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THE DYNAMICS NEAR QUASI-PARABOLIC FIXED POINTS OF
HOLOMORPHIC DIFFEOMORPHISMS IN C?

By FiLipro BrAcCI and LAURA MOLINO

Abstract. Let F be a germ of holomorphic diffeomorphism of C? fixing O and such that dF has
eigenvalues 1 and ' with |ei9\ =1 and ¢ # 1. Introducing suitable normal forms for F we define
an invariant, ¥(F) > 2, and a generic condition, that of being dynamically separating. In the case
F is dynamically separating, we prove that there exist ¥(F) — 1 parabolic curves for F at O tangent
to the eigenspace of 1.

1. Introduction. Let End(C?, 0) denote the group of germs of holomorphic
diffeomorphisms at the origin O of C? fixing O. One of the main open problems
is to understand the dynamics near O of an element F' € End((Cz, O) for which the
spectrum of the differential dF is contained in the unit circle (see Question 2.26
in [9]). The case where O is a parabolic point of F, that is dFp = id, and O is an
isolated fixed point, has been studied by several authors ([7], [17], [10], [1]). To
recall their main result we need first a definition:

Definition 1.1. A parabolic curve for F € End(C?, 0) at O tangent to (the
space spanned by) v € C2\ {0} is an injective holomorphic map ¢ : A — C?
satisfying the following properties:

(1) Ais a simply connected domain in C with 0 € 0A,

(2) ¢ is continuous on JA, ©(0) = O and [p({)] — [v] as ( — O (where [-]
denote the projection of C?\ {0} to P'),

(3) F(p(A)) C o(A), and F"(¢(()) — O as n — oo for any ( € A.

Then the main result is:

TueoreM 1.2. (Ecalle, Hakim, Abate) Ler F € End(C2, O) be tangent to the
identity and such that O is an isolated fixed point. Let t(F) > 2 denote the order of

vanishing of F — id at O. Then there exist (at least) t(F) — 1 parabolic curves for
FatO.

Actually, Ecalle [7] and Hakim [10] proved such a theorem for any dimension,
but only for generic mappings, while Abate [1] using an ingenious index theorem
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makes the result holds for any map, but just in C>. The case where there is a
curve of fixed points passing through O has also been studied ([11], [5], [2]), and
actually one can see Theorem 1.2 as a consequence of results on dynamics near
curves of fixed points by means of blow-ups of O in C? (see [1], [4]). We also
wish to mention that for the semi-attractive case in C" (that is one eigenvalue 1
with some multiplicity and the others of modulus strictly less than 1) the existence
of parabolic curves is provided by Rivi [13].

Roughly speaking the underlying idea in all previous results is to find “good
invariants” attached to F* which read dynamical properties of F itself (for instance
Hakim’s nondegenerate characteristic directions or Abate’s indices in [1], and
residues in [4]).

In this paper we deal with the case of a map F € End(C?, 0) with Sp(dFp) =
{1,¢%} for 6 € R and ¢ # 1. We call O a quasi-parabolic fixed point for F.

If ¢ satisfies some Brjuno condition then Pdschel proved that there exists
a (germ of) complex curve I tangent to the eigenspace of ¢ which is invariant
for F and on which F is conjugated to the rotation ¢ — e¢ (see [12]). However
nothing is known about the dynamics in the direction tangent to the eigenspace
of 1.

Our starting point is the following trivial observation: the map F : (z, w) —
(z+ 2%, e%w) has {w = 0} as invariant curve and thus, by the one-dimensional
Fatou theory (see, e.g., [6]) there exist two parabolic curves for F' at O tangent to
the eigenspace of 1, no matter what ¢ is. However, conjugating F with a map
G € End(C?,0) tangent to id at O, it might be very difficult to check that the
new map has an invariant curve tangent to the eigenspace of 1 and two parabolic
curves in there.

Motivated by the previous results for germs tangent to the identity, we direct
our study in searching invariants for F at a quasi-parabolic point which are related
to dynamical properties of F' along the direction tangent to the eigenspace of 1.

The main difference between the parabolic and quasi-parabolic case is that in
the first, all terms of F are resonant in the sense of Poincaré-Dulac (see, e.g., [3]),
while in the second case some are not, and this allows us to dispose of those terms
with suitable transformations. More precisely, let F = (Fy, F») € End(Cz, O) be
given in some system of local coordinates by

Fa(z,w) = ew+ 37550 qjad wh,
for pjr,qgix € C, 0 € R and ¢ # 1. A monomial z"w" in F, is resonant if
1 = 1"¢" while a monomial z”"w" in F, is resonant if e = 1M for m,n € N,
m+n > 2. A germ F is said to be in Poincaré-Dulac normal form if it is given by
(1.1) and pjx = gjx = O for all nonresonant monomials Zwk. The Poincaré-Dulac

Theorem states that it is always possible to formally conjugate F to a (formal)
map G in normal form by means of a (formal) transformation tangent to the
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identity, and actually the method of Poincaré-Dulac is constructive in the sense
that given k € N it is possible to analytically conjugate F' to a (convergent) map G
which is in normal form up to order k (that is, nonresonant monomials of degree
less than or equal to k are all zero) by means of a (convergent) transformation
tangent to the identity.

Therefore if there exist invariants for F' at a quasi-parabolic fixed point they
have to be found in normal forms. Unfortunately normal forms are not unique and
also they do reflect the character of ¢, while our leading example does not make
differences. Also, normal forms are not stable under blow-ups, which are one of
the basic ingredients of parabolic theory. Indeed the only invariant terms are those
we call ultra-resonant monomials, that is, for F' given by (1.1), of type z” in F| and
Z™"win Fp, m € N. And we say that F is an asymptotic ultra-resonant normal form
if gjo = 0 for any j. Note that Poincaré-Dulac normal forms are in fact examples
of asymptotic ultra-resonant normal forms but the converse is not true in general,
and indeed there are convergent asymptotic ultra-resonant normal forms which
have no convergent Poincaré-Dulac normal forms. With a simplified Poincaré-
Dulac method we prove that given F € End(C?, 0) with O as quasi-parabolic
fixed point, there always exist (possibly formal) asymptotic ultra-resonant normal
forms conjugated to F' by means of transformations tangent to the identity. Again
asymptotic ultra-resonant normal forms are not unique, but we show that the first
J € N such that p;o # 0 is an invariant for (even formal) conjugated ultra-resonant
normal forms. Therefore we find the first invariant v(F) € NN [2, oo] associated
to F. Of course this invariant could also have been defined from Poincaré-Dulac
normal forms. However, the following result justifies the usage of ultra-resonant
normal forms instead of Poincaré-Dulac normal forms:

PrOPOSITION 1.3. Let F € End(C?, O) and assume O is a quasi-parabolic fixed
point of F. Then there exists an invariant nonsingular complex curve T" for F
passing through O and tangent to the eigenspace of 1 if and only if F is analytically
conjugated to a convergent asymptotic ultra-resonant normal form. Moreover in
this case, if v(F) = oo then F pointwise fixes T, while if v(F) < oo there exist
v(F) — 1 parabolic curves for F at O contained in T.

For the practical purpose of calculating v(F) one does not need to find an
asymptotic ultra-resonant normal form. Indeed it is enough to find what we call
a ultra-resonant normal form, that is, ' given by (1.1) for which the first pure
non-zero term in z of F, has degree greater than or equal to the first non-zero
pure term in z of F (see Section 2).

In the generic case V(F) < oo, we can associate to F a second invariant,
essentially the sign of ®(F). The latter, for F in ultra-resonant normal form given
by (1.1), is defined as O(F) = v(F) —j — 1 where j is the first integer for which
gj1 # 0 and, roughly speaking, measures the “degree of mixing” of the dynamics
along the eigenspace associated to 1 and e’. Therefore, given any F € End(C?, 0)
for which O is quasi-parabolic for F, we say that F is dynamically separating
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if ¥(F) < oo and O(F) < 0 for some ultra-resonant normal form F of F (see
Definition 2.7). Our main result can now be stated as follows:

THEOREM 1.4. Let F € End(C?, 0) and assume O is a quasi-parabolic point
of F. If F is dynamically separating then there exist v(F) — 1 parabolic curves for
F at O tangent to the eigenspace of 1.

One remarkable consequence of this theorem is that if F is given by (1.1)
and pro # O then there always exists a parabolic curve for F at O tangent to
the eigenspace of 1. This is similar to a result in the quasi-hyperbolic case—one
eigenvalue 1, the other of modulus < 1—where, under similar hypothesis, the
existence of a basin of attraction for F is proved (cf. [8], [14], [15]).

The plan of the paper is the following: In Section 2 we introduce ultra-
resonant normal forms, the invariant v(F) and dynamically separating maps and
give the proof of Proposition 1.3. In Section 3 we prove Theorem 1.4. Finally,
in Section 4 we conclude with some remarks and discuss the case ¢/ = 1 for
some s > 2, especially relating parabolic curves provided by Theorem 1.4 with
the ones given by Hakim’s and Abate’s theory for F*.

Acknowledgments. We wish to thank the referee for many useful comments.

2. Ultra-resonant normal forms.

Definition 2.1. Let F € End((Cz, 0) be given by (1.1). We call ultra-resonant
the monomials of type z” in F and of type z"w in F,, m € N.
In case there exists j € N such that p;o # 0 we let

W(F,z) :=min{j € N : p;o #0},

and let u(F,z) = +o00 if pjo = 0 for all j°s. Similarly if there exists j € N such
that g;; # 0, we let

u(F,w) = min{j € N : gj; #0},

setting p(F,w) = +o00 if g;; = 0 for all j’s.
Finally, if w(F,z) < +oo we let O(F) = u(F,z) — w(F,w) — 1 (with the
convention that @(F) = —oo if u(F,w) = +00).

In general w(F,z) and pu(F,w) are not invariant under change of coordinates.
However u(F, z) and the sign of ©(F) are invariant under a suitable normalization
which we are going to describe.

Definition 2.2. We say that a (possibly formal) germ of diffeomorphism F €
End(C2, 0) is in ultra-resonant normal form if F is given by (1.1) and gj0 = 0 for
J=2,...,,(F,z) — 1. If gjp = 0 for any j we call F an asymptotic ultra-resonant
normal form.
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The first result we prove is the existence of (possibly formal) asymptotic
ultra-resonant normal form.

PROPOSITION 2.3. Let F € End(C?, 0) and assume O is a quasi-parabolic fixed
point for F. Then there exists a formal transformation K € End(C2, O) tangent to
id such that K=" o F o K = F, with F a formal asymptotic ultra-resonant normal
form.

Proof. We may assume F in the form (1.1). Let g;0 # O be the first nonzero
coefficient of a pure term in z in F». Consider the transformation

z=Z
2.1 K, =
21 y {w=W+aZS
with @ = —g,0/(e” — 1). Then K; ! o F o K; has pure term in Z in the second
component of degree > s+ 1. Proceeding this way we can get rid of all pure
terms in z in the second component, and K is given by composition of the K;’s.
|

Ultra-resonant normal forms are by no means unique as the following example
shows.

Example 2.4. The germs F(z,w) = (z+ 22, ¢w) and G(z, w) = (z + 2%, €w —

ewz? /(1 + 7+ z%)) are both in normal forms and conjugated by the the transfor-
mation (z, w) — (z,w + zw). Moreover u(F,z) = u(G,z) = 2, O(F) = —oo while
0(G) = —-1.

Using ultra-resonant normal forms we can define some invariants associated
to F. Before doing that, we need the following basic lemma.

LEMMA 2.5. Let F,G € End(C?, O) be (possibly formal) germs of diffeomor-
phisms in ultra-resonant normal form. If F is conjugated to G then u(F, z) = (G, 2).
Moreover if W(F,z) = (G, z) < oo then O(F) < 0 if and only if ©(G) < 0, while
if (F,z) = (G, z) = oo then p(F,w) = (G, w).

Proof. Let F be given by (1.1), and let

G(z,w)=(z+ Z ﬁj,kzjwk, eOw + Z E]j,kziwk).

j+k>2 j+k>2

If T is the transformation which conjugates F' to G, then its differential at the
origin must be a diagonal matrix, which we can assume to be the identity. Thus
let T : (z,w) — (z+ @1(z, w), w+ ©2(z, w)) be the transformation conjugating F to
G.

We introduce the following notation: we denote by H,, any term which has
order greater than or equal to m. Also, for m,n € N, m < n, we write B,,, for
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indicating terms of order greater than or equal to m but less than or equal to n;
we also set By, , = 0 for m > n. Moreover we let S; denote any term of order
strictly smaller than k. We also set a := u(F,z), b = pu(F,w) and a = u(G,z),
b = (G, w). In case a = oo we agree that terms of type p,0z® and symbols like
O(z") should be understood as zeros (similarly if @ = co). With this convention
we can deal with all cases at the same time. Since F = (F, F») and G = (G, G2)
are both in normal form, we can write

Fl(Z,W)—Z+paoz +WBi a1 + Hai,
22) F
(22 Faw) = {F (z,w) = €W+ gp12"w + WS, + O, 27 ' w, w?Hy),
and
Gi(z,w) = 2+ pao?” + wB + Hzpq,
23) Glzw) = 1z, w) lepao a1t Hus,
Gar(z,w)=e w+qblz w+w2S; + O, 2w, w2 Hj).

Let ¢, > 2 be the order of vanishing of ¢;(z,0) at 0, h=1,2. Since Fo T =
T o G, using (2.2) and (2.3) and equating components we obtain

(2.4) ©1(2, W) + paoz” + 2(2, W)B1 4—1 + Har1 + O(w)
= p1(G(z, w)) + Paoz” + Has1,

and

(2.5) €9 02(z, W) + .1 (2 + 1z W)W + 02z, W) + [2wea(z, W) + ©2(z, w)*1S},
+0(, 272, ) + 0?) = 02(Ge w)) + G5, "w + 0@, 2w,

Write pp(z, w) = Zj+k22 @é;kzjwk, for go’}.;k € Cand h=1,2. Then

(2.6)  qri(z+ @1z W)W + 02z, w)) = gpztw + OW?, 27w, 2+2),

Q7 0AGzw) — Pz w) = (1 — )22 + 07, 221, w),
and putting (2.6), (2.7) into (2.5) we get that
(2.8) ¢y > min{a, a},

where we understood ¢; = oo (that is <pj2’0 = 0 for any j) in case a = d = c0. In
particular equation (2.4) reads now as

(2.9) ©1(G(zw)) — 012 W) = paoZ’ — paod’ + 0w,z ™),
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We examine the left-hand side of (2.9). Using (2.3) we have

(2.10) ©1(G(z,w))

3 G+ 0 wlew + 067, we, whF
j+k>2
ﬁ+1)'

o1z, w) + 0w,

Therefore from (2.9) and (2.10) we get a = a, that is u(F,z) = u(G, 2).

Let a < co. We assume O(F) < 0 and want to show that ©(G) < 0 (the other
implication will follow reversing the role of F and G). We have already proved
that @ = a and now we are assuming b > a — 1. Seeking for a contradiction
we suppose that b < a — 1. Taking into account (2.6) and (2.8), equation (2.5)
becomes

2.11) P2(G(z, W) — e’pa(z, W) = =G5, Pw + O 2 wP).

We examine the left-hand side of (2.11). Since cpiz’o =0forj<cyand cy > aby
(2.8), using (2.3) we have

3Bz + 0wy

j=0

+ 37 G er 06 bl + 0wl 20, W
J+k>1

(2.12) p2(G(z, w))

©2(z, €9w) + OW?, 2%, wzP™h).

Put (2.12) into (2.11) and noting that e?ps(z, w) — 1 (z, ¢w) does not contain
terms in z"w for any m € N, we reach a contradiction. Therefore b>a—1and
O(G) < 0 as wanted.

Finally suppose a = @ = oo. Then by hypothesis and by (2.8) the maps
G(z,w), F(z,w) and ¢,(z, w) do not contain pure terms in z. Therefore, using (2.6),
equation (2.5) becomes

P2(Glz W) — e pa(z,w) = — 5, W + qpaw + 0wz WP w?),
where, as usual, we set all the terms containing z° or 2 equal to zero if b = oo
or b = co. From this and from (2.12) it follows that b = b. O

Remark 2.6. If F and G are conjugated and in ultra-resonant normal form
(and u(F,z) = (G, z) < 00), u(F,w) might be different from p(G, w), as one can
see in the Example 2.4.

Now we are in the position to define our invariants:

Definition 2.7. Let F € End(C?, 0) and assume O is a quasi-parabolic fixed
point for F. Let F be a (possibly formal) asymptotic ultra-resonant normal form of
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F. We let v(F) := M(F ,2). In case ,u,(F ,z) < oo we call F dynamically separating
if ©(F) < 0.

Remark 2.8. By Lemma 2.5 the previous definition is well posed. Moreover,
if ¥(F) < oo one can find a (convergent) ultra-resonant normal form conjugated
to F after a finite number of transformations of type (2.1) .

Let F € End(C?, 0). The Poincaré-Dulac normal form theorem states that it is
always possible to find a resonant formal normal form for F. Namely there exists
a formal transformation 7 : (z,w) — (z+...,w+...)such that T"' o FoT(z,w) =
(z + Ri(z,w), ¢®w + Ra(z,w)), where R;,R, are series of resonant monomials,
that is R;(z,w) is a combination of terms of type 7", zZ"w*™, while Ry(z,w) is a
combination of terms of type z"'w, "Wt for myn € N, where s € N is such
that €% = 1 (thus s = 0 if ¢ is not a root of unity).

Due to Lemma 2.5 our (formal) asymptotic ultra-resonant form is equiva-
lent to the Poincaré-Dulac normal form for the purpose of calculating u(F,z)
and O(F). However, asymptotic ultra-resonant normal forms reflect better the
dynamics of F, as claimed in Proposition 1.3. Here is its proof.

Proof of Proposition 1.3. If F has a convergent asymptotic ultra-resonant
normal form then F is conjugated to a germ of biholomorphism G = (G, G)
such that G»(z, w) = wA(z, w) for some holomorphic function A(z, w). In particular
w = 0 is invariant by G. For the converse, if there exists an invariant curve
tangent to the eigenspace of 1 we can choose coordinates in such a way that
I'={(z,w) : w=0} and F(z,w) = (z+.. ., ¢®w+wA(z, w)) for some holomorphic
function A(z,w). In particular F has a (convergent) asymptotic ultra-resonant
form. By Lemma 2.5, if F has a convergent asymptotic ultra-resonant normal
form G then w(G,z) = v(F). Thus if v(F) = oo then Gi(z,w) = 7+ wA((z,w)
and {w = 0} is a curve of fixed points for G. If ¥(F) < oo then the classical
one-dimensional Fatou theory gives the result. O

3. Dynamics. In this section we give the proof of Theorem 1.4. The idea
is that starting from an ultra-resonant normal form, if @(F) < 0, it is possible to
blow up O a certain number of times in order to find some simpler expression
for F, where one can apply a modified Hakim’s argument to produce parabolic
curves.

We divide the proof into several steps, which might be of some interest on
their own. N

Recall that if F € End(C?,0) and 7 : C*> — C? is the blow-up (quadratic
transformation) of C? at O, then there exists a holomorphic map F defined near
the exceptional divisor D := 7~1(0) such that m o F = For, F(D) =D and the
action of F on D is given by D > [v] — [dFo(v)] € D (see for instance [1],
[17]). We call such a F the blow-up of F.
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LemMA 3.1. Suppose F is given by (1.1). If

(1) gjo=0forj< u(F,z) and
() gj1=0forj< uF,z)—1,

then one can perform a finite number of blow-ups and changes of coordinates in
such a way that the blow-up map F = (Fy, F,) is given by

Fi(zyw) =z — 220 4+ 071, 7By,
G.1) {

Fr(z,w) = ePw — dwz"O =1 4 O(wz# ), 77 ) —1y,2 v )2y

with Re(\e™ %) < 0.

Proof. Note that by hypothesis F is an ultra-resonant normal form, thus v(F) =
w(F,z). First of all, we can use transformations of type (2.1), for s = v(F), as in
the proof of Proposition 2.3, to dispose of g,(r)0. Note that K does not decrease
the order of vanishing of Fi(z,w) — z and Fa(z,w) — e®w, nor it effects the
ultra-resonant monomials of order < v(F). Now we blow-up the point O in C2.
Recalling that 1/(1+£) = 3"~ (— ¥ for [€] < 1, in coordinates (z = u, w = uv)
we have that the blow-up map F = (Fy, F») is given by

(3.2 Fiuwv) =u+ > pud™f =u+ Y paddf,

Jtk=>2 JHk>2

Fr(u,v) = [ei90+ > q,,ku7+klvk] [1 = > pdA

j+k>2 j+k>2

2
o[ 3 paat +] = e Y gt
j+k>2 j+k>2

J

Thus, setting pjx = 0 for j + k < 2, it follows that p;x = pj k. In particu-
lar ju(F,z) = u(F,u) and PuF,9.0 = Pyyuyo- Moreover, if m; was the order of
vanishing of Fi(z,w) — z (that is pjx = 0 for j + k < my), then the order of
vanishing of Fi(u,v) — u is at least my + 1 if m; < v(F) or it is equal to m
if m; = v(F). Also, the lowest nonzero non ultra-resonant term in Fi, i.e., the
one of type w'z?, a > 1, b > 0, has degree strictly greater than the lowest one
in F 1.

The terms §; 4 in the second component of F are more difficult to write ex-
plicitly. We use the notations H,, and B, , introduced in the proof of Lemma 2.5.
Denote by m; the order of vanishing of F»(z, w) — e’w. Note that, since we as-
sumed that g;p = 0 for j < v(F)+1 and by hypothesis (2), then for every gjx # 0
with j + k < v(F) it follows that & > 2. Thus, using hypothesis (1) and (2)
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we have
Fy(u, v) = [ v+ qV(F)—l,luV(F)_l v+ UZBmz—l,zx(F)—Z +Hymalll
o) v(F)—1
+3 (= D oo 4 pupa o’ + v > piatd + VB 102
=1 f—
+ Hyrya) 1 = [€90 + qury—1.10" P 0+ 0By -1 1) -2111 — oy ou” P!
U(F)—1 0o
+pom o™ =0 D patd — VB, w2 — > U Hom, )] + Hyry
j:ml—l k=2
=0+ Guiry-11 — € pur )’ D 0+ P Hypy 1 + VPHpy 1 + Hyrya.

In particular note that the ultra-resonant terms in F, are vanishing up to order
V(F) — 1. Als0 Gur—1,1 = (qur)—1,1 — €“puiry0) and then

Re(e G- 1.1 /Puiry0) = Re(e ™ quimy—1.1/puiro) — 1.

Finally note that the order of vanishing of F»(u, v) —e?p is at least min{v(F), m;+
1,my + 1}. This time the lowest nonzero non ultra-resonant term in F, might be
of degree strictly smaller than the one in F,. However, its degree is at least
min{v(F)+1,m;+1,my+1}. In particular the map F has properties (1), (2) in the
hypothesis and its lowest nonzero non ultra-resonant term (in both components)
has degree at least min{v(F)+1,m;+1, mp+1}. Moreover Re(e_"gc]l,(p)_l,l/ﬁV(F),O)
is one less than Re(e g,y 1.1/Puir)0)-

Repeating the previous arguments (conjugation with K followed by blow-up)
we will eventually find a map in ultra-resonant normal form given by (1.1) with

(@) g =0 forj+k < v(F),
(i) piy =0 forj+k < v(F),
(i) Re(e™®qur)—1.1/Pur0) < 1.

Note that v(F) is the same as for the starting map. Eventually performing some
more transformations K as in (2.1), with s = v(F), v(F) + 1,v(F) + 2, we can
assume gjo = 0 for j < v(F) + 3.

Let a¥®~! = —p, )0 and let T be the transformation given by Z = az, W =
w. The map F =ToFoT ! satisfies (i), (i) and v(F) = v(F). Moreover,

denoting with “ the coefficients of £, we have p,r o = —1, gjo = 0 for j <
v(F)+3 and §ur)—1,1 = —quF)—1.1/Pu(F)0- In particular property (iii) becomes

Re(e Gyry-1.1) > —1. -
Now we perform a final blow-up of O. Let 7 : C*> — C? be the blow-up and
F' the blow-up map. In the coordinates (z,w) such that the projection m(z, w) =

(z,zw), we have that F = (Fy, F») is given by (3.1), with A = —(€? + §,(r)—1.1). O

Now we prove that form (3.1) is actually useful.
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LEMMA 3.2. Let F € End(C?, 0) be given by (3.1), with v(F) > 2 and A\ € C
such that Re(\e™ %) < 0. Then there exist v(F) — 1 parabolic curves for F at O
tangent to [1 : 0].

Proof. The proof is a modification of that of Theorem 3.1 of [1]. Let r =
v(F)—1.Let Ds, :={C € C:|¢" — 6| < ¢} and let £(6) := {u € Hol(Ds,,C) :
u(¢) = CCu®(Q), ||u°|| s < 0o}. The set £(8) is a Banach space with norm |ul|g(s) =
|U°||so- For u € £(8) we let F*(() = F1(¢,u(()). The classical Fatou theory for
mappings of the form ¢ — ¢"*! + O(¢™*?) implies that there exists &y = 6o(||u°[|00)
such that if 0 < 6 < 6o then F* maps each component of Ds, into itself and
moreover

1

(3.3) |(F")"| = OC 7

).
Suppose we find u € £(6) such that u(F((, u(C)) = F2(¢, u(()) for any ¢ € D,
Thus the map ¢"(¢) := (¢, u(()) restricted to each connected component of Ds ,
is a parabolic curve for F.

For (z,w) € C? let 71 := F1(z,w) and wy := F»>(z, w). Suppose z,z; belong to
the same connected component of Ds . Let p = e~ and define

0"

H(z,w) :=w—e " —wy.
9|

Thus a direct computation shows that

w— ,MZrW + O(WZHI, W2Zr, Zr+3)

Z,u,(l — 7'+ O(ZHI,ZrW))“
w— [W _ MZrW + O(WZr+1,WZZr,Zr+3)][1 + MZV + O(Zr+1,ZrW)]

— 0(Zr+1W, ZrWZ, Zr+3)‘

Tz
Now Fy(z,w) = wy = e’ez—lu(w — H(z,w)) and therefore we are left to solve the

following functional equation:

) 1%
(3.4) w(z1 (¢, u(Q)) = e’%(u(@ — H(C, u(0)).

For (o € Ds,, let ¢, := (F")"(¢p). For u € £(6) let
Tu(Co) == ¢ > e ™ H(Gr u(Cn)).
n=0

If u is such that ||u°]| < co and 6 < So(co), then H((,, u((y)) is defined for any
Co € Ds,. Moreover one can show exactly as in [1] and [10] that the series
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converges normally and Tu € £(6) (essentially because \ema\ =1 and thus all the
estimates for the parabolic case in [1] go through in this case as well).

Now suppose u is a fixed point for 7. Then ¢“ is a parabolic curve for F.
indeed if

u(Co) = Tu(Co) = & > e "™ ¢ H (G u(Ga)),

i
then
() = ¢ f; e M0¢ HH(Cort u(Carn) = €71 i e M0 H (G, u(Ga)
_ %ew <§(; f; G H (G 1(G)) — H(Go, M(Co)))
= %e”(u(co) — H(Co, u(C0))),

solving thus (3.4).

It remains to show that T does have a fixed point. For doing this we only
need to show that T is a contraction on a suitable closed convex subset of £(6).
This can be done arguing exactly as in Theorem 3.1 of [1], for all the estimates
holding in there actually hold in this case, and we are done. O

Now we are in a good shape to prove our main theorem.

Proof of Theorem 1.4 Since having parabolic curves is obviously a property
invariant under changes of coordinates and by Remark 2.8, we can assume F to
be in ultra-resonant normal form. By definition of dynamically separating map,
O(F) < 0 and we can thus apply Lemma 3.1 to F and Lemma 3.2 to its blow-
up F in order to produce v(F) — 1 parabolic curves for F at some point of the
exceptional divisor. These parabolic curves blow down to v(F) — 1 parabolic
curves for F tangent to the eigenspace of 1 and we are done. O

4. Final remarks.

1. Let F € End(C?,0) and suppose O is a quasi-parabolic fixed point for
F. In case ¢ =1 for some s > 2 one can try to apply Hakim and Abate’s theory
to produce parabolic curves for F*. If F is dynamically separating one always
obtains v(F) — 1 parabolic curves for F by Theorem 1.4 and these are obviously
parabolic curves for F* as well. The question is whether these parabolic curves
are the ones predicted by Hakim’s and Abate’s theory for F* (if such a theory
applies). To give an appropriate answer we need some tools from [10] and [1].

For the reader’s convenience we quickly recall them here.
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Let G € End(C?, 0) be such that dGo = id. Let G = id + > -m>2 G be the
homogeneous expansion of G. Then the order of G, which we denote by #G), is
the first m such that G,, # 0. A vector v € C*\ {0} is called a characteristic
direction for G if Gyg)(v) = Av for some A € C. Moreover if A # 0 the vector
v is called a nondegenerate characteristic direction while it is called degenerate
in case A = 0. Hakim’s theory [10] predicts the existence of at least #(G) — 1
parabolic curves tangent to each nondegenerate characteristic direction.

We have the following relations:

PROPOSITION 4.1. Let F € End(C?, O) and assume O is a quasi-parabolic fixed
point for F. Suppose F is given by (1.1) and "% = 1 for some s > 2. Let G := F*
and assume F is dynamically separating. Then:

(1) G #idand t(G) < v(F).

(2) [1:0]isa characteristic direction for G. Moreover [1 : 0] is a nondegen-
erate characteristic direction for G if and only if v(F) = t(G).

(3) Thev(F)—1 parabolic curves tangent to [1 : 0] at O given by Theorem 1.4
for G can be found applying Hakim’s and Abate’s theory to G after a finite number
of blow-ups.

Proof. Since F is dynamically separating then there exist parabolic curves
for F by Theorem 1.4 which are obviously parabolic curves for G. Thus G # id.
It is then clear that v(F) > #(G). To prove the other statements we notice that
everything involved is invariant under conjugation and thus, using transformations
as (2.1) we can assume that g;o = 0 for j < v(F). Therefore for F' = (Fy, F>) we
can write
Fi(z,w) = 2+ pur) 02D + 0@, 2w, w?)
Fa(z,w) = €%w + 0"~ 1w, w?, 7+,

F(Z,W)={

Iterating we find that F* = G = (G, G,) is given by

Gi(z,w)=2+s Y+ O/ 2w, w?
@n  Gw= {G;Ej, R R A
From this it follows that [1 : O] is a characteristic direction for G. Moreover it is
nondegenerate if and only if #G) = v(F) for in that case Gy = (pur)02”F +
wQ'(z, w), wQ" (z,w)) with @', Q" suitable homogeneous polynomials of degree
HG) — 1. .

To prove part (3), we make some preliminary observations. If 7 : C> — C?
is a blow-up at O and F is the blow-up of F, since 7 o FS=Formand 7isa
biholomorphism outside the exceptional divisor then G = F*. Notice that while
v(F) = v(F), in general G) < #(G) (see Lemma 2.1(ii) and (2.1) in [1]). We
may assume that after finitely many blow-ups and changes of coordinates F is
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given by (3.1) with Re(Ae~) < 0. A simple computation shows that G has order
v(F) and G, r)(z, w) = (=572, —se®z/F) =1y Thus [1 : 0] is a nondegenerate
characteristic direction for G, and Hakim’s theory produces (at least) v(F) — 1
parabolic curves for G tangent to [1 : 0]. Now we have to show that such curves
are the same as the ones given by Lemma 3.2. To see this, notice that G is of the
form (3.5) at p. 201 of [1]. The v(F) — 1 parabolic curves for G are then unique
in the class of curves of the form ¢ — ((, u(¢)) with u € £(6) as in Lemma 3.2
(see p. 201-203 in [1]). Since the parabolic curves produced in Lemma 3.2 are
in such a class then they must be the ones given by Hakim’s and Abate’s theory,
and we are done. O

Example 4.2. The map F(z,w) = (z+2°, —w+w> +2°) is dynamically separat-
ing, v(F) =5 and thus it has 4 parabolic curves tangent to [1 : 0] at O by Theo-
rem 1.4. The map G(z, w) = F2(z,w) = (z+22° + O(2%), w — 2w + O™, 77, w?2Y))
has therefore 4 parabolic curves tangent to [1 : 0] at O. Moreover #(G) = 3 and
the vector [1 : 0] is a degenerate characteristic direction for G. However G has
order 5 at [1 : O] and has [1 : 0] as a nondegenerate characteristic direction as a
simple computation shows. Notice that [0 : 1] is a nondegenerate characteristic
direction for G and Hakim’s results give 2 parabolic curves for G tangent to
[0: 1] at O. These are contained into {z = 0} and are exchanged into each other
by F.

Remark 4.3. Let F € End(C2,0), and assume O is a quasi-parabolic fixed
point for F and ¢% = 1 for some s > 2. Suppose F is not dynamically separating.
A calculation similar to the one performed in the proof of Proposition 4.1 shows
that [1 : O] is always a degenerate characteristic direction for F*, providing
F* #id.

2. Let F € End(C?,0) and assume O is a quasi-parabolic fixed point. In
case F is not dynamically separating, there might be no parabolic curves tangent
to the eigenspace of 1. A first simple example is when F*° = id. However note
that in such a case, if p; : C? — C is the projection on the jth component, setting

s—1 s—1
o(z,w) = <Zp1 o F"(z,w), Z e Mmpy o F(z, w))

m=0 m=0

then o o F o o~ '(z, w) = (z, ¢w), thus Fi(z,w) = z, and in particular v(F) = oo.

Less trivial examples of nondynamically separating map without parabolic
curves are provided by the following construction. Let f(u, v) = ( f1(u, v), f>(u, v))
€ End(C?, 0) be given by

4.2)

filu,v) = eu+ (a20u2 +ajuv+ aozvz) + .-
fg(u, U) = e’ev + (b20M2 + bnuv + bogl)z) + -
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with ¢ satisfying the Bryuno condition
" — 1| >em™, meN

for some ¢ > 0 and some large N. Note that the set of points on the circle
satisfying such a condition has full measure. It is a classical result (see, e.g., [3]
and [12]) that such a germ f is linearizable, and in particular there cannot exist
parabolic curves for f. Now suppose that ap; = 0 in (4.2). Blow up the point O
in C? and consider the blow up map F of f at the point [0 : 1] of the exceptional
divisor. If the projection 7 : C> — C? is given by (i, v) = 7(z, w) = (zw, w) then
F = (F1,F,) is given by

l+e=Ow[bpy+-]

FI(Z W) =z+ e—t’%,m
4.3 ’ ,
@ Fa(z,w) = 9w + wlboaw + (b11zw + bozw? + - - -1.

Then [0 : 1] is a quasi-parabolic point for F but there cannot exist parabolic
curves tangent to the eigenspace of 1 for otherwise these would be parabolic
curves for f at O. Note that even in this case v(F) = oc.

We have to say that at the present we do not have any example of a nondy-
namically separating mapping F' with v(F) < oo and without parabolic curves,
even if we believe such a map should exist.

We conclude this work by mentioning a simple family of nondynamically
separating maps for which nothing is known, but the understanding of which
might unlock the general theory. Let F, = (F 4, F2,) be given by

F1a(z,w) =7+ 23 + anw?
4.4) Fu(z,w) = {Fz,a(z, w) = ey + 2w + 23,
with @ € C. If a = 0, then {z = 0} is invariant by F. Moreover, once fixed
w € C, by the classical Leau-Fatou theory there exist two petals Py, P, C C for
7+ Fio(z,w) at z=0. Then the two open sets D; = P; x C, j = 1,2 are invariant
by Fy. However we do not know whether there exist parabolic curves contained
in Dy or D;,.

If a #0 and ¢ is not a root of unity we do not even know whether there
exists P € C? such that F(P) # O for any n but FJ}(P) — O as n — <.

Notice that in case e® = 1 for some s > 2 then Theorem 1.2 provides some
parabolic curves for F*. A direct computation shows that these curves are not
tangent to [1 : 0]. In fact the known techniques for the parabolic case are not
applicable to F* along the direction [1 : 0], not even after blow-ups.
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