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Abstract

In this paper we study holomorphic vector fields transverse to the boundary of a polydisc in
Cn, n ≥ 3. We prove that, under a suitable hypothesis of transversality with the boundary of
the polydisc, the foliation is the pull-back of a linear hyperbolic foliation via a locally injective
holomorphic map. This is the n ≥ 3 version for one-dimensional foliations of a previous result
proved for n = 2 in [3] and for codimension one foliations in [11].

1 Introduction and main result

One of the main results in the classical theory of codimension one real foliations is a theorem of A.
Haefliger [8] which implies that an analytic codimension-one foliation admits no null (homotopic)
transversals. In the course of the proof one is led to consider real vector fields in a neighborhood
of the closed disc D2 ⊂ R2 which are transverse to the boundary ∂D2 ' S1. The use of Poincaré-
Bendixson Theorem shows the existence of some unilateral hyperbolicity, for some closed orbit
γ ⊂ D2, what is not compatible with the analytical behaviour. Unfortunately, there is no feature
like the classical Poincaré-Bendixson Theorem in the case of holomorphic vector fields. To overcame
this difficult is one of the basic motivations for the present work. Moreover, we have, in the complex
setting, natural domains to be considered which are not regular (at the boundary), as polydiscs for
instance ∆n ⊂ Cn. Therefore, the study of the consequences of transversality should be somehow
extended to such domains.

The case of round domains is studied by T. Ito in [9] where it is proved that if a holomorphic
vector field Z in a neighborhood of the closed ball Bn(R) = {z ∈ Cn; |z| ≤ R}, is transverse to
the sphere S2n−1(R) = ∂Bn(R) = {z ∈ Cn; |z| = R}, then such vector field exhibits only one
singularity o ∈ Bn(R), which is accumulated by each orbit of Z in Bn(R). Moreover, the germ of
Z at o is simple and in the Poincaré domain ([2]). In this paper we are interested in the case of
a holomorphic vector field transverse to the boundary of a polydisc in dimension n ≥ 3. Let us
introduce the notions we use.

Let X be a holomorphic vector field in a neighborhood W of the origin 0 ∈ Cn, n ≥ 2 and
denote by sing(X) its singular set. For x ∈ W we denote by LRx the leaf of the real 2-dimensional
foliation defined by the nonsingular orbits of X in W \ sing(X).

Definition 1. Let M ⊂ W be a smooth real submanifold. We say that X is transverse to M if for
any x ∈ M it follows that X(x) 6= 0 and TxM + TxLRx = Tx(R2n).

This definition is natural in case M is smooth and codimRM ≤ 2. However, if M is singular
one has to replace this concept suitably. For instance, if ∆2(1) := {(z1, z2) ∈ C2 : |z1| ≤ 1, |z2| ≤ 1}
is the unit bidisc in C2 then M = ∂∆2(1) is composed by 3 smooth components:

∂∆2(1) = (S1 ×∆) ∪ (∆× S1) ∪ (S1 × S1),
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where ∆ = ∆1(1) = {z ∈ C : |z| < 1} and S1 = ∂∆. In [3] the authors define that X is transverse
to the boundary ∂∆2(1) provided X is transverse to each smooth component of the boundary. Using
such a definition they prove

Theorem ([3]) Let X be a holomorphic vector field defined in a neighborhood of the closure of
∆2(1) ⊂ C2. If X is transverse to ∂∆2(1) then there exist

1. a locally injective holomorphic map Φ which sends a neighborhood of ∆2(1) to a neighborhood
of the origin 0 ∈ C2 and

2. a linear hyperbolic foliation Lλ on C2 defined by xdy + λydx = 0, λ ∈ C \ R
such that the singular holomorphic foliation F(X) defined by X is the pull-back F(X) = Φ∗(Lλ).
Moreover, the map Φ is injective as a map between spaces of leaves.

In this paper we extend this result to one-dimensional foliations in any dimension. When trying
to do this, several differences with the two dimensional case appear. One difficult, is the fact that
in dimension n = 2, a one-dimensional foliation is always of codimension one, and this is no longer
true if n ≥ 3. Usually, holonomy and extension techniques are well-developed for codimension one
holomorphic foliations, so we have to develop some material on that either. Another difficult arises
when trying to introduce the notion of transversality with the boundary of a polydisc in dimension
n ≥ 3, since there are smooth components of this boundary which have codimension higher than 2.

In what follows we use the following notations: Given real numbers R > 0 and p ≥ 2 we
define ∆n(R) := {(z1, . . . , zn) ∈ Cn : |zj | < R, j = 1, . . . , n} the open polydisc of radius R > 0;
∆n[R] := ∆n(R) the closed polydisc of radius R; Bn

p (R) := {(z1, . . . , zn) ∈ Cn :
∑ |zj |2p < R2p};

Bn
p [R] := Bn

p (R) and S2n−1
p (R) := ∂Bn

p (R). The following proposition is proved in [12]:

Proposition 1. Given a holomorphic vector field X in a neighborhood of ∆2[1] ⊂ C2 the following
conditions are equivalent:

1. X is transverse to the boundary ∂∆2(1).

2. X is transverse to the boundary ∂B2
p(1) = S3

p(1) (which is smooth) for all p large enough.

The proposition suggests the following definition of transversality that we will adopt:

Definition 2. A holomorphic vector field X defined in a neighborhood of the closed polydisc ∆n[1]
is transverse to the boundary ∂∆n(1) if:

1. There exist ε > 0 and p0 ∈ (2,+∞) such that if p ≥ p0 and |R − 1| < ε then X is transverse
to S2n−1

p (R) = ∂Bn
p [R]

2. X is transverse M ⊂ Cn and to the boundary ∂M for any manifold M such that, up to
reordering the affine coordinates, is of the form of M = S1 ×Bn−1

p (R) and, therefore, ∂M =
S1 × S2n−3

p (R).

Example 1. Let X =
n∑

j=1
λjzj

∂
∂zj

be a linear vector field on Cn, n ≥ 3. We assume that X is in the

Poincaré domain, i.e., the origin 0 ∈ R2 does not belong to the convex hull of the set {λ1, ..., λn}
in R2. Also we assume that X is hyperbolic, i.e., λi/λj ∈ C \ R for all i 6= j. Then X is transverse
to the boundary of the unit polydisc ∆n(1) ⊂ Cn.

Our main result is the following:
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Theorem 1. Let X be a holomorphic vector field defined in a neighborhood of the polydisc ∆n[1] ⊂
Cn, n ≥ 2 and transverse to the boundary ∂∆n(1). Then there exist a holomorphic locally injective
map Φ: W → Cn from a neighborhood W of the polydisc and a linear vector field Z in Cn such that
in W the singular holomorphic foliation F(X) defined by X is the pull-back by Φ of the foliation
F(Z) defined by Z. The map Φ is a diffeomorphism in a neighborhood of the origin and is injective
as a map between leaf spaces.

Remark 1. Transversality with ∂∆n(1) is a much stronger condition than transversality with spheres
S2n−1(r) = ∂Bn

1 [r]. Indeed, the holomorphic vector field X = x ∂
∂x + y ∂

∂y + (x + z) ∂
∂z is transverse

to all spheres S5(r), r > 0 in C3 but is not transverse to ∂∆3[1].

Sketch of the proof

A brief sketch of the proof of Theorem 1 is as follows. First we use Definition 2 and apply [9] to
conclude that X has a unique singularity θ ∈ ∆n(1) and DX(θ) is in the Poincaré domain. By
the classical Poincaré-Dulac theorem X is holomorphically conjugate in a neighborhood of θ to its
linear part or a Poincaré-Dulac resonant normal form. Using the transversality of F(X) with the
components Σ ⊂ ∂∆n(1) diffeomorphic to S1 ×Bn−1

p [1] and with their boundaries, we obtain that
(in a neighborhood of) such Σ the foliation F(X) induces a transversely holomorphic L(Σ) with
a single periodic orbit whose holonomy map is an attractive diffeomorphism globally linearizable
or globally holomorphically conjugate to a normal form of Poincaré-Dulac resonant type. This
suspension flow L(Σ) can therefore be transversely holomorphically conjugated to standard models
what allows the construction of suitable systems of closed meromorphic one-forms {ηΣ

k }n
k=2 in

neighborhoods of (each) Σ, which describe F(X) in these neighborhoods.
A gluing process based on the rigidity of the transverse dynamics of the flows L(Σ) and followed

by application of Hartogs’ Extension Theorem for polydiscs gives then a system of closed meromor-
phic one-forms {ηj}n

j=2 in a which defines F(X) in a neighborhood of ∆n[1]. Finally, using the local
normal form of X around θ we give global normal forms for the ηj and conclude the linearization
of F(X) as stated.

Acknowledgement. We are debt with Professor Toshikazu Ito for many valuable discussions.

Our result is a step towards a compact leaf theorem for holomorphic foliations of dimension
one, for its proof states the existence of nontrivial (hyperbolic) holonomy for such foliations which
are transverse to the boundary of certain product domains as S1 ×∆n−1(1). Of course, additional
hypotheses shall be made on the foliation, like existence of some leaf with subexponential growth
or, more generally, of an invariant transverse measure. This is subject of incoming work.

2 Preliminary results

Before going into the foliation framework we need some results on holomorphic diffeomorphisms.

Proposition 2. Let M be a complex manifold of dimension m ≥ 1. Let F : M → M be a
holomorphic map having a fixed point p ∈ M such that dFp is in the Poincaré domain. If there
exist m hypersurfaces which are F -invariant and linearly independent at p then F is holomorphically
linearizable in a neighborhood of p.

Proof. Up to work with F−1 we can assume that p is attractive. Moreover, being the result of local
nature, we can assume that M = Cm and p = 0 the origin of Cm. We are going to give the proof
by induction on m. If m = 1 the result is true. Assume it is true for m− 1.
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First of all we show that dF0 is diagonalizable. Indeed, if H1, . . . ,Hm are the F -invariant
hypersurfaces, the m (non-singular) curves γj := H1 ∩ . . . ∩ Ĥj ∩ . . . ∩ Hm (here Ĥj is omitted)
are F -invariant and linearly independent at 0. Since dF0(T0γj) = T0γj then dF0 is diagonalizable.
Therefore we can change coordinates in such a way that dF0 is diagonal. Moreover, up to linear
changes of coordinates we can assume that T0γj is generated by Ej = (eji)i=1,...,m, eji = δi

j . All the
changes of coordinates perform in the rest of the proof are tangent to the identity and therefore
these properties will survive.

Let λ1, . . . , λm be the eigenvalues of dF0 labelled so that 1 > |λ1| ≥ |λ2| ≥ . . . ≥ |λm| > 0.
We claim that λ1 is not resonant (see [2]). Indeed, if it were λ1 = λs1

1 · · ·λsm
m with sj ∈ N and

s1 + . . . + sm ≥ 2 then for each sj > 0 we would have |λ1| < |λj | contrary to our definition of
λj ’s. Similarly one can show that λj can be resonant only with the λk’s such that k < j and
|λk| > |λj |. Therefore, by the Poincaré-Dulac Theorem (see, e.g., [2]) we can holomorphically
change coordinates to have

F (z1, . . . , zm) = (λ1z1, λ2z2 + f2(z1), . . . , λmzm + fm(z1, . . . , zm−1)),

where fj are holomorphic polynomials which are the sum of the resonant terms in Fj . The aim is to
show that fj ≡ 0 for all j. Assume on the contrary that fj ≡ 0 for j = 2, . . . , r − 1 and fr 6≡ 0, for
some 2 ≤ r ≤ m. First, we claim that there exists an F -invariant (r − 1)-dimensional submanifold
Z ⊂ Cm passing through 0 and such that Z is parameterized by

Γ : (ζ1, . . . , ζr−1) 7→ (ζ1, . . . , ζr−1, ϕr(ζ1, . . . , ζr−1), . . . , ϕm(ζ1, . . . , ζr−1)),

with ϕj(0) = 0 and ∂ϕj

∂ζk
(0) = 0 for j = r, . . . ,m and k = 1, . . . , r−1. Indeed, taking into account our

preliminary choice of coordinates, intersecting m− r + 1 suitably chosen F -invariant hypersurfaces
given by hypothesis, one can find an (r − 1)-dimensional F -invariant submanifold whose tangent
space at 0 is generated by E1, . . . , Er−1. Then an application of the implicit function theorem gives
Z with its parametrization, as wanted. Writing down the equation F (Z) ⊂ Z in terms of Γ, we
obtain the following functional equation

F (Γ(ζ1, . . . , ζr−1) = Γ(ζ0
1 , . . . , ζ0

r−1),

namely, looking at the first r-terms,

λrϕr(ζ1, . . . , ζr−1) + fr(ζ1, . . . , ζr−1) = ϕr(λ1ζ1, . . . , λr−1ζr−1), (2.1)

for all ζ1, . . . , ζr−1 ∈ C close to 0. Notice that, since fr 6≡ 0 then ϕr 6≡ 0. Now write

ϕr(ζ1, . . . , ζr) =
∑

ak1...kr−1ζ
k1
1 · · · ζkr−1

r−1

and put this expression in (2.1). Equating coefficients with the same (r − 1)-degrees we find that
necessarily fr ≡ 0. Indeed, assume that fr contains a term like cζs1

1 · · · ζsr−1

r−1 . This is possible only
if λr = λs1

1 · · ·λsr−1

r−1 . Looking at terms of degrees (s1, s2, . . . , sr−1) in (ζ1, . . . , ζr−1) we find

λras1...sr−1 + c = as1...sr−1λ
s1
1 · · ·λsr−1

r−1

and hence c = 0.

Lemma 1. Let D ⊂ Cm be a bounded convex domain or a bounded strongly pseudoconvex domain
and F : D → D a holomorphic map. Assume that there exists a point p ∈ D such that F (p) = p and
dFp is in the Poincaré-domain. Then F is holomorphically conjugate to its Poincaré-Dulac normal
form in D, .i.e, there is holomorphic diffeomorphism ψ : D → Cn such that F = ψ−1◦F ◦ψ : D → D
where F0 : Cn → Cn is a Poincaré-Dulac normal form for F in a neighborhood of p ∈ D.
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Proof. By the Cartan-Carathéodory theorem (see, e.g., [1]) the point p is attractive and its basin
of attraction is D then one can extend the local linearizing map to D.

Finally we collect here, as a lemma, main facts from [9] and [10]:

Lemma 2. Let X be a holomorphic vector field in a neighborhood of the closed unit ball Bn[1] ⊂ Cn,
n ≥ 2. Assume that X is transverse to the boundary S2n−1(1) = ∂Bn[1] and singular at the origin
0. Then

1. The only singularity of X in Bn[1] is the origin 0 ∈ Cn.

2. For all 0 < R < 1 the vector field X is transverse to the sphere S2n−1(R) = ∂Bn[R].

3. The origin is a simple singularity of X and the linear part DX(0) is in the Poincaré domain.

4. Each solution L of X which crosses S2n−1[1] tends to the origin, i.e., 0 ∈ L.

We will also need the following fact:

Lemma 3. Let X be a holomorphic vector field with a isolated singularity p ∈ U ⊂ Cn, n ≥ 2,
U connected. Assume that the singularity is linearizable and in the Poincaré domain. Let h be
a holomorphic function in U such that dh(X) ≡ 0 in U (outside the polar set of h). Then h is
constant.

Proof. Assume that p = 0 and U contains a small polydisc ∆n centered at the origin where h has
a Taylor expansion. Choose coordinates for which X is linear, i.e., X =

∑n
j=1 αkzk

∂
∂zk

and h is
given by

h =
∑

j1,...,jn

hj1,...,jnzj1
1 · · · zjn

n ,

for jk ≥ 0 and k = 1, . . . , n. The condition dh(X) ≡ 0 in ∆n (off the polar set of h) implies
∑

j1,...,jn

hj1,...,jn(α1j1 + . . . + αnjn)zj1
1 · · · zjn

n = 0.

Thus hj1,...,jn(α1j1+ . . .+αnjn) = 0 for all j1, . . . , jn. If α1j1+ . . .+αnjn = 0 for some j1, . . . , jn 6= 0
then 0 is not in the Poincaré domain for then 0 belongs to the convex hull of (α1, . . . , αn) (indeed
it would be 0 =

∑n
k=1 αk(jk/J) with J =

∑n
k=1 jk > 0), against our hypothesis. Therefore

hj1,...,jn = 0 for all (j1, . . . , jn) 6= (0, . . . , 0), and thus h is constant.

3 Vector fields transverse to certain product domains

In this section we study the transversely holomorphic flows induced by F(X) on the components
of ∂∆n(1) diffeomorphic to S1 × Bn

p [1]. We will prove these flows correspond to suspensions of
holomorphic diffeomorphisms F : V ⊃ ∆n−1[1] → F (V ) ⊃ ∆n−1[1] which are either linearizable
diagonal or conjugate to a Poincaré-Dulac normal form. In particular, F always has a single fixed
point θ, which is attractive, and dFθ is in the Poincaré domain. The first result is a generalization
of the main construction in [3].

Lemma 4. Let X be a holomorphic vector field in a neighborhood W of the product S1 ×Bn
p [R] ⊂

C× Cn and assume that

1. X is transverse to S1 ×Bn
p (R),
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2. X is transverse to S1 × S2n−1
p (R).

Then X induces a transversely holomorphic flow L in the manifold with boundary S1×Bn
p [R] which

is transverse to the boundary and has a single periodic orbit γ ⊂ S1 × Bn
p (R) with the following

properties:

1. γ meets transversely every fiber {z} ×Bn
p [R],

2. the holonomy map associated to γ is defined in all Bn
p (R) and is an attractor.

Proof. Denote by L the transversely holomorphic flow defined by X in S1×Bn
p [R]. By transversality

hypothesis this is a non-singular flow. Orient L in such a way that it points inward S1 × Bn
p [R]

from the boundary. By the transversality hypothesis it follows that L is transverse to all the
fibers {z} × Bn

p (R), z ∈ S1. Fix a point z0 ∈ S1 and let (z0, y) ∈ {z0} × Bn
p [R]. From our

orientation of L and by transversality hypothesis, the orbit of L starting from (z0, y) necessarily
meets (transversely) all fibers {z} × Bn

p (R) and comes back to the starting fiber at some point
(z0, h(z0, y)) ∈ {z0} ×Bn

p (R). Thus we have a well defined first return map

H : S1 ×Bn
p [R] → S1 ×Bn

p (R),

(z0, y) 7→ (z0, h(z0, y)).

This map is clearly holomorphic in y. Moreover, since X is holomorphic, it is also analytic in
z ∈ S1. Now, fix z0 ∈ S1 and consider Hz0 : Bn

p [R] → Bn
p (R). By the Brouwer fixed point theorem

there exists at least one fixed point y(z0) ∈ Bn
p (R). Moreover, by iteration theory (see, e.g., [1])

this fixed point is unique and H◦k
z0

(y) → y(z0) as k → ∞ for all y ∈ Bn
p [R]. Thus y(z0) gives rise

to a (analytic) periodic orbit γ of L in S1 ×Bn
p (R). This periodic orbit γ is unique and intersects

each fiber {z} × Bn
p [R] in y(z), the unique fixed point of Hz. Finally, it is clear by construction

that Hz is an attractor for all z ∈ S1.

Lemma 5. Let X be a holomorphic vector field defined in a neighborhood U of the closed set Bn
p [R],

p ≥ 2 and transverse to the boundary S2n−1
p (R). Then X has a unique singularity θ ∈ Bn

p (R) in
Bn

p [R] which is in the Poincaré domain. Moreover, any leaf L of the foliation F(X) defined by X

which crosses ∂Bn
p (R) tends to θ, i.e., θ ∈ L.

Proof. This is essentially proved in [9] for one can adapt his proof to the case of any strongly
convex domain. However, for the reader’s convenience, we give here a sketch of the proof. First,
the main result of [4] implies that under our hypothesis there exists a biholomorphism ψ from a
neighborhood of Bn

p [R] onto a neighborhood of the closed unit ball Bn
1 [1] and a holomorphic vector

field v in this latter set such that v = ψ∗(X) and v is transverse to the spheres S2n−1
1 (r) for all

r ∈ (0, 1]. By Lemma 2 and since X = ψ−1∗ (v) then the result follows.

From now on, we assume X to be a holomorphic vector field in a neighborhood W of the
polydisc ∆n[1] ⊂ Cn, transverse to ∂∆n(1) in the sense of Definition 2. By Lemma 5 the vector
field X admits a unique singularity θ ∈ ∆n in ∆n which is in the Poincaré domain. By a Moebius
map we can assume that θ = 0 the origin of Cn. We recall that a local separatrix of X through 0 is
an irreducible (germ of) analytic invariant curve Γ(0) passing through the origin. Since Γ(0) \ {0}
is connected (of punctured disc type) it follows that for a sufficiently small neighborhood U of
the origin we have Γ(0) \ {0} = L ∩ U for some leaf L of F(X). Conversely, by Remmert-Stein
extension theorem [7], if a leaf L of F(X) is such that for some neighborhood U of the origin we
have L \L = {0} (i.e., L is closed off the origin in a neighborhood of the origin and accumulates at
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the origin) then L∩U = Γ(0) \ {0} for some local separatrix Γ(0) ⊂ U of F(X) through the origin.
Motivated by these facts we will call a global separatrix of F(X) in W an invariant irreducible
analytic curve Γ ⊂ W such that 0 ∈ Γ, equivalently, 0 ∈ Γ and Γ \ {0} = L is a leaf L of F(X),
equivalently, Γ = L∪{0} for a leaf L of F(X) which is closed outside 0 and accumulates the origin.

Lemma 6. The foliation F(X) has exactly n local separatrices through the origin.

Proof. For sake of clearness we give the proof in case n = 3. Consider a component S1 ×∆2 ⊂ ∆3

with boundary ∂(S1 ×∆2 = S1 × ∂∆2. By hypothesis X is transverse to the boundary S1 × ∂∆2

and therefore by definition X is transverse to S1 ×∆2, to S1 × B2
p(1) and to S1 × ∂B2

p(1) for all
p >> 1. By Lemma 4 the restriction of the foliation F(X) to S1×B2

p [1] is a transverse holomorphic
flow with a unique periodic orbit γ1(1) whose holonomy map is an attractor defined in B2

p [1].
Now we are going to slightly perturb the product S1 ×∆2[1] as S1(s) ×∆2[1] (here, as usual,

S1(s) = ∂∆2
1(s)) for |s − 1| < ε. We claim that if ε > 0 is small enough than X is transverse to

S1(s) × ∆2(1), to S1(s) × B2
p(1) and to S1(s) × S3

p(1) for all p ≥ 1. This is clearly true for any
p fixed and our definition of transversality implies that we can in fact find such an ε > 0 which
works for all p. Indeed, assuming by contradiction that for any m ∈ N there exist pm and zm such
that X is not transverse to, say, S1(s) × B2

p(1) at zm, then passing to the limit we find a point
z ∈ S1 ×∆2[1] such that X is not transverse to some components of S1 ×∆2[1] at z.

Fix such a small ε > 0. As before, the flow induced by X on S1(s)×B2
p [1] has a unique periodic

orbit γs(1) whose holonomy map is an attractor defined in the ball B2
p [1].

Let Γ1 :=
⋃
|s−1|<ε γs(1) be the union of the periodic orbits. Then Γ1 ⊂ A1 × B2

p(1) ⊂ C × C2

where A1 := {ζ ∈ C : |ζ − 1| < ε}. Notice that Γ1 is a “piece” of an attractive leaf of F(X) in
A1 ×∆2(1).

Analogously using the components ∆×S1×∆ and ∆2[1]×S1 we obtain corresponding “pieces”
of attractive closed leaves Γ2 ⊂ ∆ × A2 × ∆ and Γ3 ⊂ ∆2 × A3. By Lemma 5 the leaves Γj(0)’s
tend to 0. Therefore X has at least three separatrices at 0. On the other hand, by the Maximum
Principle, any separatrix of X must intersect some slice as above and therefore, X has exactly
three separatrices through 0. Moreover, this shows that any local separatrix of X is contained in
a unique global separatrix of X.

Now we fix some notation. We denote by Λ(X, 0) the union of germs of invariant analytic hy-
persurfaces through the origin and write Λ(X, 0) =

⋃r
j=1 Λj(X, 0) its decomposition in irreducible

components. Then we have 1 ≤ r ≤ n. Denote Λ(X) the union of globally defined invariant
hypersurfaces passing through the origin and write Λ(X) =

⋃r1
j=1 Λj(X) its decomposition in irre-

ducible components. We have r ≤ r1 and we can assume that Λj(X, 0) ⊂ Λj(X) for all j = 1, ..., r.
Later on, we will see that any local invariant hypersurface corresponds to a unique global invariant
hypersurface and thus r = r1. Also let us denote by Sep(X, 0) =

⋃n
j=1 Γj(0) the union of local

separatrices of X through the origin and by Sep(X) the set of global separatrices passing through
the origin and write Sep(X) =

⋃s1
j=1 Γj in irreducible components. From the final part of the proof

of Lemma 6 we have that s = n and we can assume that Γj(0) is the germ of Γj at the origin, i.e.,
Γj(0) ⊂ Γj , j = 1, ..., n.

For each j ∈ {1, ..., n} we denote by Σ2n−1
j the component of the boundary of ∆n(1) which is

diffeomorphic to S1 × ∆n−1[1] ⊂ C × Cn and defined by |zj | = 1. We can consider the induced
”holonomy map” Fj : ∆n−1[1] → ∆n−1[1], obtained as the holonomy maps of the induced flows
on approximations S1 × Bn

p [R] of Σ2n−1
j . This map is well-defined up to analytic conjugation in

Aut(∆n−1[1]) and we can assume that Fj has a single fixed point at the origin, which is an attractor.
In particular, according to Lemma 1 we have two possibilities for Fj :

1. Fj is analytically linearizable in a neighborhood of Σ2n−1
j .
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2. Fj is analytically conjugate to its Poincaré-Dulac normal form in a neighborhood of Σ2n−1
j .

4 Semi-local constructions of differential forms

In this section we construct systems of closed meromorphic one-forms, in neighborhoods Wj of
the components Σ2n−1

j , which define the foliation F(X) and are closely related to the transverse
dynamics in Σ2n−1

j . We fix a component Σ2n−1
j and a sufficiently small neighborhood of Σ2n−1

j in
S1 × Cn where we shall work. Given the holonomy map Fj : ∆n−1[1] → ∆n−1[1] we assume first
that Fj is linearizable. Let γj(1) be the periodic orbit in Σ2n−1

j and fix a point z0
j ∈ S1. Since the

holonomy map Fj is linearizable diagonal one can find holomorphic coordinates (u1, ..., un−1) in
{z0

1}×∆n−1[1] such that the holonomy map is linear of the form Fj(u1, ..., un1) = (λ1u1, ..., λn1un)
for some λ1, ..., λn−1 ∈ C with 0 6= |λk| < 1 for all k = 1, ..., n − 1. Define a system of one-forms
ηj
2, ..., η

j
n in the transverse section {z0

1} ×∆1[1] as follows:

ηj
k(u1, ..., un−1) :=

duk

uk
; k = 2, ..., n.

Since F ∗
j (ηk

j ) = ηk
j , j = 2, ..., n, these forms admit holonomy extensions to a neighborhood of Σ2n−1

j

which we still denote by ηk
j , and satisfy (by the holonomy extension) ηk

j (X) ≡ 0, k = 2, ..., n. Each
form ηj

k is closed and transversely meromorphic with simple poles in Σ2n−1
j . Moreover for each

zj ∈ S1 the intersections (ηj
k)∞ ∩ ({zj} ×∆n−1[1]), k = 2, ..., n, are the invariant hypersurfaces of

the corresponding holonomy map.
Arguing as in the proof of Lemma 6 we can indeed construct the system of one-forms {ηj

k}k=n
k=2

in a product Wj = Aj × V n−1
j , where Aj = {zj ∈ C : |zj − 1| < ε} and V n−1

j = {(z1, ..., ẑj , ..., zn) ∈
Cn−1 : |z` − 1| < ε,∀` = 1, ..., n, ` 6= j} for some small ε > 0.

Assume now that Fj is not linearizable. For simplicity of notation we suppose n = 3. Let
us first make some general considerations. Take a holomorphic vector field Z in a neighborhood
of the origin 0 ∈ C2, with an isolated singularity at the origin, in the Poincaré domain, but not
linearizable in a neighborhood of the origin. Then the Poincaré-Dulac theorem implies that we
can find local holomorphic coordinates (x, y) in a neighborhood of the origin such that Z(x, y) =
(nx + cyn) ∂

∂x + y ∂
∂y , for some n ∈ N \ {1} and some c ∈ C \ {0}. We can assume that c = 1.

Straightforward forward integration then shows that the flow Zt of Z is given in a neighborhood
of the origin by Zt(x, y) = ((x + tyn)ent, yet), t ∈ C. If we put F = Za for some time a ∈ C and
λ = ean, µ = ea, c = aλ then we have

F (x, y) = (λx + cyn, µy)

where λ = µn.
In particular F preserves the vector field Z, i.e., F∗(Z) = Z. Thus it must preserve its dual

one-forms. That is the idea we want to use. We look for a pair of independent one-forms ηk, k = 1, 2
such that ηk(Z) ≡ 1 and also ηk is closed and meromorphic. We can choose η2 = dy

y which clear is
closed and dual to Z in the sense that η2(Z) ≡ 1. The one-form η1 must satisfy η1(Z) ≡ 1 and be
closed. In order to find η1 we consider the one-form Ω = ydx−(nx+yn)dx which satisfies Ω(Z) ≡ 0
and observe that ω := 1

yn+1 Ω = dx
yn −nx dy

yn+1 − dy
y which is clearly closed, meromorphic and tangent

to Z. Thus we can take η1 = ω + η2 satisfies our requirements. We have η1 = dx
yn − nx dy

yn+1 which
is closed, dual to Z and independent with η2 (outside y = 0 where both one-forms have poles).

We resume our current situation, where F = Fj is not linearizable. Then, it must be of the form
F (x, y) = (λx + ..., µy + ...) in a local chart (x, y). Since it is not linearizable we must have some
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resonance in the eigenvalues λ, µ. Let us examine such possible resonances. Since F is attractive
we must have 0 < |λ| < 1, 0 < |µ| < 1. The only possibility is λ = λs1µs2 with s1 ≥ 0, s2 ≥ 0 and
s1 + s2 ≥ 2. If s1 = 1 then µs2 = 1 what is not possible. If s1 > 1 then µs2 = λ1−s1 what is not
possible either. Thus the only possibility is, up to reordering the coordinates, s1 = 0 and λ = µs2 .
Therefore, we have a normal form like F (x, y) = (λx+ cys, µy) for some c ∈ C \ {0} and λ = µs for
some s ∈ N, s ≥ 2. By the above considerations we can, arguing as in the linearizable case, construct
a system of two one-forms ηj

1, η
j
2 in a product Wj = Aj × V 2

j , where Aj = {zj ∈ C : |zj − 1| < ε}
and V 2

j = {(z1, ..., ẑj , ..., z3) ∈ C2 : |z` − 1| < ε, ∀` = 1, ..., 3, ` 6= j} for some small ε > 0. For the
general case we obtain therefore:

Lemma 7. Given any j ∈ {1, ..., n} we can construct a system closed meromorphic of one-forms
{ηj

k}k=n
k=2 in a product Wj = Aj × V n−1

j , where Aj = {zj ∈ C : |zj − 1| < ε} and V n−1
j =

{(z1, ..., ẑj , ..., zn) ∈ Cn−1 : |z` − 1| < ε,∀` = 1, ..., n, ` 6= j} for some small ε > 0 with the
following properties:

1. The one-forms {ηj
k}k=n

k=2 are meromorphic, closed and the system has rank n − 1 outside the
union of the polar sets, which is of complex codimension one.

2. The system {ηj
k}k=n

k=2 is integrable and defines the foliation F(X) in Wj.

3. The holonomy map Fj associated to the component Σ2n−1
j is linearizable if and only if the

one-forms have simple poles.

5 Global construction of differential forms

This section consists of a globalization of the semi-local construction performed in Section 4. This
is done by gluing together the systems {ηj

k}n
k=2 obtained for each j = 1, ..., n. We divide the

argumentation in two cases.

5.1 The linearizable case

Let us assume that each component Σ2n−1
j has a linearizable holonomy map Fj for all j = 1, ..., n.

For the sake of simplicity once again we will assume that n = 3. From the above Lemma 7
we can construct a pair of closed meromorphic one-forms {η1

2, η
1
3} with simple poles in a product

W1 = A1×V 2
1 , where A1 = {z1 ∈ C : |z1−1| < ε} and V 2

1 = {(z2, z3) ∈ C2 : |z2−1| < ε, |z3−1| < ε}
for some small ε > 0. Similarly, for the slices ∆1[1]× S1×∆1[1] and ∆2[1]× S1 we construct pairs
of closed meromorphic one-forms {η2

2, η
2
3} and {η3

2, η
3
3} with simple poles in suitable neighborhoods

W2,W3 of ∆1[1]×A2×∆1[1] and ∆2[1]×A3. Moreover ηj
k(X) ≡ 0 on Wj for j = 2, 3 and k = 2, 3.

We can assume that Wj ∩Wk is connected for j, k = 1, 2, 3.

Lemma 8. There exist constants a, b, c, d ∈ C such that ad− bc 6= 0 and

η2
2 = aη1

2 + bη1
3 and η2

3 = cη1
2 + dη1

3

on W1 ∩W2.

Proof. Since {η1
2, η

1
3} and {η2

2, η
2
3} define the same foliation F(X) in W1 ∩W2, then η2

2 = aη1
2 + bη1

3

and η2
3 = cη1

2 + dη1
3 for some meromorphic functions a, b, c, d. We have to show that a, b, c, d are

in fact constant for a suitable choice. The main remark is that the functions a, b, c and d can be
chosen as holomorphic. All one has to do is to reorder the one-forms η1

k and η2
k where k = 2, 3 in
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such a way that the polar sets (η1
k)∞ and (η2

k)∞ coincide in the common domains of the one-forms.
We have to show that a, b, c, d are in fact constant.

Taking the exterior derivative of η2
2 = aη1

2 + bη1
3 we find

0 = da ∧ η1
2 + db ∧ η1

3

and then
0 = da ∧ η1

2 ∧ η1
3.

This implies that the function a is constant along the orbits of X in W1 ∩ W2. Therefore a is
holomorphic and constant along the orbits of X. Now we use the fact that ηj

k is Fj-invariant
by construction, i.e., F ∗

j (ηj
k) = ηj

k so that from the equation η2
2 = aη1

2 + bη1
3 we obtain that0 =

(F ∗
1 (a) − a)η1

2 + (F ∗
1 (b) − b)η1

3 so that, since the one-forms ηj
k are independent off the polar sets,

we obtain a ◦ F1 = a and b ◦ F1 = b also from the identity principle. Now the dynamics of the
diffeomorphism F1 implies that the only holomorphic functions constant along its orbits are the
constants, thus a and b are constant.
Remark 2. Notice that the set W1 ∩W2 is an open neighborhood of the intersection (S1×∆2[1])∩
(∆1[1]× S1 ×∆1[1]) = S1 × S1 ×∆1[1]. By hypothesis X is transverse to S1 × S1 ×∆1(1) in C3.
Thus S1×S1×∆1(1) is a real transverse section to F(X) representing the leaf space of F(X) in a
neighborhood of S1×S1×∆1(1). It follows that any holomorphic first integral for F(X) W1 ∩W2

is defined on S1 × S1 ×∆1(1) and thus it is constant.
Similarly we prove that c and d are constant.

Thus we can extend the pair {η1
2, η

1
3} to W1 ∪W2 by means

(
η1
2

η1
3

)
|W2 :=

(
a b
c d

)−1 (
η2
2

η2
3

)
.

A similar argumentation allows to extend {η1
2, η

1
3} to W3. Therefore {η1

2, η
1
3} can be defined in

a neighborhood of ∂∆3[1]. Hence, by Hartogs’ Extension Theorem (see, e.g., [13]) we have the
extension of the one-forms η2, η3 to a neighborhood of ∆3[1]. We state the general n-dimensional
conclusion as follows:

Lemma 9. There exist n− 1 closed meromorphic one-forms {η2, ..., ηn}, with simple poles, defined
in a neighborhood W of ∆n[1] such that

1. ηj(X) ≡ 0, j = 2, ..., n.

2. The system {ηk}k=n
k=2 has rank n− 1 off the polar sets and defines the foliation F(X).

3. (η2)∞ ∩ ... ∩ (ηn)∞ = (Γ1 ∪ ... ∪ Γn) and

4. (η2)∞ ∪ ... ∪ (ηn)∞ =
⋃n

j=1 Λj(X) = Λ(X).

5.2 The nonlinearizable case

Now we assume that some component Σ2n−1
j has a nonlinearizable holonomy map Fj for some

j = 1, ..., n. Again we assume that n = 3. As in the preceding section, an application of Lemma 7
gives the construction of a pair of closed meromorphic one-forms {η1

2, η
1
3} in a product W1 = A1×V 2

1 ,
and pairs of closed meromorphic one-forms {η2

2, η
2
3} and {η3

2, η
3
3} in suitable neighborhoods W2,W3

of ∆1[1] × A2 ×∆1[1] and ∆2[1] × A3. Moreover ηj
k(X) ≡ 0 on Wj for j = 2, 3 and k = 2, 3. We

can assume that Wj ∩Wk is connected for j, k = 1, 2, 3.
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Lemma 10. There exist constants a, b, c, d ∈ C such that ad− bc 6= 0 and

η2
2 = aη1

2 + bη1
3 and η2

3 = cη1
2 + dη1

3

on W1 ∩W2.

Proof. We proceed similarly to the proof of Lemma 8. Therefore, because {η1
2, η

1
3} and {η2

2, η
2
3}

define the same foliation F(X) in W1 ∩ W2, we have η2
2 = aη1

2 + bη1
3 and η2

3 = cη1
2 + dη1

3 for
some meromorphic functions a, b, c, d and ad − bc 6= 0 and we have to show that a, b, c, d are in
fact constant. Again this comes from the fact that the functions a, b, c and d can be chosen as
holomorphic if we reorder the one-forms η1

k and η2
k where k = 2, 3 in such a way that the polar sets

(η1
k)∞ and (η2

k)∞ coincide in the common domains of the one-forms. Then, as before, the invariance
of the ηj

k with respect to the holonomy maps Fj as well as the local dynamics of the Fj imply that
the functions are constant indeed.

Lemma 11. There exist n − 1 closed meromorphic one-forms {η2, ..., ηn}, not all having simple
poles, defined in a neighborhood W of ∆n[1] such that

1. ηj(X) ≡ 0, j = 2, ..., n.

2. The system {ηk}k=n
k=2 has rank n− 1 off the polar sets and defines the foliation F(X).

3. (η2)∞ ∩ ... ∩ (ηn)∞ = (Γ1 ∪ ... ∪ Γn) and

4. (η2)∞ ∪ ... ∪ (ηn)∞ =
⋃r

j=1 Λj(X) = Λ(X) where 1 ≤ r ≤ n and r is the number of global
invariant hypersurfaces of F(X).

6 Linearization of foliations

In this section we assume that each component Σ2n−1
j has a linearizable holonomy map Fj . Under

this hypothesis, we will prove that the foliation F(X) is linearizable in the sense of Theorem 1. We
shall state it in a more general context as follows:

Proposition 3. Let X be a holomorphic vector field in a neighborhood W of the closed polydisc
∆n[1] ⊂ Cn, n ≥ 3 and assume that:

1. sing(X) ∩∆n[1] = {0} and the origin is a singularity in the Poincaré domain.

2. There exists a system {ηj}n
j=2 of closed meromorphic one forms, with simple poles in W , such

that the system has rank n− 1 (outside the polar sets) and ηj(X) ≡ 0 for j = 2, . . . , n.

Then there exists a holomorphic map F : W → Cn such that F (0) = 0 and nonsingular at

the origin, and a linear polynomial vector field Z =
n∑

j=1
λjzj

∂
∂zj

in Cn, which is in the Poincaré

domain, such that the foliation F(X) is the pull-back F ∗(F(Z)). In this sense, F(X) is globally
the pull-back by F of its normal form at the origin.

Our first step is the following lemma:

Lemma 12. Let X be a holomorphic vector field in a neighborhood W of the closed polydisc
∆n[1] ⊂ Cn, n ≥ 3. Let {ηj}n

j=2 be a system of closed meromorphic one forms with simple poles
in W such that the system has rank n − 1 and ηj(X) ≡ 0 for j = 2, . . . , n. Assume that X has
an isolated singularity at the origin 0 which is in the Poincaré domain. Then X is linearizable in
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a neighborhood of the origin and there exist holomorphic functions f̂j, j = 1, . . . , n defined in a
neighborhood of ∆n[1] and complex numbers µj ∈ C∗ such that, up to a linear automorphism of the
system {ηj}n

j=2, one can write for j = 2, . . . , n

ηj =
df̂1

f̂1

− µj
df̂j

f̂j

.

Proof. Assume that we have proved that X is linearizable at 0, thus there exist a neighborhood of
0 and local coordinates x1, . . . , xn on U such that xj(0) = 0 and

X(x1, . . . , xn) =
n∑

k=1

αkxk
∂

∂xk
, (6.1)

for αj ∈ C∗ and the origin is not in the convex hull of {α1, ..., αn} in R2.
In particular, the foliation F(X) defined by X has n separatrices at 0, whose union in U is

given by

Sep(F(X), 0) =
n⋃

k=1

{x1 = . . . = x̂k = . . . = xn = 0},

where x̂k means omitted. Moreover there are n local X-invariant hypersurfaces through the origin,
whose union is given by

Λ(F(X), 0) :=
n⋃

k=1

{xk = 0}.

Therefore the analytic set (ηj)∞ (which is not irreducible in general but it is F(X)-invariant by
the condition ηj(X) ≡ 0) coincides with an some component of the subset Λ(F(X)), the saturated
of the germ Λ(F(X), 0).

In particular Λ(F(X)) is analytic of pure codimension one, writes as Λ(F(X)) =
⋃n

j=2(ηj)∞ and
has exactly n irreducible components of codimension one. Thus we can find n reduced holomorphic
functions f1, . . . , fn : W → C such that

Λ(F(X)) =
n⋃

k=1

{fk = 0},

and each {fk = 0} is irreducible. In particular (ηj)∞ ⊂ ⋃n
k=1{fk = 0} and by the Integration

Lemma ([5], [6]) we can write

ηj =
n∑

k=1

λ
(j)
k

dfk

fk
+ dFj , (6.2)

for some λ
(j)
k ∈ C and some holomorphic functions Fj : W → C, j = 1, . . . , n.

We claim that in U

ηj(x1, . . . , xn) =
n∑

k=1

λ
(j)
k

dxk

xk
, (6.3)

and
n∑

k=1

αkλ
(j)
k = 0 (6.4)
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for j = 2, . . . , n. To prove the claim we argue as follows. Up to reordering we can assume that
{xk = 0} = {fk = 0}∩U , for k = 1, . . . , n. Thus in U we can write fk(x1, . . . , xn) = xkgk(x1, . . . , xn)
for some never vanishing holomorphic function gk defined in U . Thus (6.2) implies that on U

ηj =
n∑

k=1

λ
(j)
k

dxk

xk
+

n∑

k=1

λ
(j)
k

dgk

gk
+ dFj .

Since ηj(X) ≡ 0, setting

ηj :=
n∑

k=1

λ
(j)
k

dgk

gk
+ dFj ,

we have
n∑

k=1

λ
(j)
k αk + θj(X) ≡ 0. (6.5)

The one-form θj is closed and holomorphic in U . Therefore θj(X)(0) = 0 for X(0) = 0. Using this,
from (6.5) evaluated at 0 we obtain (6.4). And then, again from (6.5) we get that θj(X) ≡ 0 in
U . Since θj is closed and holomorphic in U , up to shrink U , we can assume that θj is also exact in
U and set θj = dGj for some holomorphic function Gj in U . Thus dGj(X) = 0, j = 2, . . . , n. By
Lemma 3 the functions Gj are then constant and hence dGj ≡ 0 proving that θj ≡ 0 and thus (6.3).

Since by hypothesis the system {ηj} has rank n − 1, it follows from (6.3) that the complex
vectors vj := (λ(j)

1 , . . . , λ
(j)
n ) ∈ Cn, j = 2, . . . , n span an (n − 1)-dimensional subspace of Cn.

Let T : Cn → Cn be a linear invertible transformation which fixes (α1, . . . , αn) and sends vj to
(1, 0, . . . , 0, µj , 0 . . . , 0) with µj = −α1/αj , j = 2, . . . , n.

Applying this linear transformation to the system {ηj}j=n
j=2 we obtain a new system {η̃j}j=n

j=2 of
the form

η̃j =
df1

f1
+ ηj

dfj

fj
+ dF̃j ,

for some holomorphic function F̃j : W → C.
Now define for each j ≥ 2 the functions f̂j := fj exp(F̃j/µj). Then

µj
df̂j

f̂j

= µj
dfj

fj
+ µj

dF̃j

µj
= µj

dfj

fj
+ dF̃j .

Let us set f̂1 = f1. Thus

η̃j =
df̂1

f̂1

+ µj
df̂j

f̂j

,

as wanted.
It remains to prove that X is indeed linearizable at the origin. This is a consequence of the

fact that, by hypothesis the one-forms ηj have simple poles and therefore, any local separatrix of
X through the origin has linearizable holonomy map. The singularity is therefore linearizable as a
consequence of the Poincaré-Dulac theorem.

The previous lemma implies

Corollary 1. Let X be a holomorphic vector field defined in a neighborhood W of the polydisc
∆n[1] ⊂ Cn, n ≥ 3. Assume that X has an isolated singularity at 0 ∈ ∆n(1) which is lineariz-
able, hyperbolic and in the Poincaré domain. Let {ηj}n

j=2 and {η̃j}n
j=2 be two systems of closed
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meromorphic one-forms in W , with rank n − 1 and such that for every j = 2, . . . , n we have
ηj(X) ≡ η̃j(X) ≡ 0. Then the two systems differ by a linear transformation of Cn. Namely, there
exists an n× n invertible matrix T = (Tjl) such that for every j = 2, . . . , n it follows

η̃j =
n∑

l=2

Tjlηl.

Finally we have the following result:

Lemma 13. Let η2, . . . , ηn and X be as in Lemma 12. The foliation F(X) induced by X on ∆n[1]
is the pull-back of a linear hyperbolic foliation FZ , Z =

∑n
j=1 αjzj

∂
∂zj

on Cn by some holomorphic
map Φ : W → Cn defined in a neighborhood W of ∆n[1]. Such a map Φ is injective as a map
between leaves spaces.

Proof. Apply Lemma 12 in order to find n holomorphic function f1, . . . , fn : W → C in a neighbor-
hood W of ∆n[1] such that ηj = df1

f1
+ µj

dfj

fj
, for j = 2, . . . , n and also fk = xkgk in a neighborhood

U of 0, with gk never vanishing and (x1, . . . , xn) are local coordinates in U such that X is given
by (6.1). Define Φ : W → Cn by

Φ(p) = (f1(p), . . . , fn(p)).

The Jacobian matrix of Φ at 0 is given by

Jac(Φ)(0) =
[
∂fk

∂xl
(0)

]n

k,l=1

=




g1(0) 0 0

0
. . . 0

0 0 gn(0)




which is non singular. In particular, up to shrink U , we can assume that Φ is invertible on U
and then it is a biholomorphism between U and V = Φ(U) ⊂ Cn, a open neighborhood of 0. Let
z1, . . . , zn be global coordinates in Cn and let Z =

∑n
j=1 αjzj

∂
∂zj

. Define

η̃j :=
dz1

z1
+ µj

dzj

zj
,

j = 2, . . . , n. The one-forms η̃j are linear logarithmic on Cn and define a (n − 1)-rank system
{η̃j}n

j=2 such that η̃j(Z) ≡ 0, j = 2, . . . , n.
By construction ηj = Φ∗(η̃j and then the foliation F(X) is the pull back of the linear foliation

FZ and the map Φ : W → Cn is injective near the origin 0 ∈ Cn and each leaf of F(X) tends to
the origin, therefore the map Φ is injective as a map between leaf spaces.

Proposition 3 is now a straightforward consequence of Lemmas 12 and 13.

7 The nonlinearizable case

In this section we deal with the nonlinearizable case for some holonomy map Fj of a component
Σ2n−1

j . Indeed, we study this situation in a more general context and prove the following analogous
of Proposition 3:
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Proposition 4. Let X be a holomorphic vector field in a neighborhood W of the closed polydisc
∆n[1] ⊂ Cn, n ≥ 3 and assume that:

1. sing(X) ∩∆n[1] = {0} and the origin is a singularity in the Poincaré domain.

2. There exists a system {ηj}n
j=2 of closed meromorphic one forms in W such that the system

has rank n− 1 (outside the polar sets) and ηj(X) ≡ 0 for j = 2, . . . , n.

Then there exists a holomorphic map F : W → Cn such that F (0) = 0 and nonsingular at the
origin, and a polynomial vector field Z in Cn, which is a Poincaré-Dulac normal form for X is a
neighborhood of the origin, such that the foliation F(X) is the pull-back F ∗(F(Z)). In this sense,
F(X) is globally the pull-back by F of its normal form at the origin.

Proof. Proposition 3 in Section 6 above refers to the linearizable case. Thus we will assume that
the vector field X has resonances and has a nonlinearizable Poincaré-Dulac normal for Z in a
neighborhood of the origin. Again, for the sake of simplicity we assume that n = 3. There are
therefore three holonomy maps Fj : ∆n−1[1] → ∆n−1[1] corresponding to the components Σ2n−1

j of
the boundary of ∆n[1], with j = 1, 2, 3. Some of these maps is nonlinearizable. We will consider the
following situation in coordinates (x, y, z) = (z1, z2, z3) ∈ C3 : F1(y, z) is linearizable, F2(x, z) is not
linearizable, F3(x, y) is not linearizable. We recall that according to Proposition 2 the holonomy
map Fj is linearizable if and only if it admits two invariant hypersurfaces through the origin, and it
is nonlinearizable if and only if it admits only one invariant hypersurface through the origin. Each
such an invariant hypersurfaces corresponds to an invariant hypersurface through the origin 0 ∈ C3

for the foliation F(X) and to an irreducible component of the polar set of the corresponding system
of one-forms ηk

j , k = 1, 2 and therefore appears as one irreducible component of the polar set of the
system of one-forms {η}k=3

k=1 defined in W . Therefore, the nonlinearizable case for X corresponds
to the case F(X) has one or two invariant hypersurfaces through the origin and the case that we
are considering corresponds to the case we have two such hypersurfaces. Indeed, according to the
possibility for F1, F2 and F3 that we are considering we can assume that Poincaré-Dulac normal
form Z for X writes as

Z(x, y, z) = (nx + yn)
∂

∂x
+ y

∂

∂y
+ νz

∂

∂z

where ν ∈ C\R−. Thus we a local analytic conjugacy between X and Z is a neighborhood of the
origin. We also have from the hypothesis on F1, F2, F3 that the set of separatrices of F(X) through
the origin Λ(F(X)) is analytic of pure codimension one, writes as Λ(F(X)) =

⋃3
j=2(ηj)∞ and has

exactly 2 irreducible components of codimension one. Thus we can find 2 reduced holomorphic
functions f1, f2 : W → C such that

Λ(F(X)) =
2⋃

k=1

{fk = 0},

and each {fk = 0} is irreducible. In particular (ηj)∞ ⊂ ⋃2
k=1{fk = 0} and by the Integration

Lemma (see, [5] and [6]) we can write

ηj =
2∑

k=1

λ
(j)
k

dfk

fk
+ d

(
gj

f
rj−1
1 f

sj−1
2

)
, (7.1)

for some λ
(j)
k ∈ C and some holomorphic functions gj : W → C, j = 1, 2. The numbers rj , sj ∈ N

are the order of {f1 = 0} and the order of {f2 = 0} as pole of ηj respectively.
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Claim 1. In U we have

ηj(x, y, z) = αj

[
d
( x

yn

)− dy

y

]
+ βj

(
ν

dy

y
− dz

z

)
(7.2)

for some αj , βj ∈ C and j = 1, 2.

Proof. We define in the local one-forms η0
1 = d

(
x
yn

) − dy
y and η0

2 = ν dy
y − dz

z . Clearly we have
η0

j (X) ≡ 0 for j = 1, 2. Thus we must have ηj = ajη
0
1 + bjη

0
2 for some meromorphic functions aj , bj

in U for j = 1, 2. Taking the exterior derivatives in these expressions we obtain

0 = daj ∧ η0
1 + dbj ∧ η0

2.

Multiplying conveniently we get

0 = daj ∧ η0
1 ∧ η0

2 = dbj ∧ η0
1 ∧ η0

2.

Therefore, aj and bj are constant along the leaves of F(X) in U . Nevertheless, the dynamics
of such a Poincaré-Dulac normal form admits no meromorphic first integral in a neighborhood of
the singularity, except for the constants. Thus, aj and bj are constant what proves the claim.

In U we can write f2 = y.h2 and f3 = z.h3 for some never vanishing holomorphic functions h2

and h3 defined in U . Thus (7.1) implies that we must have

ηj = aj d
( gj

fn
2

)
+ bj

df2

f2
+ cj

df3

f3
.

for some constants aj , bj , cj ∈ C. Using f2 = yh2 and f3 = z3 we obtain

ηj = aj d
( gj

ynhn
2

)
+ bj

dy

y
+ cj

dz

z
+ bj

dh2

h2
+ cj

dh3

h3
.

The one-form bj
dh2
h2

+cj
dh3
h3

is closed and holomorphic so that we can write it as bj
dh2
h2

+cj
dh3
h3

= dψj

for some holomorphic function defined in a suitable neighborhood of the origin, that we can assume
to be U . From the claim we then obtain

ηj = aj d
( gj

ynhn
2

)
+ bj

dy

y
+ cj

dz

z
+ dψj = αj

[
d
( x

yn

)− dy

y

]
+ βj

(
ν

dy

y
− dz

z

)
.

Comparing the residues along {z = 0} we obtain cj = −βj and therefore

aj d
( gj

ynhn
2

)
+ bj

dy

y
+ dψj = αj

[
d
( x

yn

)− dy

y

]
+ βj

(
ν

dy

y

)
.

Comparing now residues along {y = 0} we get bj = −αj + νβj and therefore

aj d
( gj

ynhn
2

)
+ dψj = αj d

( x

yn

)
.

Since ψj is holomorphic necessarily we have dψj ≡ 0 and then

aj d
( gj

ynhn
2

)
= αj d

( x

yn

)
.

Thus we have gj

ynhn
2

= Aj
x
yn + Bj for some contants Aj , Bj ∈ C. Hence gj

fn
2

= Bj + Aj
x
yn in U .

Replacing gj by gj − Bjf
n
2 we can assume that Bj = 0. With this we get gj

fn
2

= Aj
x
yn in U and
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therefore g1/g2 is constant in U and therefore in W . Moreover, from the above equations we we
get that gj = Ajxhn

2 in U . Thus finally we obtain

ηj = ãj

[
d
( g

fn
2

)− df2

f2

]
+ b̃j

[
ν

df2

f2
− df3

f3

]
+ dϕj .

for some constants ãj , b̃j ∈ C and some holomorphic functions ϕj in W . If we write θ = d
( g

fn
2

)− df2

f2

and ξ = df2

f2
then ηj = ãjθ + b̃jξ + dϕj so that suitable linear combinations of η1 and η2 can be

written as η̃1 = θ1 +dψ1 and η̃2 = ξ +dψ2 for some holomorphic functions ψj in W . Now we define
f̂2 = f2e

−ψ1 so that we have
df̂2

f̂2

=
df2

f2
− dψ1.

We also define f̂1 = ge−nψ1 . The functions f̂1 and f̂2 are holomorphic in W and we can write

η̃1 = d
( f̂1

f̂n
2

)− df̂2

f̂2

.

Similarly, we define f̂3 = f3e
−(ψ2+νψ1) so that f̂3 is holomorphic and we can write

η̃2 = ν
df̂2

f̂2

− df̂3

f̂3

.

Now we define Φ : W → C3 by
Φ = (f̂1, f̂2, f̂3).

The Jacobian matrix of Φ at the origin 0 ∈ C3 is clearly non singular. In particular, up to shrink
U , we can assume that Φ is invertible on U and then it is a biholomorphism between U and
V = Φ(U) ⊂ C3, a open neighborhood of the origin 0 ∈ C3. Given global affine coordinates
(x, y, z) ∈ C3 we recall the definition of the vector field Z given by

Z(x, y, z) = (nx + yn)
∂

∂x
+ y

∂

∂y
+ νz

∂

∂z

as well as the one-forms η0
j introduced above as η0

1 = d
(

x
yn

) − dy
y and η0

2 = ν dy
y − dz

z . Then
by construction we have η̃j = Φ∗(η0

j ) in W so that the foliation F(X) is the pull-back by Φ of
the foliation F(Z) defined by Z. The map Φ is a diffeomorphism in a neighborhood of the origin
and each leaf of F(X) tends to the origin, therefore the map Φ is injective as a map between leaf
spaces. This ends the proof of Proposition 4.

8 End of the proof of Theorem 1

In order to finish the proof of Theorem 1 we must eliminate the nonlinearizable case dealt with in
Section 7 so that we will just have to apply Proposition 3 from Section 6 and conclude. Suppose by
contradiction that we are in the nonlinearizable situation of Proposition 4 from Section 7. Thus,
F(X) is the pull-back of a resonant nonlinear Poincaré-Dulac foliation F(Z) by a holomorphic
map Φ: W ⊃ ∆n[1] → Cn, such that Φ(0) = 0 and Φ is a local diffeomorphism at the origin.
According to Lemma 6 the foliation F(X) has exactly n global separatrices through 0. Therefore,
also F(Z) exhibits exactly n separatrices through the origin. Then an immediate analysis on the
Poincaré-Dulac normal form Z in a neighborhood of 0 shows that this singularity is still analytically
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linearizable, yielding a contradiction. Once we have proved that F(X) is the pull-back of a linear
foliation F(Z), it is easy to conclude that Z must be hyperbolic, due to the attractive behavior
of the holonomy maps Fj associated to the components Σ2n−1

j and therefore to all the (global)
separatrices of F(Z). This shows Theorem 1.
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