") with
dfo = A. Then there exists an injective holomorphic miap D — C”
(independent of) such thath(O) = O, dho = id and

hOgOt:PtOh,

whereP,(z) = ez + R;(z) is a triangular polynomial group of automor-
phisms ofC™ whose degree is less than or equalif{«), and R;(z) con-
taining only resonant monomials. In particular, if there are no resonances
then{y; }+>¢ is linearizable.
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Proof. Let p;(z) = ez + Y P,..(2) be the homogeneous expansion
m|>2

at O (which is defined on 6‘1 s‘mall ball containidg and contained D).

It follows from the theory of semigroups of holomorphic maps that each

P,..(z) is real analytic irr.

By our assumption4 is diagonal and the convex hull @ of its eigenval-
ues does not contaih Therefore by the classical PoinéaDulac theorem,
there exist an open neighborhotidof O and a holomorphic map: U —

C" normalized byx(O) = O anddho = id such thatlh.(f(2)) = f(h(z)),
wheref(z) = Az+T'(z) with T' being a polynomial vector field containing
only resonant monomials.

The semigroup{¢; }:>o is (locally aroundO) conjugated to the semi-
group {¢ }+>0, ¥ = h o ¢ o h™!, generated b)f = A+ T. SinceT
contains only resonant monomials aelo, < ... < Reay; < 0, Lemma 2

implies thatfis triangular, i.e.{v, }:>o satisfies the following system:

T1= 11

$.2: Qoo + 7"2(1'1)

Tp= Ty + 1 (x1, 20, ..., Tp_1),

where ther;’s are polynomials incy, ..., z;_; containing only resonant
monomials. Such a system can be integrated directly by first solviag

o771, then substituting such solution inte= a,xs + 5 (1), and so on. In
the endy); is of the form

wt(z) - (etalzla eta2 (22 + RQ,t(Zl>>7 v 7€tan(zn + Rn,t(zlv 22y vey Zn—l)))a

with R;, a polynomial inz, ..., z;_; of (at most) degred/; containing
with only resonant monomials. Moreovet, ; depends also polynomially
ont. It can be shown by induction. It is true fgr= 1, so assume it is
true forj — 1. Then thel-th component ofv,) for{ = 1,...,5 — 1 is of
the forme), () = €™ (2 + Ry4(21, 22, - - ., 21-1)) With R, @ polynomial in
21, ..., 21 Of degree at most/; and depending polynomially an Substi-

tuting these into the differential equation= a;z; + r;(zy, 22, ..., 1),
one obtains
zi= ajzj + (e 21, € (20 + Roy(21)), . ..
A ,€taj_1(2j_1 + Rj—l,t(Zb 29y e vy Zj_g))).

Therefore the solution is of the foratsg(¢) for some functiory such that
g(0) = z; and

g (t) = e tr;(zy, 2o, ..., 1)
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Now, r; contains only resonant monomials fey. Let =™ be such a res-
onant monomial. Then, taking into account that = ... = m,, = 0 by
Lemma 2, it follows

2" = az™ - Z;”_Jfl = e(m,a)t[zinl (o1 Ry 1421, 20, 5 250)) ™.
Hence
g (t) = eeattmedtm 4 R (2, 2 2m0)) ™,

and, beingy; = (m, ), then actually

9 (t) - Zinl e (Zj—l + Rj—l,t(Zb 29y ey Zj_Q))mjfl_

Since this holds for all resonant monomialsrin this proves that?, ;(z)
is a polynomial in bothe,, ..., z;_; andt. The degree of?, ; is at most
M; because it contains only resonant monomialsdfar This proves the
induction and the claim about thfe; ;'s.

This fact implies that)_,(z) is well defined for alt > 0 andz € C".
Therefore {1, }1cr is a group of polynomial automorphisms@f.

Finally, sinceO is an attracting fixed point by hypothesis, thiecan be
extended to alD by imposingh(w) = ¢_;(h(¢i(w))) forallw € D. O

Example 3. For n = 2 there is only one possible resonance, namely—
ma;. Hence, up to conjugation, the dilation semigroupsCihare of the
form:

i(2) = (€M1, €% (2 + atz}")
for somen € C.

So, if the matrixA = df. is resonant, it may happen that all elements of
the semigroup generated byare not linearizable. In this connection the
following question arises naturally. Suppose that one of the elements of the
semigroupS = {p:}i>0 (SAY,¢4,) is linearizable. Find conditions which
ensure that all other elemengtg, ¢ # t(, are linearizable too.

To answer this question we need the following notion.

Definition 6. We say that the matrixl = diag(a; ... «,) has pure real
resonancé there arej = 1,...,n andk € N such thaRe o; = Re (¢, k)
buta; # (o, k).

In particular, if all eigenvalues; have the same argument, théoesn’t
have pure real resonances.

Theorem 3. Let D C C" be a domain containing@. Let{y;}:;>o be a
continuous dilation semigroup generated by Hol(D, C") with dfo = A,

where A doesn't have pure real resonances. If there exigts 0 such that
¢y, IS linearizable by biholomorphic mapping: D — C", h(O) = O.

Then the semigroupy; }+>o is linearizable byh.
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Not that even for the non-resonant case Theorem 3 completes Theorem 2
since it asserts the following fact: if € Hol(D,C") is a linearizing map-
ping for ¢,,, it also can serve as a linearizing mapping forall ¢ > 0.

Proof. Let us defing); := h o p; o h=1. Theny, is a semigroup oh(D).

Let ¢y (2) = ez + Y., P..(2) be the homogeneous expansionat
(which is defined on a small ball containirig and contained iny(D)),
wherem > 2 is the least positive integer such thaf,, # 0 for all ¢, z.

If the theorem holds them = +oo (namely, (¢,) is linear). Seeking a
contradiction, we assume that < +oo.

It follows from the theory of semigroups of holomorphic maps that each
P,.:(z) is real analytic irr.

Since by hypothesig,, = h o ¢, o h~ ' is linear, thenP,, ;, = 0.

Now, from,, , = 1) o 1), it follows that

(6) Pm,t—l—s('z) - eAth,s<Z> + Pm,t(eAsZ)'
Write P i(2) = (O jpmm PEB)Z"5 -, 3 ke PE(E)2F), Where, as usual,
2k =28 ... 2k From (6) it follows thatforj = 1,...,n

Pi(t + 5) = e'pp(s) + pr(t)el ™.
Differentiating such an expression with respect &nd setting = 0, we
obtain the following differential equation:

d - . .
") () = api(s) + aeh,
where we seazi = dpf;t(t) li=0. There are two cases:

(1) if Rea; # Re(a, k), then imposing the conditiop) (0) = 0, equa-
tion (7) has the solution

‘e(a,k)t - ea]-t

(8) pi(t) = aj (

a,h) —a;

(2) if Rea; = Re (a, k), then by our assumption; = («, k). In this case,
imposing the conditiop; (0) = 0, equation (7) has the solution

9) pL(t) = ale'it.

By (8) and (9) it follows thap (t,) = 0 if and only if p,(t) = 0 for all
t > 0, and hencé’,,,, = 0 ifand only if P,,; = 0 for all t > 0, reaching a
contradiction with our hypothesis. O

Example 1 above shows that if has pure real resonance, Theorem 3
fails.
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Corollary 4. LetS = {y;}+>0 be a continuous semigroup of dilation type
generated by € Hol(D, C") with dfp, = A = diag(ay, ..., a,). Suppose
that there ist, > 0 such thaty,, is a linear mapping. Assume that one of
the following conditions holds:

(i) A doesn’t have pure real resonances;

(i) el@Rto £ eostoforall j =1,...,nandk € N,

Then all elements & are linear mappings.

Proof. If condition (i) holds, the assertion follows immediately by Theo-
rem 3.

Assume that condition (ii) holds. First, we show tha} is uniquely
linearizable. Indeed, I6i(z) = 2z + ... be a linearizing mapping different
from id. This means thak o ¢;, = ¢4, o h and for somej = 1,...,n,
the j-th coordinate of. contains a non-zero monomiajz;*: . .. z,*» with
|k| > 2. Therefore,

h; (e‘“tozb . ,ea"to) = e%"h,(2),

and so

k k

agpe Ptk — g, eito k.
The contradiction provides that, is uniquely linearizable by the identity
mappingid.

Now, Corollary 1 implies that the all mappings, ¢t > 0, are linearizable
by the identity mapping. Hence, they are linear. U

Combining Corollary 4 with Proposition 3, we get the following result.

Corollary 5. Let B" be the unit ball of C" and letS = {p:};>0 be a
continuous semigroup of dilation type generatedfbg Hol(B, C") with
dfo = A = diag(ay, ..., a,). Suppose that there i5 > 0 such thaty,,
is a linear fractional self-mapping d&”. Assume that one of the following
conditions holds:

(i) A doesn’t have pure real resonances;

(i) S is normally linearizable;

(iii) e(@kito £ eosto forall j = 1,...,nandk € N,

Then for allt > 0 the mappingp; is a linear fractional self-map oB".

Proof. According to [5, Thm. 3.2 and Rmk. 3.4] (and its proof) there exists
h : B" — C" alinear fractional mapping fixin@ such thatio ¢, , o ! is
linear. By Corollary 4 and Proposition 3, it follows that o, o h =t is linear
forall ¢t > 0. Therefore, is the composition of linear fractional maps and
hence linear fractional for atl > 0. O

Corollary 6. LetS = {y:}+>0 be a continuous semigroup of dilation type
generated byf € Hol(B,C"), f(z) = Az + > Qu(z), where@Q, is a

>m
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homogenous polynomial of ordérand m > \(A). If for somet, > 0,
the semigroup element, is a linear (respectively, linear fractional) map-
ping, then all the elements &f are linear (respectively, linear fractional)
mappings.

A direct consequence of our Theorems 2 and 3 and a recent Forelli type
extension theorem (see [10, Theorem 6.2]) is the following assertion.

Corollary 7. LetS = {y:}+>0 be a continuous semigroup of dilation type
generated by € Hol(D, C") with dfp, = A = diag(a, ..., a,), where all
eigenvaluesy; have the same argument. Suppose that a fundfiolefined
on D is real analytic atO, and that its restrictions to the integral curves of
the vector fieldf are holomorphic. If at least one of the following conditions
holds:

(i) Ais not resonant,
or

(i) there ist, such thaty, is linearizable,
thenF' is holomorphic onD.
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