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ABSTRACT. In this paper we study commuting families of holomorphic
mappings inCn which form abelian semigroups with respect to their real
parameter. Linearization models for holomorphic mappings are used in
the spirit of Schr̈oder’s classical functional equation.

The one-dimensional linearization models for holomorphic mappings and
semigroups, based on Schröder’s and Abel’s functional equation have been
studied by many mathematicians for more than a century.

These models are powerful tools in investigations of asymptotic behavior
of semigroups, geometric properties of holomorphic mappings and their
applications to Markov’s stochastic branching processes.

It turns out that solvability as well as constructions of the solution of
Schr̈oder’s or Abel’s functional equations properly, depend on the location
of the so-called Denjoy–Wolff point of the given mappings or semigroups.
In particular, recently many efforts were directed to the study of semigroups
with a boundary Denjoy–Wolff point [4, 14, 2, 12]. The existence and non-
existence of common fixed points for semigroups (and, more generally, for
families of commuting holomorphic mappings) has been studied in [11]
(see also, [13]).

Multidimensional cases are more delicate even when the Denjoy–Wolff
point is inside the underlying domain. It appears that the existence of the
solution (the so-called Kœnigs’ function) of a multidimensional Schröder’s
equation depends also on the resonant properties of the linear part of a given
mapping (or generator), and its relation to homogeneous polynomials of
higher degrees.

In parallel, the study of commuting mappings (or semigroups) is of inter-
est to many mathematicians and goes back to the classical theory of linear
operators, differential equations and evolution problems.

This research is part of the European Science Foundation Networking Programme
HCAA.
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In this paper we consider, in particular, the rigidity property of two com-
muting semigroups. Namely, the question we study is whether those semi-
groups coincide whenever the linear parts of their generators at their com-
mon null point are the same.

Let D be a domain inCn. We denote the set of holomorphic map-
pings onD which take values in a setΩ ⊂ Cm by Hol(D, Ω). For each
f ∈ Hol(D,Cm), the Frech́et derivative off at a pointz ∈ D (which is
understood as a linear operator acting fromCn toCm or n×m-matrix) will
be denoted bydfz.

For brevity, we writeHol(D) for Hol(D,D). The setHol(D) is a semi-
group with respect to composition operation.

Definition 1. A familyS = {ϕt}t≥0 ⊂ Hol(D) of holomorphic self-mappings
of D is called aone-parameter continuous semigroupif the following con-
ditions are satisfied:

(i) ϕt+s = ϕt ◦ ϕs for all s, t ≥ 0;
(ii) lim

t→0+
ϕt(z) = z for all z ∈ D.

It is more or less known that condition (ii) (the right continuity of a
semigroup at zero) actually implies its continuity (right and left) on all of
R+ = [0,∞). Moreover, in this case the semigroup is differentiable onR+

with respect to the parametert ≥ 0 (see [4, 14, 2, 12]). Thus, for each
z ∈ D there exists the limit

(1) lim
t→0+

ϕt(z)− z

t
= f(z),

which belongs toHol(D,Cn). The mappingf ∈ Hol(D,Cn) defined by
(1) is called the(infinitesimal) generatorof S = {ϕt}t≥0.

Furthermore, the semigroupS can be defined as a (unique) solution of
the Cauchy problem:

(2)





∂ϕt(z)

∂t
= f(ϕt(z)), t ≥ 0,

ϕ0(z) = z, z ∈ D.

The reader may refer to the book [13] for a recent description of the
semigroup theory.

Definition 2. We say that a semigroup{ϕt}t≥0 is linearizableif there is a
biholomorphic mappingh ∈ Hol(D,Cn) and a linear semigroup{ψt}t≥0

such that{ϕt}t≥0 conjugates with{ψt}t≥0 byh, namely,h ◦ϕt = ψt ◦h for
all t ≥ 0.
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Linearization methods for semigroups on the open unit disk inC (= C1)
have been studied by many mathematicians (see, for example, [16, 15, 8]).
At the same time, little is known about multi-dimensional cases. For exam-
ple, in [9] and [7] the problem has been studied for some special class of
the so-called one-dimensional type semigroups.

In this paper, we will concentrate on the case when a semigroup has a
(unique) interior attractive fixed point, i.e.,lim

t→∞
ϕt(z) = τ ∈ D ⊂ Cn for all

z ∈ D. It is well known that this condition is equivalent to that fact that the
spectrumσ(A) of the linear operator (matrix)A defined byA := dfτ lies in
the open left half-plane (see [1] and [12]) andd(ϕt)τ = eAt. Usually, such
semigroups are namedof dilation type. Thus, for the one-dimensional case,
it is possible to linearize the semigroup by solving Schröder’s functional
equation:

h (ϕt(z)) = ef ′(τ)th(z)

(see, for example, [16, 14]).

Remark 1. It should be noted that the latter equation involves the eigen-
value problem for the linear semigroup{Ct}t≥0 of composition operators
on the spaceHol(D,C) defined byCt : h 7→ h ◦ ϕt.

It is easy to show that the solvability of a higher dimensional analog of
Schr̈oder’s functional equation

(3) h (ϕt(z)) = eAth(z), A = dfτ ,

is equivalent to a generalized differential equation:

(4) dhzf(z) = Ah(z).

It seems that in general useful criteria (necessary and sufficient condi-
tions) for solvability of (4) are unknown.

Without loss of generality, let us assume thatτ = 0.

Proposition 1. Equation (3), or equivalently, (4) is solvable if and only
if there is a polynomial mappingQ : Cn 7→ Cn with Q(O) = O and
dQO = id, such that the limit

lim
t→∞

e−AtQ(ϕt(z)) =: h(z), z ∈ D,

exists.

This proposition is based on the following notation and lemma.
By λ(A) we denote the spectrum distortion index of the matrixA, i.e.,

λ(A) :=

max
α∈σ(A)

|Re α|
min

α∈σ(A)
|Re α| .
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Lemma 1 (see [6]). Let g ∈ Hol(D,Cn) admit the expansion:g(z) =∑
`≥m

Q`(z), whereQ` is a homogenous polynomial of order` andm > λ(A).

Then
lim
t→∞

e−Atg(ϕt(z)) = O, for all z ∈ D.

In many cases (and always — in the one dimensional case), a polynomial
Q in Proposition 1 can be chosen to be the identity mapping,Q(z) = z
for all z. Moreover, in this caseh (ϕt(z)) = eAth(z), i.e., the mapping
h(z) = lim

t→∞
eAtϕ(z) forms a conjugation of a given semigroup{ϕt}t≥0

with the linear semigroup
{
eAt

}
t≥0

.

Definition 3. Let S = {ϕt}t≥0 be a continuous one-parameter semigroup
of holomorphic self-mappings on a domainD ⊂ Cn. We say thatS is
normally linearizableif the limit

h(z) = lim
t→∞

e−Atϕt(z), z ∈ D,

exists.

A consequence of Lemma 1 is the following assertion.

Proposition 2. Let S = {ϕt}t≥0 be a one-parameter semigroup of holo-
morphic self-mappings on a domainD ⊂ Cn generated byf ∈ Hol(D,Cn).
If f admits the expansion on the series of homogenous polynomials:f(z) =
Az +

∑
`≥m

Q`(z), whereQ` is a homogenous polynomial of order` and

m > λ(A), then the semigroupS is normally linearizable.

In contrast with the one-dimensional case, forn > 1 there are semigroups
which are not normally linearizable.

Example 1. Let{ϕt}t≥0 be a semigroup inC2 defined by

ϕt(z1, z2) =




z1 exp (−(1 + i)t)
[
az1

2i (e−it − 1) + z2

]
e−(2+i)t


 .

It is easy to see that

lim
t→∞

e−Atϕt(z) = lim
t→∞

(
z1

az1
2i(exp(−it)− 1) + z2

)

does not exist. Thus, this semigroup is not normally linearizable.
Just differentiatingϕt at t = 0+ we find the semigroup generator:

f(z1, z2) =

(
−(1 + i)z1

−(2 + i)z2 + az1
2

)
.
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For this generator we haveλ(A) = m = 2, i.e., f does not satisfy the
conditions of Proposition 2.

Proposition 3. Let D ⊂ Cn be a domain containingO. Let {ϕt} be a
continuous dilation semigroup which is normally linearizable. If for some
t0 > 0 the semigroup elementϕt0 is a linear map, then all the elements
ϕt, t ≥ 0, are linear.

Proof. Denoteh(z) := lim
t→∞

e−Atϕt(z). Then for alls > 0 obviously

h(ϕs(z)) := eAs lim
t→∞

e−A(t+s)ϕt(ϕs(z)) = eAsh(z),

i.e., h is a linearizing conjugation for{ϕt}t≥0. Sinceϕt0 = eAt0, we have
ϕt0n = eAt0n and

h(z) := lim
n→∞

e−At0nϕt0n(z) = z,

soh is the identity mapping. Therefore,ϕs(z) = h−1
(
eAsh(z)

)
= eAsz for

all s ≥ 0. ¤

Example 1 above shows that this fact is not generally true. Indeed, for
eacht` = 2π`, ` ∈ Z, the semigroup elementϕt` is a linear mapping. Yet
all other elementsϕt, t 6= 2π`, are not linear.

An additional problem is that that with exception of the one-dimensional
case, linearizing conjugations may not be unique.

Definition 4. LetF = {ϕs}s∈A be a family of holomorphic self-mappings
of D. We say thatF is uniquely linearizableif there is a unique mappingh
biholomorphic inD and normalized byh(O) = O, dhO = id, such that

h ◦ ϕs = Bs ◦ h, s ∈ A,

where{Bs}s∈A is an appropriate family of linear operators onCn.

Remark 2. Actually, it follows by the chain rule thatBs = d(ϕs)O.

Remark 3. A familyF may consist of a single mappingF ∈ Hol(D) as
well as a discrete or continuous semigroup of holomorphic self-mappings
onD.

Our next example shows that even linear diagonal mappings may not be
uniquely linearizable.

Example 2. Consider a linear mappingψ = (ψ1, ψ2) with

ψ1(z1, z2) =
z1

2
, ψ2(z1, z2) =

z2

4
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and a holomorphic normalized mapping defined by

h(z1, z2) =

(
z1

z1
2 + z2

)
.

Thenh ◦ ψ = ψ ◦ h, i.e.,h and also the identity mappingid linearizeψ.

Actually, the question whether a linear mappingψ(z) = Bz is uniquely
linearizable can be formulated as the following rigidity problem:

When do the conditions

Q ◦B = B ◦Q and Q′(O) = O

on a holomorphic mappingQ imply thatQ ≡ O ?

Remark 4. In fact, it can be seen that if a matrixB is diagonalizable and
σ(B) = {β1, . . . , βn} ⊂ ∆, thenψ is uniquely linearizable if and only if
β1

k1 · β2
k2 · . . . · βn

kn 6= βj for all j = 1, . . . , n andk ∈ Nn.

Theorem 1. Let D ⊂ Cn be a domain containingO. Let S = {ϕt}t≥0

be a continuous semigroup of dilation type, and letψ be a holomorphic
self-mapping ofD commuting withS such that

(5) ψ ◦ ϕt = ϕt ◦ ψ

for all t ≥ 0. If ψ is uniquely linearizable by a biholomorphic mapping
h : D 7→ Cn, then all of the elements of the semigroupS are linearizable
by the same mappingh.

Proof. Let B denote a linear operator onCn defined byB = dψO. Also we
denoteA = dfO, wheref is the infinitesimal generator of the semigroupS.
First, by differentiating (5) atO we obtain(dψO) ◦ eAt = eAt ◦ dψO, i.e.,B
commutes with the linear semigroup

{
eAt

}
t≥0

(in fact, B commutes with
A).

By our assumption,h ◦ ψ = B ◦ h. Therefore, for allt ≥ 0 we have

h ◦ ψ ◦ ϕt = B ◦ h ◦ ϕt.

On the other hand,h ◦ ψ ◦ ϕt = h ◦ ϕt ◦ ψ by (5). Thus,

e−At ◦ h ◦ ϕt ◦ ψ = e−At ◦B ◦ h ◦ ϕt = B ◦ e−At ◦ h ◦ ϕt.

Denotingh1 := e−At ◦ h ◦ ϕt one rewrites the latter equality in the form

h1 ◦ ψ = B ◦ h1.

Sinceh1(O) = O, d(h1)O = id andψ is uniquely linearizable byh, we
conclude thath1 = e−At ◦ h ◦ ϕt = h, or

h ◦ ϕt = eAt ◦ h.

The proof is complete. ¤
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Corollary 1. Let D ⊂ Cn be a domain containingO. LetS = {ϕt}t≥0 be
a continuous semigroup of dilation type. If there existst0 > 0 such thatϕt0

is uniquely linearizable by a biholomorphic mappingh : D 7→ Cn, then all
the elements ofS are linearizable by the same mappingh which is a unique
solution of the differential equation (4)

dhzf(z) = Ah(z),

normalized by the conditionsh(O) = O, dhO = id.

Corollary 2. LetD ⊂ Cn be a domain containingO. LetS1 = {ϕt}t≥0 and
S2 = {ψt}t≥0 be two continuous semigroups onD generated by mappings
f1 andf2, respectively. Suppose thatd(f1)O = d(f2)O = A withRe σ(A) <
0 and that there existss0 > 0 such that

(i) ψs0 is uniquely linearizable and
(ii) ψs0 commutes with the semigroupS1 such thatψs0 ◦ϕt = ϕt ◦ψs0 for

all t ≥ 0.
Then the semigroups coincide.

Proof. By our assumption, there is a unique biholomorphic mappingh nor-
malized byh(O) = O, dhO = id, such that

h ◦ ψs0 = eAs0 ◦ h.

Then Theorem 1 (or Corollary 1) implies thath◦ψs = eAs ◦h for all s ≥ 0.
Since the mappingh is biholomorphic, we have:

ψs = h−1 ◦ (
eAs ◦ h

)
.

The commutativity of the mappingψs0 and the semigroupS1 implies by
the same Theorem 1 that all of the elements ofS1 are linearizable by the
mappingh, that is,h ◦ ϕt = eAt ◦ h for all t ≥ 0. Thus

ϕt = h−1 ◦ (
eAt ◦ h

)
.

¤

Remark 5. If the semigroupsS1 = {ϕt}t≥0 andS2 = {ψt}t≥0 commute
in the sense:ϕt ◦ ψs = ψs ◦ ϕt for all t, s ≥ 0, then the conclusion
that they coincide holds under a formally weaker than condition (i) re-
quirement that differential equation (4) has a unique solution normalized
byh(O) = O, dhO = id.

Corollary 3. LetD ⊂ Cn be a domain containingO. LetS1 = {ϕt}t≥0 and
S2 = {ψt}t≥0 be two commuting semigroups onD generated by mappings
f1 andf2, respectively. Suppose thatd(f1)O = d(f2)O = A withRe σ(A) <
0. If λ(A) < 2 then the semigroups coincide.
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The use of the Poincaré–Dulac theorem (see, for example, [3]) is another
approach to solve a linearization problem.

For simplicity, we assume in the sequel thatA is a diagonal matrix,A =
diag(α1 . . . , αn) with Re αn ≤ . . . ≤ Re α1 < 0.

Let k := (k1, . . . , kn) ∈ Nn be such that|k| := ∑
kj ≥ 2.

Definition 5. We say thatA is resonant(or then-tuple (α1, . . . αn) of the
eigenvalues ofA is resonant) if for somè = 1, . . . , n

(α, k) :=
n∑

j=1

kjαj = α`.

Such a relation is called aresonance. The number|k| is called theorderof
the resonance.

If α` = (α, k), we call any mapG : Cn 7→ Cn resonant monomialif it has
the formG(z) = (g1(z), . . . , gn(z)) with gj ≡ 0 for j 6= ` andg`(z) = azk.

Lemma 2. If Re αn ≤ . . . ≤ Re α1 < 0 then there is at most a finite number
of resonances forα. Moreover, ifαj = (k, α) thenkj = . . . = kn = 0.

Proof. Both statements follow from the simple observation that ifαj =
(k, α), thenRe αj = (k, Re α), and by the ordering ofαj. ¤

For simplicity of notation, let

Mj :=

{
0, if there is nok with αj = (k, α),

max{|k| : αj = (α, k)} otherwise.

andM(α) := max{Mj : j = 1, . . . , n}.
A vector polynomial mapR : Cn 7→ Cn, R(O) = O, is triangularif by

switching coordinatesR(z) = (R1(z), . . . , Rn(z)) assumes the form

Rj(z) = ajzj + rj(z1, . . . , zj−1), j = 1, . . . , n

whererj is a polynomial.

Theorem 2. Let D ⊂ Cn be a domain containingO. Let {ϕt}t≥0 be a
continuous dilation type semigroup generated byf ∈ Hol(D,Cn) with
dfO = A. Then there exists an injective holomorphic maph : D 7→ Cn

(independent oft) such thath(O) = O, dhO = id and

h ◦ ϕt = Pt ◦ h,

wherePt(z) = eAtz + Rt(z) is a triangular polynomial group of automor-
phisms ofCn whose degree is less than or equal toM(α), andRt(z) con-
taining only resonant monomials. In particular, if there are no resonances
then{ϕt}t≥0 is linearizable.
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Proof. Let ϕt(z) = eAtz +
∑
|m|≥2

Pm,t(z) be the homogeneous expansion

at O (which is defined on a small ball containingO and contained inD).
It follows from the theory of semigroups of holomorphic maps that each
Pm,t(z) is real analytic int.

By our assumption,A is diagonal and the convex hull inC of its eigenval-
ues does not contain0. Therefore by the classical Poincaré–Dulac theorem,
there exist an open neighborhoodU of O and a holomorphic maph : U 7→
Cn normalized byh(O) = O anddhO = id such thatdhz(f(z)) = f̂(h(z)),
wheref̂(z) = Az+T (z) with T being a polynomial vector field containing
only resonant monomials.

The semigroup{ϕt}t≥0 is (locally aroundO) conjugated to the semi-
group{ψt}t≥0, ψt = h ◦ ϕt ◦ h−1, generated bŷf = A + T . SinceT
contains only resonant monomials andRe αn ≤ . . . ≤ Re α1 < 0, Lemma 2
implies thatf̂ is triangular, i.e.,{ψt}t≥0 satisfies the following system:





·
x1= α1x1
·

x2= α2x2 + r2(x1)

. . .
·

xn= αnxn + rn(x1, x2, . . . , xn−1),

where therj ’s are polynomials inx1, . . . , xj−1 containing only resonant

monomials. Such a system can be integrated directly by first solving
·

x1=

α1x1, then substituting such solution into
·

x2= α2x2 + r2(x1), and so on. In
the end,ψt is of the form

ψt(z) = (etα1z1, e
tα2(z2 +R2,t(z1)), . . . , e

tαn(zn +Rn,t(z1, z2, . . . , zn−1))),

with Rj,t a polynomial inz1, . . . , zj−1 of (at most) degreeMj containing
with only resonant monomials. Moreover,Rj,t depends also polynomially
on t. It can be shown by induction. It is true forj = 1, so assume it is
true for j − 1. Then thel-th component of(ψt) for l = 1, . . . , j − 1 is of
the formψt,l(z) = etαl(zl + Rl,t(z1, z2, . . . , zl−1)) with Rl,t a polynomial in
z1, . . . , zl−1 of degree at mostMl and depending polynomially ont. Substi-
tuting these into the differential equation

·
xj= αjxj + rj(x1, x2, . . . , xj−1),

one obtains
·

xj= αjxj + rj(e
α1tz1, e

tα2(z2 + R2,t(z1)), . . .

. . . , etαj−1(zj−1 + Rj−1,t(z1, z2, . . . , zj−2))).

Therefore the solution is of the formeαjtg(t) for some functiong such that
g(0) = zj and

·
g (t) = e−αjtrj(x1, x2, . . . , xj−1).



10 F. BRACCI, M. ELIN, AND D. SHOIKHET

Now, rj contains only resonant monomials forαj. Let zm be such a res-
onant monomial. Then, taking into account thatmj = . . . = mn = 0 by
Lemma 2, it follows

zm = azm1
1 · · · zmj−1

j−1 = e(m,α)t[zm1
1 · · · (zj−1+Rj−1,t(z1, z2, . . . , zj−2))

mj−1 ].

Hence
·
g (t) = e(−αj+(m,α))t[zm1

1 · · · (zj−1 + Rj−1,t(z1, z2, . . . , zj−2))
mj−1 ],

and, beingαj = (m,α), then actually
·
g (t) = zm1

1 · · · (zj−1 + Rj−1,t(z1, z2, . . . , zj−2))
mj−1 .

Since this holds for all resonant monomials inrj, this proves thatRt,j(z)
is a polynomial in bothz1, . . . , zj−1 and t. The degree ofRt,j is at most
Mj because it contains only resonant monomials forαj. This proves the
induction and the claim about theRj,t’s.

This fact implies thatψ−t(z) is well defined for allt ≥ 0 andz ∈ Cn.
Therefore,{ψt}t∈R is a group of polynomial automorphisms ofCn.

Finally, sinceO is an attracting fixed point by hypothesis, thenh can be
extended to allD by imposingh(w) = ψ−t(h(ϕt(w))) for all w ∈ D. ¤
Example 3. For n = 2 there is only one possible resonance, namely,α2 =
mα1. Hence, up to conjugation, the dilation semigroups inC2 are of the
form:

ϕt(z) = (eα1tz1, e
α2t(z2 + atzm

1 ))

for somea ∈ C.

So, if the matrixA = dfτ is resonant, it may happen that all elements of
the semigroup generated byf are not linearizable. In this connection the
following question arises naturally. Suppose that one of the elements of the
semigroupS = {ϕt}t≥0 (say,ϕt0) is linearizable. Find conditions which
ensure that all other elementsϕt, t 6= t0, are linearizable too.

To answer this question we need the following notion.

Definition 6. We say that the matrixA = diag(α1 . . . αn) has pure real
resonanceif there arej = 1, . . . , n andk ∈ Nn such thatRe αj = Re (α, k)
butαj 6= (α, k).

In particular, if all eigenvaluesαj have the same argument, thenA doesn’t
have pure real resonances.

Theorem 3. Let D ⊂ Cn be a domain containingO. Let {ϕt}t≥0 be a
continuous dilation semigroup generated byf ∈ Hol(D,Cn) withdfO = A,
whereA doesn’t have pure real resonances. If there existst0 > 0 such that
ϕt0 is linearizable by biholomorphic mappingh : D 7→ Cn, h(O) = O.
Then the semigroup{ϕt}t≥0 is linearizable byh.
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Not that even for the non-resonant case Theorem 3 completes Theorem 2
since it asserts the following fact: ifh ∈ Hol(D,Cn) is a linearizing map-
ping forϕt0, it also can serve as a linearizing mapping for allϕt, t ≥ 0.

Proof. Let us defineψt := h ◦ ϕt ◦ h−1. Thenψt is a semigroup onh(D).
Let ψt(z) = eAtz +

∑
m Pm,t(z) be the homogeneous expansion atO

(which is defined on a small ball containingO and contained ing(D)),
wherem ≥ 2 is the least positive integer such thatPm,t 6≡ 0 for all t, z.
If the theorem holds thenm = +∞ (namely,(ψt) is linear). Seeking a
contradiction, we assume thatm < +∞.

It follows from the theory of semigroups of holomorphic maps that each
Pm,t(z) is real analytic int.

Since by hypothesisψt0 = h ◦ ϕt0 ◦ h−1 is linear, thenPm,t0 ≡ 0.
Now, fromψt+s = ψt ◦ ψs it follows that

(6) Pm,t+s(z) = eAtPm,s(z) + Pm,t(e
Asz).

Write Pm,t(z) = (
∑

|k|=m p1
k(t)z

k, . . . ,
∑

|k|=m pn
k(t)zk), where, as usual,

zk = zk1
1 · · · zkn

n . From (6) it follows that forj = 1, . . . , n

pj
k(t + s) = eαjtpj

k(s) + pj
k(t)e

(α,k)s.

Differentiating such an expression with respect tot and settingt = 0, we
obtain the following differential equation:

(7)
d

dt
pj

k(s) = αjp
j
k(s) + aj

ke
(α,k)s,

where we setaj
k =

dpj
k(t)

dt
|t=0. There are two cases:

(1) if Re αj 6= Re (α, k), then imposing the conditionpj
k(0) = 0, equa-

tion (7) has the solution

(8) pj
k(t) = aj

k

e(α,k)t − eαjt

(α, h)− αj

.

(2) if Re αj = Re (α, k), then by our assumptionαj = (α, k). In this case,
imposing the conditionpj

k(0) = 0, equation (7) has the solution

(9) pj
k(t) = aj

ke
tαj t.

By (8) and (9) it follows thatpj
k(t0) = 0 if and only if pj

k(t) = 0 for all
t ≥ 0, and hencePm,t0 ≡ 0 if and only if Pm,t ≡ 0 for all t ≥ 0, reaching a
contradiction with our hypothesis. ¤

Example 1 above shows that ifA has pure real resonance, Theorem 3
fails.
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Corollary 4. LetS = {ϕt}t≥0 be a continuous semigroup of dilation type
generated byf ∈ Hol(D,Cn) with dfO = A = diag(α1, . . . , αn). Suppose
that there ist0 > 0 such thatϕt0 is a linear mapping. Assume that one of
the following conditions holds:

(i) A doesn’t have pure real resonances;
(ii) e(α,k)t0 6= eαjt0 for all j = 1, . . . , n andk ∈ Nn.
Then all elements ofS are linear mappings.

Proof. If condition (i) holds, the assertion follows immediately by Theo-
rem 3.

Assume that condition (ii) holds. First, we show thatϕt0 is uniquely
linearizable. Indeed, leth(z) = z + . . . be a linearizing mapping different
from id. This means thath ◦ ϕt0 = ϕt0 ◦ h and for somej = 1, . . . , n,
thej-th coordinate ofh contains a non-zero monomialakz1

k1 . . . zn
kn with

|k| ≥ 2. Therefore,

hj

(
eα1t0z1, . . . , e

αnt0
)

= eαjt0hj(z),

and so
ake

(α,k)t0zk = ake
αjt0zk.

The contradiction provides thatϕt0 is uniquely linearizable by the identity
mappingid.

Now, Corollary 1 implies that the all mappingsϕt, t ≥ 0, are linearizable
by the identity mapping. Hence, they are linear. ¤

Combining Corollary 4 with Proposition 3, we get the following result.

Corollary 5. Let Bn be the unit ball ofCn and letS = {ϕt}t≥0 be a
continuous semigroup of dilation type generated byf ∈ Hol(B,Cn) with
dfO = A = diag(α1, . . . , αn). Suppose that there ist0 > 0 such thatϕt0

is a linear fractional self-mapping ofBn. Assume that one of the following
conditions holds:

(i) A doesn’t have pure real resonances;
(ii) S is normally linearizable;
(iii) e(α,k)t0 6= eαjt0 for all j = 1, . . . , n andk ∈ Nn.
Then for allt ≥ 0 the mappingϕt is a linear fractional self-map ofBn.

Proof. According to [5, Thm. 3.2 and Rmk. 3.4] (and its proof) there exists
h : Bn 7→ Cn a linear fractional mapping fixingO such thath ◦ϕt0 ◦h−1 is
linear. By Corollary 4 and Proposition 3, it follows thath◦ϕt ◦h−1 is linear
for all t ≥ 0. Therefore,ϕt is the composition of linear fractional maps and
hence linear fractional for allt ≥ 0. ¤
Corollary 6. LetS = {ϕt}t≥0 be a continuous semigroup of dilation type
generated byf ∈ Hol(B,Cn), f(z) = Az +

∑
`≥m

Q`(z), whereQ` is a
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homogenous polynomial of order` and m > λ(A). If for somet0 > 0,
the semigroup elementϕt0 is a linear (respectively, linear fractional) map-
ping, then all the elements ofS are linear (respectively, linear fractional)
mappings.

A direct consequence of our Theorems 2 and 3 and a recent Forelli type
extension theorem (see [10, Theorem 6.2]) is the following assertion.

Corollary 7. LetS = {ϕt}t≥0 be a continuous semigroup of dilation type
generated byf ∈ Hol(D,Cn) with dfO = A = diag(α1, . . . , αn), where all
eigenvaluesαj have the same argument. Suppose that a functionF defined
onD is real analytic atO, and that its restrictions to the integral curves of
the vector fieldf are holomorphic. If at least one of the following conditions
holds:

(i) A is not resonant,
or

(ii) there ist0 such thatϕt0 is linearizable,
thenF is holomorphic onD.
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