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Abstract. We characterize infinitesimal generators of semigroups of holomorphic self-
maps of strongly convex domains using the pluricomplex Green function and the pluri-
complex Poisson kernel. Moreover, we study boundary regular fixed points of semigroups.
Among other things, we characterize boundary regular fixed points both in terms of the
boundary behavior of infinitesimal generators and in terms of pluripotential theory.
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Introduction

A (continuous) semigroup (Φt) of holomorphic functions in a domain D ⊂ Cn is a
continuous homomorphism from the additive semigroup of non-negative real numbers into
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the composition semigroup of all holomorphic self-maps of D endowed with the compact-
open topology. Namely, the map [0,+∞) 3 t 7→ (Φt) ∈ Hol(D,D) satisfies the following
conditions:
(1) Φ0 is the identity map idD in D,
(2) Φt+s = Φt ◦ Φs, for all t, s ≥ 0,
(3) Φt tends to idD as t tends to 0 uniformly on compacta of D.
It is well known after the basic work of Berkson and Porta [5] in the unit disc D =

{ζ ∈ C : |ζ| < 1} that the dependence of every semigroup (Φt) of holomorphic self-maps
of a domain D ⊂ Cn on the variable t is analytic and to each continuous semigroup (Φt)
there corresponds a holomorphic vector field F : D → Cn such that ∂Φt

∂t
= F ◦ Φt. This

vector field F is called the infinitesimal generator of the semigroup (Φt). Conversely, if a
holomorphic vector field F : D→ Cn is semicomplete, namely for all z ∈ D its local flow
γz(t) such that γz(0) = z is well defined for all t ≥ 0, then F is the infinitesimal generator
of a semigroup of holomorphic self-maps of D. We refer to [1, Section 2.5.3] and [28] for
more details. Be aware that in the literature there is not a standard sign convention for
the Cauchy problem generating F , namely, sometimes the problem ∂Φt

∂t
= −F ◦ Φt is

considered and thus all formulas regarding F have reverse inequalities with respect to our
formulas. For instance, regarding the bibliography of the present paper, such a convention
is adopted in [3], [4], [17], [18], [19], [27], [28] and [30].
It is clear that the analytical properties of an infinitesimal generator are strictly related

to the dynamical and geometrical properties of its semigroup. For instance, any zero of F
in D corresponds to a common fixed point for (Φt).
Therefore one of the main questions in the theory of semigroups of holomorphic func-

tions is that of characterizing (in the most useful way) those holomorphic vector fields
which are infinitesimal generators. For D = D, the unit disc of C, there is a very nice
representation formula, due to Berkson and Porta [5] (see also [1] and [30]). Namely:

Theorem 0.1 (Berkson-Porta). A holomorphic function G : D→ C is the infinitesimal
generator of a semigroup (Φt) in D if and only if there exists a point b ∈ D and a
holomorphic function p : D→ C with Re p ≥ 0 such that

G(z) = (z − b)(bz − 1)p(z), z ∈ D.
If the semigroup is not an elliptic group (that is, some/all iterates Φt for t > 0 are elliptic

automorphisms), the point b given in Berkson-Porta’s formula is exactly the Denjoy-Wolff
point of the semigroup (Φt). Namely, limt→∞Φt(z) = b for all z ∈ D (see also Section
two). Other alternative descriptions of infinitesimal generators in D can be found in [30,
Section 3.6].
In several variables there are various characterizations of infinitesimal generators (see

[28] for a good account). All these characterizations reflect the basic fact that holomorphic
self-maps of a domain are contractions for the Kobayashi metric of such a domain. In
fact, Abate [2] proved that if D is a strongly convex domain with smooth boundary and
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with Kobayashi metric kD, then a holomorphic vector field F : D→ Cn is an infinitesimal
generator if and only if d(kD◦F )(z)·F (z) ≤ 0 for all z ∈ D. Unfortunately, even for the case
D = Bn, the unit ball of Cn, such a formula is rather complicated and does not give any
information on the dynamical properties of the associated semigroup. Later on, still in this
optic, C. de Fabritiis gave a better description of a class of infinitesimal generators called
“of one-dimensional type” (see [15]). Some rather precise characterizations of infinitesimal
generators in the unit ball of infinite dimensional Hilbert spaces are given by D. Aharonov,
M. Elin, S. Reich, and D. Shoikhet in [3], [19] and [27].
Part of the present paper is devoted to find characterizations of infinitesimal generators

in bounded strongly convex domains with smooth boundary (here and in the rest of
the paper “smooth” means at least of class C3) by means of the pluricomplex Green
function GD of Klimek [21], Lempert [24] and Demailly [16] and the pluricomplex Poisson
kernel uD,p introduced by Patrizio and the first named author in [12] (see Section one for
definitions and preliminaries about pluripotential theory in strongly convex domains). In
particular, we prove (see Theorems 3.5 and 3.11):

Theorem 0.2. Let F : D → Cn be a holomorphic vector field. The following are equiva-
lent:

(1) The map F is an infinitesimal generator of a semigroup of holomorphic self-maps
of D.

(2) For all z, w ∈ D, z 6= w, it holds d(kD)|(z,w) · (F (z), F (w)) ≤ 0.
(3) For all z, w ∈ D, z 6= w, it holds d(GD)(z,w) · (F (z), F (w)) ≤ 0.
(4) For all z, w ∈ D and for all r > 0 such that z − rF (z), w − rF (w) ∈ D it holds

kD(z − rF (z), w − rF (w)) ≥ kD(z, w).

Moreover, if F is C1-regular at a point p ∈ ∂D, then F is an infinitesimal generator whose
associated semigroup has Denjoy-Wolff point at p ∈ ∂D if and only if d(uD,p)z · F (z) ≤ 0
for all z ∈ D.

In case D = Bn is the unit ball of Cn (or more generally for the unit ball of complex
Hilbert spaces), equivalence between (1) and (4) (and also with an explicit expression
of (3), see Remark 3.7) was proven with different methods by Reich and Shoikhet [27,
Theorem 2.1]. The last statement can be seen as a Berkson-Porta like formula at the
boundary. Moreover, this last formula is just a particular case of a general one for the
existence of boundary regular fixed points. We recall that a point p ∈ ∂D is a boundary
regular fixed point–BRFP for short–for a semigroup (Φt) if it is a fixed point for non-
tangential limits for all Φt’s and if the boundary dilatation coefficients at p of the Φt’s are
all finite (roughly speaking, the boundary dilatation coefficient of a self-map f of D at p
is a measure of the velocity f approaches p when moving to p; see Section two for details
and precise definitions).
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The second part of this paper is devoted to characterize BRFPs of semigroups in terms
of the pluricomplex Poisson kernel uD,p and the local behavior of the infinitesimal gener-
ator. In this direction, we cite the following result from [19] (see also [17], [4])

Theorem 0.3 (Elin-Shoikhet). Let F : Bn → Cn be the infinitesimal generator of a
semigroup (Φt) in Bn and p ∈ ∂Bn. Assume that lim(0,1)3r→1 F (rp) = 0. The following are
equivalent:
(1) lim inf(0,1)3r→1 Re hF (rp), pi/(r − 1) < +∞.
(2) lim(0,1)3r→1hF (rp), pi/(r − 1) = β exists finitely.
(3) The point p is a BRFP for the semigroup (Φt).

Moreover, if one of the three conditions holds, then β ∈ R and the boundary dilatation
coefficient of Φt at p is etβ.

The hypothesis in Theorem 0.3 that the infinitesimal generator F has radial limit 0 at
p, being essential in the proof of their result, is however not necessary for a point p to be
a BRFP (see Example 4.2). Moreover, and surprisingly enough, Theorem 0.3 would be
false without such an hypothesis (see Example 4.3 where it is constructed an infinitesimal
generator for which (1) holds at some p ∈ ∂B2 but p is not a BRFP for the associated
semigroup). In fact, it turns out that a point p ∈ ∂Bn is a BRFP for the semigroup if
and only if a condition similar to (1) holds not just for the radial direction but for all the
directions. To be more precise and in order to state the result for general strongly convex
domains, we need to use the so called Lempert projection devices. For the time being, we
can say that a Lempert projection device (ϕ, eρϕ) is given by a particular holomorphic map
ϕ : D→ D (called complex geodesic) which extends smoothly on ∂D and a holomorphic
map eρϕ : D → D such that eρϕ ◦ ϕ = idD (actually a Lempert projection device is a triple
of maps, we refer the reader to Section one for details). For the unit ball Bn a Lempert
projection device (ϕ, eρϕ) is nothing but a (suitable) parametrization ϕ : D → Bn of the
intersection of Bn with an affine complex line and eρϕ is the orthogonal projection on it
(see also Section six where the case of Bn is studied in detail). Our second main result is
the following:

Theorem 0.4. Let D ⊂ Cn be a bounded strongly convex domain with smooth boundary,
let F be the infinitesimal generator of a semigroup (Φt) of holomorphic self-maps of D
and p ∈ ∂D. The following are equivalent:
(1) The semigroup (Φt) has a BRFP at p with boundary dilatation coefficients αt(p) ≤

eβt for all t ≥ 0.
(2) There exists β ∈ R such that d(uD,p)z · F (z) + βuD,p(z) ≤ 0 for all z ∈ D.
(3) There exists C > 0 such that for any Lempert’s projection device (ϕ, eρv) with

ϕ(1) = p it follows

lim sup
(0,1)3r→1

|d(eρϕ)ϕ(r) · F (ϕ(r))|
1− r

≤ C.
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Moreover, if p is a BRFP for (Φt) with boundary dilatation coefficients αt(p) = e−bt then

b = inf
z∈D

d(uD,p)z · F (z)
ud,p(z)

,

and the non-tangential limit

A(ϕ, p) := ∠ lim
ζ→1

d(eρϕ)ϕ(ζ) · F (ϕ(ζ))
ζ − 1

exists finitely, A(ϕ, p) ∈ R and A(ϕ, p) ≤ b. Also, b = supA(ϕ, p), with the supremum
taken as ϕ varies among all Lempert’s projection devices (ϕ, eρv) with ϕ(1) = p.

This result is contained in Theorem 3.8 and Theorem 4.7. One of the main ingredients
in the proof is the remarkable property that the projection of an infinitesimal generator
on every complex geodesic is still an infinitesimal generator.
In order to give the proof of the previous results, in the first section we revise pluripo-

tential theory in strongly convex domains and in the second section we study iteration
using the pluricomplex Green function and the pluricomplex Poisson kernel. We should
say that, even if part of the results in section two are already known, our present formula-
tion seems to be new and, as we will prove later, quite effective. Section three is devoted to
the interactions between pluripotential theory and semigroups. In section four we discuss
a couple of examples on the boundary behavior of semigroups and complete the proof
of our characterization of BRFPs in terms of the boundary behavior of the infinitesimal
generator. As a consequence, in Corollary 4.8 we discuss stationary points of semigroups
(namely those BRFPs for which the boundary dilatation coefficient is less than or equal to
1). In section five we consider the non-linear resolvent of Reich and Shoikhet, proving that
every BRFP of the non-linear resolvent is a BRFP for the semigroup (see Proposition 5.2).
Finally, in section six we translate our results into the ball Bn where some more explicit
formulations, using automorphisms, are possible. In this case, we also discuss the bound-
ary behavior of the infinitesimal generator at a BRFP under some boundness conditions
(see Corollary 6.2).

Part of this work was done in Seville where the first named author spent the en-
tire month of March 2006. He wants to sincerely thank the people at Departamento de
Matemática Aplicada II at Escuela Superior de Ingenieros in Universidad de Sevilla for
the gentle atmosphere and friendship he experienced there.

1. Preliminary results on pluripotential theory in strongly convex
domains

For the definition, properties and further results about strongly convex domains, we
refer the reader to the nice monograph by Abate [1, Part 2]. Likewise, for an introduction
to pluripotential theory with a special emphasis on complex Monge-Ampère operators,
we recommend the beautiful book by Klimek [22] (a short introduction is also contained
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in [9]). Anyhow, for the sake of clearness, we are going to give some basic definitions and
define the tools we need later on.

1.1. The pluricomplex Green function. Let D ⊂⊂ Cn be a domain and z ∈ D.
Define

KD,z = {u plurisubharmonic in D : u < 0, u(w)− log kz − wk ≤ O(1) as w→ z}.
The Klimek [21] pluricomplex Green function is defined as

GD(z, w) := sup
u∈KD,z

u(w).

Such a function is plurisubharmonic inD, locally bounded inD\{z} and has a logarithmic
pole at z (see [21] and [22]). If D is hyperconvex (in particular, if D is a convex domain),
then Demailly [16] showed that GD, extended to be 0 on D × ∂D, is continuous as a
function GD : D×D→ [−∞, 0). Moreover, from the work of Lempert [24] and Demailly
[16], it turns out that GD(z, w) is the unique solution of the following homogeneous
Monge-Ampère equation:

u plurisubharmonic in D

(∂∂u)n = 0 in D \ {z}
limw→x u(w) = 0 for all x ∈ ∂D

u(w)− log |w − z| = O(1) as w→ z.

By the very definition, if h : D→ D0 is holomorphic, then for all z, w ∈ D

(1.1) GD0(h(z), h(w)) ≤ GD(z, w).

In case D is a bounded strongly convex domain with smooth boundary (here and in the
rest of the paper “smooth” means at least of class C3) Lempert [24] proved that GD(z, w)
is smooth and regular for (z, w) ∈ D ×D \ Diag(D ×D) and that

(1.2) GD(z, w) = log tanh kD(z, w),

where kD(z, w) is the Kobayashi distance of D (for definition and properties we refer to
[1] or to [23]).
For instance, for D = D the unit disc in C, the pluricomplex Green function coincides

with the usual (negative) Green function, while for D = Bn the unit ball of Cn we have

(1.3) GBn(z, w) = log kTz(w)k,
where Tz : Bn → Bn is any automorphism of Bn with the property that Tz(z) = 0.
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1.2. The pluricomplex Poisson kernel. Let D ⊂⊂ Cn be a strongly convex domain
with smooth boundary, z0 ∈ D and let p ∈ ∂D. In the paper [12], Patrizio and the
first quoted author introduced a plurisubharmonic function uD,p : D → (−∞, 0) which
extends smoothly on D \ {p} such that d(uD,p)z 6= 0 for all z ∈ D, uD,p(q) = 0 for all
q ∈ ∂D \ {p} and uD,p has a simple pole at p along non-tangential directions. Up to a
real positive multiple, we assume here that uD,p(z0) = −1. The function uD,p solves the
following homogeneous Monge-Ampère equation:

u plurisubharmonic in D

(∂∂u)n = 0 in D

u < 0 in D

u(w) = 0 for all w ∈ ∂D \ {p}
u(w) ≈ kw − pk−1 as w→ p non-tangentially.

In the papers [12] and [13], the authors prove that uD,p shares many properties with the
classical Poisson kernel for the unit disk. In case D = D the unit disc in C, the function
uD,p (normalized so that uD,p(0) = −1) is in fact the classical (negative) Poisson kernel.
In case D = Bn, the pluricomplex Poisson kernel (normalized so that uBn,p(0) = −1) is
given by

uBn,p(z) = − 1− kzk2
|hp− z, pi|2 .

The level sets of uD,p are exactly boundaries of Abate’s horospheres. Recall that a
horosphere ED(p,R) of center p ∈ ∂D and radius R > 0 (with respect to z0) is given by

ED(p,R) = {z ∈ D : lim
w→p

[kD(z, w)− kD(z0, w)] <
1

2
logR}.

Notice that the existence of the limit in the definition of ED(p,R) is a characteristic
of smooth strongly convex domains and follows again from Lempert’s theory (see [1,
Theorem 2.6.47]). Thanks to our normalization uD,p(z0) = −1, it follows that
(1.4) ED(p,R) = {z ∈ D : uD,p(z) < −1/R}.
For the unit disk, these level sets are boundaries of horocycles and, in case D = Bn,

these are boundaries of horospheres in Bn with center p, whose explicit expression is

EBn(p,R) = {z ∈ Bn : |1− hz, pi|
2

1− kzk2 < R}.

More information about the properties of uD,p (such as smooth dependence on p, ex-
tremality, uniqueness, relations with the pluricomplex Green function, usage in represen-
tation formulas for pluriharmonic functions) can be found in [13].
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1.3. Lempert’s projection devices. We recall that a complex geodesic ϕ : D → D is
a holomorphic isometry between kD (the hyperbolic distance in D) and kD. By Lempert’s
work (see [24] and [1]) given two points z0 ∈ D and z ∈ D, there exists a unique complex
geodesic ϕ : D → D such that ϕ extends smoothly past the boundary, ϕ(0) = z0 and
ϕ(t) = z, with t ∈ (0, 1) if z ∈ D and t = 1 if z ∈ ∂D. Moreover, for any such a
complex geodesic there exists a holomorphic retraction ρϕ : D→ ϕ(D), i.e. there exists a
holomorphic map ρϕ : D→ D such that ρϕ ◦ ρϕ = ρϕ and ρϕ(z) = z for any z ∈ ϕ(D).
Given a complex geodesic, there might exist many holomorphic retractions to such

geodesic, but the one constructed by Lempert turns out to be the only one with affine
fibers (see [13, Section 3]). We call such a ρϕ the Lempert projection associated to ϕ.
Furthermore, we let eρϕ := ϕ−1 ◦ ρϕ : D → D and call it the left inverse of ϕ, foreρϕ ◦ ϕ = idD. The triple (ϕ, ρϕ, eρϕ) is the so-called Lempert projection device.
For D = Bn the unit ball of Cn the image of the complex geodesic through the points

z 6= w ∈ Bn is just the one dimensional slice Sz,w := Bn ∩ {z + ζ(z − w) : ζ ∈ C}. The
Lempert projection is thus given by the orthogonal projection of Bn onto Sz,w.
By Lempert’s very definition, if ϕ : D→ D is a complex geodesic, then

(1.5) GD(ϕ(ζ), ϕ(η)) = GD(ζ, η)

for all ζ, η ∈ D.
Finally, we mention [12, p. 516] that for any given Lempert projection device (ϕ, ρϕ, eρϕ)

in D with ϕ(1) = p there exists aϕ > 0 such that for all ζ ∈ D
(1.6) uD,p(ϕ(ζ)) = aϕuD,1(ζ).

2. Iteration theory by means of pluripotential theory

Both the pluricomplex Green function and the pluricomplex Poisson kernel can be used
to describe dynamical properties of holomorphic self-maps of a bounded strongly convex
domain with smooth boundary. The aim of this section is exactly to formulate the results
we need later on in terms of pluripotential theory.
All the results presented in this section are strongly based on some known results

about iteration (mainly due to Abate, see [1]). However, for the aim of completeness, we
sometimes provide a sketch of some new direct proofs.
As a matter of notation, for a map h : D → D we denote by Fix(h) the set of its fixed

points in D, namely
Fix(h) := {z ∈ D : h(z) = z}.

To begin with, we can reformulate a Schwarz-type lemma for strongly convex domains
as follows:

Theorem 2.1. Let D ⊂⊂ Cn be a strongly convex domain with smooth boundary and let
z0 ∈ D. Let h : D→ D be holomorphic. Then h(z0) = z0 if and only if for all z ∈ D

(2.1) GD(z0, h(z)) ≤ GD(z0, z).
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Moreover, if equality holds in (2.1) for some z 6= z0 and ϕ : D→ D is the complex geodesic
such that ϕ(0) = z0 and ϕ(t) = z for some t ∈ (0, 1), it follows that h ◦ ϕ : D → D is a
complex geodesic and h : ϕ(D)→ h(ϕ(D)) is an automorphism.

Proof. The necessity and sufficiency of (2.1) follows directly from the very definition of
GD and (1.1).
In order to prove the last statement, assume that GD(z0, h(z)) = GD(z0, z) for some

z ∈ D, z 6= z0. Let (ϕ, ρϕ, eρϕ) be the Lempert projective device such that ϕ(0) = z0 and
ϕ(t) = z for some t ∈ (0, 1) and let (ψ, ρψ, eρψ) be the Lempert projective device such
that ψ(0) = z0 and ψ(r) = h(z) for some r ∈ (0, 1). Let h̃(ζ) := eρψ(h(ϕ(ζ))) for ζ ∈ D.
Notice that h̃(0) = 0. Then, H(ζ) := GD(0, h̃(ζ))−GD(0, ζ) ≤ 0. Moreover, the function
D 3 ζ 7→ H(ζ) is harmonic on D \ {0, h̃−1(0)} and bounded from above, thus can be
extended in a subharmonic way to all of D. We still call H such an extension. For all
ζ ∈ D, and by (1.5), it follows that

GD(0, h̃(t)) = GD(ψ(0), ψ(h̃(t))) = GD(z0, h(z)) = GD(z0, z) = GD(0, t).

By the maximum principle then H(ζ) ≡ 0 and h̃(ζ) = eiθζ for some θ ∈ R, proving the
statement. ¤

Definition 2.2. Let D ⊂⊂ Cn be a strongly convex domain with smooth boundary,
p ∈ ∂D, and h : D→ D holomorphic. The boundary dilatation coefficient αh(p) ∈ (0,+∞]
is defined as

αh(p) = inf
q∈∂D

{sup
z∈D

uD,p(z)

uD,q(h(z))
}.

As we show, this number can be characterized in several ways. Some of them are widely
used in the literature (see [1] and [8]). Indeed we have:

Proposition 2.3. Let D ⊂⊂ Cn be a strongly convex domain with smooth boundary,
p ∈ ∂D and h : D→ D holomorphic. Then, the following are equivalent:

(1) The boundary dilatation coefficient αh(p) < +∞.
(2) There exist a (necessarily unique) point q ∈ ∂D and a number λ > 0 such that

(2.2) h(ED(p,R)) ⊆ ED(q, λR), for all R > 0.

(3) It holds

(2.3)
1

2
log βh(p) := lim inf

z→p
[kD(z, z0)− kD(h(z), z0)] < +∞.

Moreover, if one of the statements holds, then

(2.4) βh(p) = αh(p) = inf{λ > 0 : λ satisfies(2.2)}.
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Proof. By the very definition (1) is equivalent to the existence of q ∈ ∂D such that
uD,q(h(z)) ≤ 1

αh(p)
uD,p(z) for all z ∈ D. By (1.4), (1) and (2) are equivalent and αh(p) =

inf{λ > 0 : λ satisfies(2.2)}.
If (3) holds then (2) follows from Abate’s version of the Julia lemma for strongly

convex domains (see [1, Theorem 2.4.16]); also by the same token, βh(p) ≥ inf{λ > 0 :
λ satisfies(2.2)}.
Finally, if (2) holds, let ϕ : D → D be the complex geodesic such that ϕ(0) = z0 and

ϕ(1) = p and let eρϕ : D → D be its left-inverse. Let h̃ := eρϕ ◦ h ◦ ϕ : D → D. Since ϕ
is an isometry between the Poincaré distance of D and the Kobayashi distance of D and
kD(eρϕ(z), eρϕ(w)) ≤ kD(z, w) for all z, w ∈ D, then it is easy to check that for all R > 0 it
holds h̃(ED(1, R)) ⊆ ED(1, λR). Therefore the classical Julia-Wolff-Carathéodory theorem
implies that βh̃(1) <∞ and actually βh̃(1) ≤ λ. Now,

1

2
log βh(p) = lim inf

w→p
[kD(w,ϕ(0))− kD(h(w), ϕ(0))]

≤ lim inf
ζ→1

[kD(ϕ(ζ), ϕ(0))− kD(h(ϕ(ζ)), ϕ(0))]

≤ lim inf
ζ→1

[kD(ζ, 0)− kD(eρϕ(h(ϕ(ζ))), 0)] = 1

2
log βh̃(1),

(2.5)

which proves that βh(p) < +∞ and actually βh(p) ≤ inf{λ > 0 : λ satisfies (2.2)}, ending
the proof of the proposition. ¤

It is worth mentioning that by our very definition αh(p) does not depend on z0, while
a priori the liminf in (2.3) does. However, the independence of such liminf from z0 can be
also shown directly, see [8, Lemma 6.1].
We have the following version of Julia’s lemma for strongly convex domains:

Theorem 2.4. Let D ⊂⊂ Cn be a strongly convex domain with smooth boundary, p ∈ ∂D
and h : D → D holomorphic. If the boundary dilatation coefficient αh(p) < +∞, then
there exists a unique point q ∈ ∂D such that h has non-tangential limit q at p and, for all
z ∈ D,

(2.6) uD,q(h(z)) ≤ 1

αh(p)
uD,p(z).

Moreover, if equality holds in (2.6) for some z ∈ D and ϕ : D→ D is the complex geodesic
such that ϕ(1) = p and ϕ(0) = z, it follows that h ◦ ϕ : D→ D is a complex geodesic and
h : ϕ(D)→ h(ϕ(D)) is an automorphism.

Proof. By the very definition, if αh(p) < +∞ then there exists at least one q ∈ ∂D and a
constant C > 0 such that

(2.7) uD,q(h(z)) ≤ CuD,p(z),
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for all z ∈ D. Since uD,p has a simple pole as z → p along non-tangential directions, the
above inequality (2.7) implies that h has non-tangential limit q at p. In particular, this
implies that there exists at most one q ∈ ∂D such that supz∈D

uD,p(z)

uD,q(h(z))
< +∞. Therefore,

(2.6) holds.
In order to prove the last statement, assume that uD,q(h(z)) =

1
αh(p)

uD,p(z) for some
z ∈ D. Let (ϕ, ρϕ, eρϕ) be the Lempert projective device such that ϕ(1) = p and ϕ(0) = z
and let (ψ, ρψ, eρψ) be the Lempert projective device such that ψ(1) = q and ψ(0) = h(z).
Write h̃(ζ) := eρψ(h(ϕ(ζ))) for ζ ∈ D. By (1.6) and (2.6) it follows that H(ζ) := uD,1(ζ)−
λuD,1(h̃(ζ)) ≤ 0 for ζ ∈ D and λ := αh(p)aψ/aϕ. The function H is harmonic in D and,
by construction,

H(0) = uD,1(0)− λuD,1(h̃(0)) =
1

aϕ
uD,p(z)− λ

aψ
uD,q(h(z)) = 0.

Thus the maximum principle implies that H(ζ) ≡ 0, which in turns implies that λ = 1
and h̃ is the identity on D and the statement follows. ¤
Let D ⊂ Cn be a bounded strongly convex domain with smooth boundary, let z0 ∈ D

and let p ∈ ∂D. Following Abate ([1]) we denote by K(p,R) the K-region with vertex p
and radius R > 1 defined as

K(p,R) = {z ∈ D : lim
w→p

[kD(z, w)− kD(z0, w)] + kD(z, z0) < logR}.
If Q : D → Cn is a function, we write K− limz→pQ(z) = L if for any sequence {zk} ⊂ D
which tends to p and belongs eventually to a K-region K(p,R) for some R > 1, it follows
limk→∞Q(zk) = L. Notice that if Q has K−limit L at p then in particular it has non-
tangential limit L at p.

Remark 2.5. If αh(p) < +∞ and q ∈ ∂D is the point given by Theorem 2.4 then actually
h has K−limit q at p. This follows from Abate’s version of the classical Julia-Wolff-
Carathéodory theorem, but also from (2.6), since actually uD,p(z) → −∞ when z → p
inside a K-region (see [13, section 5]).

The reason of the importance of boundary dilatation coefficients in iteration theory is
that, while they give a global picture of the dynamics of a self-map of D, they can be
easily computed as radial limits along any complex geodesic. We are going to state this
fact in a particular case which we need later. Before that we give the following

Definition 2.6. Let D ⊂ Cn be a strongly convex domain with smooth boundary. Let
h : D → D be holomorphic. We say that a point p ∈ ∂D is a boundary regular fixed
point, BRFP for short, if h has non-tangential limit p at p and the boundary dilatation
coefficient αh(p) < +∞. A BRFP with boundary dilatation coefficient ≤ 1 is also called a
stationary point. Likewise, those boundary regular fixed points with αh(p) > 1 are usually
called boundary repelling fixed points.
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Now we can state the following version of Julia-Wolff-Carathéodory theorem, due es-
sentially to Abate:

Theorem 2.7. Let D ⊂⊂ Cn be a strongly convex domain with smooth boundary. Let
h : D → D be holomorphic and let p ∈ ∂D. Then p is a BRFP for h if and only if for
some–and hence any–Lempert projective device (ϕ, ρϕ, eρϕ) such that ϕ(1) = p it follows

(2.8) lim inf
(0,1)3r→1

|1− eρϕ(h(ϕ(r)))|
1− r

< +∞.

Moreover, if p is a BRFP for h then

(2.9) lim
r→1

1− eρϕ(h(γ(r)))
1− eρϕ(γ(r)) = αh(p)

for any curve γ : [0, 1) → D such that limr→1 γ(r) = p, the curve in D given by r 7→eρϕ(γ(r)) converges non-tangentially to 1 and limr→1 kD(γ(r), ρϕ(γ(r))) = 0. In particular
the map eρϕ ◦ h ◦ ϕ : D→ D has BRFP at 1 with boundary dilatation coefficient αh(p).

Proof. If p is a BRFP for h then the result follows from [1, Theorem 2.7.14].
Conversely, assume (2.8) holds. Then

lim inf
ζ→1

1− |eρϕ(h(ϕ(ζ)))|
1− |ζ| < lim inf

(0,1)3r→1
|1− eρϕ(h(ϕ(r)))|

1− r
< +∞.

Thus the classical Julia-Wolff-Carathéodory theorem (see, e.g., [1]) implies that 1 is a
BRFP for ζ 7→ eρϕ(h(ϕ(ζ))) with boundary dilatation coefficient a < +∞. Now, by (2.3),
taking into account that kD(eρϕ(z), eρϕ(w)) ≤ kD(z, w) and arguing as in (2.5) we find
that 1

2
logαh(p) ≤ 1

2
log a, namely αh(p) < +∞. Theorem 2.4 implies that h has non-

tangential limit q at p for some q ∈ ∂D. In order to end the proof we need to show that
q = p. To this aim, we first notice that limr→1 eρϕ(h(ϕ(r))) = 1 forces h(ϕ(r)) to tend
to p as r → 1 because eρϕ(D \ {ϕ(D)}) ⊂ D by [25, Proposition 1 p. 345]. But ϕ(D) is
transverse to ∂D by Hopf’s lemma and therefore ϕ(r)→ p non-tangentially. This implies
that ∠ limz→p h(z) = p and we are done. ¤
In case a holomorphic self-map of D has no fixed points in D, there always exists a

particular stationary point (see [1, Theorem 2.4.23]):

Theorem 2.8 (Abate). Let D ⊂⊂ Cn be a strongly convex domain with smooth boundary.
Let h : D → D be holomorphic. If Fix(h) = ∅ then there exists a unique point p ∈ ∂D,
called the Denjoy-Wolff point of h, such that p is a stationary point for h and the sequence
of iterates {h◦m} converges uniformly on compacta to the constant map D 3 z 7→ p.

Stationary points are quite special, as the following proposition shows:

Proposition 2.9. Let D ⊂⊂ Cn be a strongly convex domain with smooth boundary. Let
h : D→ D be holomorphic. Assume that p ∈ ∂D is a stationary point.
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(1) If Fix(h) 6= ∅ then there exists a complex geodesic ϕ : D → D such that ϕ(1) = p
and ϕ(D) ⊆ Fix(h). Moreover, for all θ ∈ R, the point ϕ(eiθ) ∈ ∂D is a stationary
point for h and αh(ϕ(e

iθ)) = 1.
(2) If Fix(h) = ∅ then p is the Denjoy-Wolff point of h and h has no other stationary

point in ∂D.

Proof. (1) Assume z ∈ Fix(h). Let ϕ : D→ D be the complex geodesic such that ϕ(0) = z
and ϕ(1) = p. Consider the holomorphic self-map of the unit disc ψ(ζ) := eρϕ ◦ h ◦ ϕ(ζ).
Then ψ(0) = 0 and by Theorem 2.7, ψ has a stationary point at 1. But then by the Herzig
theorem [20] (see also the classical Wolff Lemma in [1]) it follows that ψ(ζ) ≡ ζ. Thus for
any ζ, ξ ∈ D

kD(ϕ(ζ), ϕ(ξ)) ≥ kD(h(ϕ(ζ)), h(ϕ(ξ))) ≥ kD(ρϕ(h(ϕ(ζ))), ρϕ(h(ϕ(ξ))))

= kD(ϕ(ψ(ζ)), ϕ(ψ(ξ))) = kD(ϕ(ζ), ϕ(ξ)) = kD(ζ, ξ),

forcing equality at all the steps. In particular h ◦ ϕ : D → D is a complex geodesic
such that h(ϕ(0)) = z and h(ϕ(1)) = p. By the uniqueness of complex geodesics passing
through two given points of D it follows that h ◦ ϕ = ϕ. Hence ϕ(D) ⊂ Fix(h).
Assertion (2) follows similarly. Indeed, let q ∈ ∂D be the Denjoy-Wolff point of h. If

q 6= p then consider the complex geodesic ϕ : D→ D such that ϕ(−1) = q and ϕ(1) = p
and let ψ(ζ) := eρϕ◦h◦ϕ(ζ). As before Theorem 2.7 implies that ψ has stationary points at
−1 and +1. Now the classical Wolff Lemma (see, e.g., [1]) implies that ψ(ζ) ≡ ζ. Then we
can proceed exactly as before, obtaining that h(ϕ(ζ)) = ϕ(ζ) for all ζ ∈ D, contradicting
the hypothesis. ¤

3. Pluripotential theory and semigroups

The aim of this section is to use the pluricomplex Green function and the pluricomplex
Poisson kernel to characterize infinitesimal generators of semigroups of holomorphic self-
maps of a strongly convex domain and their dynamical properties.
We start recalling the following result (see [4] for D = Bn and [1, Theorem 2.5.24], [10,

Theorem A.1] for the general case)

Theorem 3.1. Let D ⊂ Cn be a bounded strongly convex domain with smooth boundary.
Let (Φt) be a one-parameter semigroup of holomorphic self-maps of D. Then

• either Tt≥0 Fix(Φt) 6= ∅,
• or Fix(Φt) = ∅ for all t > 0, there exists a unique τ ∈ ∂D such that τ is the Denjoy-
Wolff point of Φt for all t > 0 and there exists β ≤ 0 such that αΦt(τ) = eβt.

If a semigroup (Φt) has no fixed points in D, we call the point τ ∈ ∂D given by
Theorem 3.1 the Denjoy-Wolff point of the semigroup.

Definition 3.2. Let D ⊂ Cn be a bounded strongly convex domain with smooth bound-
ary. Let (Φt) be a one-parameter semigroup of holomorphic self-maps ofD. A point p ∈ ∂D
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is called a boundary regular fixed point for (Φt), or a BRFP for short, if p is a BRFP for
Φt for all t ≥ 0. The family of boundary dilatation coefficients of (Φt) will be denoted by
(αt(p)). A BRFP for (Φt) for which αt(p) ≤ 1 for some t > 0 is called a stationary point
of the semigroup.

The boundary dilatation coefficients at BRFP’s form a semigroup in (R+0 , ·):
Proposition 3.3. Let D ⊂ Cn be a bounded strongly convex domain with smooth bound-
ary. Let (Φt) be a one-parameter semigroup of holomorphic self-maps of D. If p ∈ ∂D is
a BRFP for (Φt) then there exists β ∈ R such that αt(p) = eβt for all t ≥ 0.
Proof. Let (ϕ, ρϕ, eρϕ) be the Lempert projection device associated to a complex geodesic
such that ϕ(1) = p. Consider the following family of functions Tt : D→ C,

Tt(z) :=
1− eρϕ ◦ Φt(z)

1− eρϕ(z) .

By Theorem 2.7 it follows that lim(0,1)3r→1 Tt(γ(r)) = αt(p) for any curve γ : (0, 1) →
D such that limr→1 γ(r) = p, the curve eρϕ(γ(r)) converges to 1 non-tangentially and
kD(γ(r), ρϕ(γ(r))) → 0 as r → 1. By [7, Proposition 3.4], it follows that [0, 1) 3 r 7→
Φt(ϕ(r)) satisfies the same three properties which are satisfied by γ. Then for s, t ≥ 0 we
have

Tt+s(ϕ(r)) =
1− eρϕ ◦ Φt(Φs(ϕ(r)))

1− eρϕ(Φs(ϕ(r)))
· 1− eρϕ ◦ Φs(ϕ(r))

1− eρϕ(ϕ(r)) = Tt(Φs(ϕ(r)) · Ts(ϕ(r)),

and taking the limit as r → 1 it follows that αt+s(p) = αt(p)αs(p). Since αt(p) is clearly
measurable in t, this concludes the proof. ¤
Later we will see how the number β in Proposition 3.3 can be computed using the

infinitesimal generator of the semigroup. Now we use the pluricomplex Green function to
characterize vector fields which are infinitesimal generators. For this aim we need a lemma
whose simple proof is left to the reader:

Lemma 3.4. Let T > 0 be a positive real number and let g : [0, T ] → R be a function
such that
(1) for all a, b ∈ [0, T ] and λ ∈ [0, 1] it holds

g(λa+ (1− λ)b) ≤ max{g(a), g(b)};
(2) there exists the (right-)derivative of g at 0 and g0(0) > 0.

Then g is non-decreasing.

Now we can state and prove our characterizations of infinitesimal generators:

Theorem 3.5. Let D ⊂⊂ Cn be a strongly convex domain with smooth boundary. Let
F : D→ Cn be holomorphic. The following are equivalent:
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(1) The map F is the infinitesimal generator of a semigroup of holomorphic self-maps
of D.

(2) For all z, w ∈ D with z 6= w it follows that

(3.1) d(kD)|(z,w) · (F (z), F (w)) ≤ 0.
(3) For all z, w ∈ D with z 6= w it follows that

(3.2) d(GD)|(z,w) · (F (z), F (w)) ≤ 0.
(4) For each pair z, w ∈ D, it follows

(3.3) kD(z − rF (z), w − rF (w)) ≥ kD(z, w)

for all r > 0 such that z − rF (z) and w − rF (w) belong to D.

Proof. First of all we notice that by (1.2) we have GD(z, w) = log tanh kD(z, w), and thus
a simple computation shows that (2) and (3) are equivalent.
Next, we claim that (1) implies (3). Indeed, if F is an infinitesimal generator in D and

(Φt) is the corresponding semigroup generated by F then by (1.1), for all z, w ∈ D with
z 6= w it follows that for all t ≥ 0

GD(Φt(z),Φt(w))−GD(z, w) ≤ 0
and it is equal to zero for t = 0. Computing the incremental ratio in t for t = 0 we
obtain (3.2).
Now, assume (2) holds. For w ∈ D, consider the Cauchy problem

dΦ

dt
= F ◦Φ,

Φ(0) = w

and denote by Φw : [0, δw)→ D its maximal solution, for some δw > 0. To show that F is
an infinitesimal generator, it is enough to prove that for all w it holds δw = +∞.
To this aim, let z, w ∈ D with z 6= w and let δ = min{δz, δw}. Let g : [0, δ) 3 t 7→

kD(Φz(t),Φw(t)). By uniqueness of solutions of the above Cauchy problems, we know that,
for all t ∈ [0, δ), we have Φz(t) 6= Φw(t). According to Lempert’s work [24], [25] (see also
[1, Proposition 2.6.40]), the function g is smooth and differentiating with respect to t we
obtain by (3.1)

g0(t) = d(kD)|(Φz(t),Φw(t)) · (
dΦz(t)

dt
,
dΦw(t)

dt
)

= d(kD)|(Φz(t),Φw(t)) · (F (Φz(t)), F (Φw(t))) ≤ 0.
Therefore g is non-increasing in t, namely

(3.4) kD(Φz(t),Φw(t)) ≤ kD(Φz(0),Φw(0)) = kD(z, w).
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This implies that δz = δw because, if for instance δz < δw then as t → δz it would
follow that Φz(t) → ∂D while Φw(t) → Φw(δz) ∈ D, and then kD(Φz(t),Φw(t)) → ∞
contradicting (3.4).
By the arbitrariness of z, w ∈ D, this means that for all z ∈ D we have δz = δ. Hence,

by well known results on PDE’s, we have a well defined analytic map Φ : D × [0, δ) →
D which is holomorphic in z ∈ D and such that Φ(0, z) = z and ∂Φ

∂t
= F ◦ Φ. Also,

Φ(t+ s, z) = Φ(t,Φ(s, z)) for all s, t ≥ 0 such that s+ t < δ and z ∈ D. This implies that
δ = ∞. Indeed, if δ < +∞, let 2δ > t > δ and let s > 0 be such that t − s < δ, s < δ.
Define Φz(t) := Φ(t − s,Φ(s, z)). This is well defined and solve the Cauchy problem for
z, against the maximality of δ.
Thus we have proved that (1), (2) and (3) are equivalent.
Now, let us prove that (4) implies (2). Let z, w ∈ D, z 6= w, and r > 0 such that

z− rF (z) and w− rF (w) belong to D. By convexity, z− tF (z) and w− tF (w) belong to
D for all t ∈ [0, r]. Therefore, the function g : [0, r]→ R given by

g(t) = kD(z − tF (z), w − tF (w))

is well-defined and, again by Lempert’s result, since z 6= w, it is differentiable at 0. By
hypothesis, g(t) ≥ g(0) for all t ≥ 0. Therefore g0(0) ≥ 0. But

g0(0) = (dkD)|(z,w) · (−F (z),−F (w)) = −(dkD)|(z,w) · (F (z), F (w)).
Thus, (dkD)|(z,w) · (F (z), F (w)) ≤ 0, and (2) holds.
In order to finish the proof we show that (2) implies (4). To proceed we consider the

following two possible cases:
I) (dkD)|(z,w) · (F (z), F (w)) < 0.
II) (dkD)|(z,w) · (F (z), F (w)) = 0.
Case I). Fix r > 0 such that z− rF (z) and w− rF (w) belong to D. Then we have that

z−tF (z) and w−tF (w) belong toD for all t ∈ [0, r]. Therefore, the function g : [0, r]→ R
given by

g(t) = kD(z − tF (z), w − tF (w))

is well-defined and, since z 6= w, it is differentiable at 0 with derivative given by g0(0) =
(dkD)|(z,w) · (−F (z),−F (w)) > 0. Moreover, by [28, Proposition 3.8], given z1, z2, w1, w2 ∈
D and λ ∈ [0, 1], we have that

kD(λz1 + (1− λ)z2, λw1 + (1− λ)w2) ≤ max{kD(z1, w1), kD(z2, w2)}.
In particular, if a, b ∈ [0, r] and λ ∈ [0, 1], we have that
g(λa+ (1− λ)b) = kD(z − (λa+ (1− λ)b)F (z), w − (λa+ (1− λ)b)F (w))

= kD(λ(z − aF (z)) + (1− λ)(z − bF (z)), λ(w − aF (w)) + (1− λ)(w − bF (w)))

≤ max{kD(z − aF (z), w − aF (w)), kD(z − bF (z), w − bF (w))}
= max{g(a), g(b)}.
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Therefore, g satisfies the hypothesis of Lemma 3.4 and thus it is non-decreasing. Namely,

kD(z − tF (z), w − tF (w)) ≥ kD(z, w)

for all t ∈ [0, r].
Case II). Let G : D → Cn holomorphic be an infinitesimal generator in D such that

(dkD)|(z,w) ·(G(z), G(w)) < 0. Such a map can be constructed as follow. Up to translations
we can assume that z = O the origin inCn. Let a < 0. By convexity, the family of functions
Φt : z 7→ eatz is a semigroup of holomorphic self-maps of D. The associated infinitesimal
generator is G(z) = az. Therefore

(dkD)|(O,w) · (G(O), G(w)) = a(dkD)|(O,w) · (O,w).
Now, the vector (O,w) points outward with respect to the boundary of the Kobayashi ball
of center O and radius kD(O,w) because Kobayashi balls of convex domains are convex
(see, e.g., [1, Proposition 2.3.46]). Since Kobayashi balls are level sets of kD, this implies
that (dkD)|(O,w) · (O,w) 6= 0. Hence d(kD)|(O,w) · (G(O), G(w)) 6= 0 and, by the already
proved equivalence between (1) and (2), actually (dkD)|(z,w) · (G(z), G(w)) < 0.
Now fix � > 0 and consider the vector field H := F + �G. This is an infinitesimal

generator of a semigroup of holomorphic self-maps inD (because F+�G satisfies (3.1) and
by the equivalence between (1) and (2)). Now, by construction, (dkD)|(z,w)·(H(z), H(w)) <
0 and, for what we proved in Case I), kD(z− rH(z), w− rH(w)) ≥ kD(z, w) for all r > 0
such that z − rH(z), w − rH(w) ∈ D. Now, letting � tends to 0 we end the proof. ¤
As a corollary we have the following characterization of groups of biholomorphisms

of D:

Corollary 3.6. Let D ⊂⊂ Cn be a strongly convex domain with smooth boundary. Let
F : D→ Cn be holomorphic. The following are equivalent:
(1) The map F is the infinitesimal generator of a group of holomorphic self-maps of

D.
(2) For all z, w ∈ D with z 6= w it follows that

d(kD)|(z,w) · (F (z), F (w)) = 0.
(3) For all z, w ∈ D with z 6= w it follows that

d(GD)|(z,w) · (F (z), F (w)) = 0.
Proof. Apply Theorem 3.5 to F and −F . ¤
Remark 3.7. In case D = Bn the unit ball of Cn, using (1.3), equation (3.2) assumes a
simple expression given by

(3.5)
Re hz, F (z)i
1− kzk2 +

Re hw,F (w)i
1− kwk2 ≤ Re hF (z), wi+ hz, F (w)i

1− hz, wi .

In fact, in case D = Bn, Theorem 3.5 with (3.5) replacing (3.2), was proven with different
methods by Reich and Shoikhet [27, Theorem 2.1].
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For boundary regular fixed points, we have the following result:

Theorem 3.8. Let D ⊂⊂ Cn be a strongly convex domain with smooth boundary. Let
F : D → Cn be a holomorphic infinitesimal generator of a semigroup (Φt), β ∈ R and
p ∈ ∂D. The following are equivalent:

(1) The semigroup (Φt) has a BRFP at p with boundary dilatation coefficients αt(p) ≤
eβt for all t ≥ 0.

(2) d(uD,p)z · F (z) + βuD,p(z) ≤ 0 for all z ∈ D.

Moreover, if p is a BRFP for (Φt) then the boundary dilatation coefficient of Φt is αt(p) =
e−tb with b = infz∈D d(uD,p)z · F (z)/uD,p(z).

Proof. Suppose (1) holds. Then uD,p(Φt(z))− e−tβuD,p(z) ≤ 0 for all t ≥ 0 and z ∈ D. In
particular,

0 ≥ lim
t→0+

uD,p(Φt(z))− e−tβuD,p(z)

t

=
∂

∂t
[uD,p(Φt(z))− e−tβuD,p(z)]|t=0 = d(uD,p)z · F (z) + βuD,p(z),

and (2) follows.
Conversely, assume (2) holds. Fix z ∈ D and let g(t) := uD,p(Φt(z))− e−tβuD,p(z). We

have to show that g(t) ≤ 0 for all t ≥ 0. Deriving g, we obtain

g0(t) = d(uD,p)Φt(z) ·
∂Φt

∂t
(z) + βe−βtuD,p(z)

= d(uD,p)Φt(z) · F (Φt(z)) + βe−βtuD,p(z)

= d(uD,p)Φt(z) · F (Φt(z)) + βuD,p(Φt(z))− βg(t).

Therefore, using hypothesis (2) we have that for all t ≥ 0
(3.6) g0(t) + βg(t) ≤ 0.
Now let h(t) := −(g0(t)+βg(t)) ≥ 0. Solving the differential equation g0(t)+βg(t)+h(t) =
0 with initial value g(0) = 0, we obtain

g(t) = −e−βt
Z t

0

eβsh(s)ds ≤ 0,

and thus (1) follows.
Finally, the last statement comes directly from Proposition 3.3 and the equivalence

between (1) and (2). ¤
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Remark 3.9. If β ≤ 0 in Theorem 3.8, it follows that for all z ∈ D the function [0,+∞) 3
t 7→ uD,p(Φt(z))− e−tβuD,p(z) is non-increasing. Indeed, for s > t, we have

uD,p(Φs(z))− e−sβuD,p(z) = uD,p(Φs−t(ϕt(z)))− e−sβuD,p(z)

≤ e−(s−t)β[uD,p(Φt(z))− e−tβuD,p(z)]

≤ uD,p(Φt(z))− e−tβuD,p(z).

We end up this section with a Berkson-Porta like characterization of infinitesimal gen-
erators.

Definition 3.10. Let D ⊂⊂ Cn be a strongly convex domain with smooth boundary,
F : D → Cn holomorphic and p ∈ ∂D. We say that F ∈ C1

E(p) if for any horosphere
ED(p,R) there exists a (n× n)-matrix A such that

lim
ED(p,R)3z→p

dFz = A.

Theorem 3.11. Let D ⊂⊂ Cn be a strongly convex domain with smooth boundary. Let
p ∈ ∂D, F : D→ Cn holomorphic and assume that F ∈ C1

E(p). Then F is the infinitesimal
generator of a semigroup of holomorphic self-maps of D with a stationary point at p if
and only if

(3.7) d(uD,p)z · F (z) ≤ 0
for all z ∈ D.

Proof. One direction follows directly from Theorem 3.8.
Conversely, assume that (3.7) holds. Fix w0 ∈ D and let γ : [0, δ)→ D be the maximal

solution of the Cauchy problem (
dγ
dt
= F ◦ γ

γ(0) = w0.

It is enough to prove δ = +∞. Assume by contradiction that δ < +∞. Let g(t) :=
uD,p(γ(t)) for t ∈ [0, δ). Deriving g, we obtain by (3.7)

g0(t) = d(uD,p)γ(t)(γ
0(t)) = d(uD,p)γ(t)(F (γ(t))) ≤ 0.

Thus for all t ∈ [0, δ) it follows uD,p(γ(t)) ≤ uD,p(γ(0)) = uD,p(w0). This means that
if w0 ∈ ED(p,R) then γ(t) belongs to ED(p,R) for all t ∈ [0, δ). In particular, since
ED(p,R) ∩ ∂D = {p}, it means that limt→δ γ(t) = p.
Since F ∈ C1

E(p) and ∂ED(p,R) is Lipschitz (it is actually C1,1 at p and smooth
elsewhere, see [13, Section 4]) by (a very simple form of) Whitney extension theorem
there exists a function F̃ : Cn → Cn of class C1 such that F̃ |ED(p,R) = F . If F̃ (p) = 0 then
the Cauchy problem (

dη
dt
= F̃ ◦ η

η(δ) = p
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has the unique solution η(t) ≡ p. In particular, γ cannot reach p in a finite time, which
gives us the searched contradiction to δ < +∞.
To conclude the proof we are left to show that necessarily F̃ (p) = 0. But this follows

at once from the fact that for any z ∈ ED(p,R) the solution of the Cauchy problem(
dγz

dt
= F̃ ◦ γz

γz(0) = z

is such that γz(t) ∈ D for t ∈ [0, δz) for a suitable δz ∈ (0,+∞] and, arguing as for γ,
limt→δz γ

z(t) = p. ¤

Remark 3.12. IfD = D the unit disc in C, then Theorem 3.11 holds without any regularity
assumption on F at p ∈ ∂D. Indeed, a direct computation shows that (3.7) reduces exactly
to the Berkson-Porta formula [5].
If D = Bn the unit ball of Cn, a direct computation shows that (3.7) corresponds to

Re hF (z), zi
1− kz2k ≤ Re hF (z), pi

1− hz, pi .

In fact, for D = Bn and with the additional hypothesis that F extends holomorphically
through ∂Bn, Theorem 3.11 follows from [3, Theorem 3.1].

4. Boundary behavior of infinitesimal generators

In all this section, D denotes a bounded strongly convex domain in Cn with smooth
boundary.
Before proving the main result of this section, we examine two significative examples.

We will use a lemma whose proof can be derived from the proof of [11, Theorem 1.4].

Lemma 4.1. Let a, b ∈ Cn and A ∈ Cn×n and

G(z) = a− hz, aiz − [Az + hz, biz].
Then, G is the infinitesimal generator of a continuous semigroup of holomorphic self-maps
of Bn if and only if

(4.1) |hb, ui| ≤ Re hAu, ui,
for all u ∈ ∂Bn. Moreover, if equality holds at every point of ∂Bn, then G is the infinites-
imal generator of a continuous group of holomorphic self-maps of Bn.

Example 4.2. Let us consider F : B2 → C2 given by F (z1, z2) = (0,−z2/(1 − z1)). Let
e1 = (1, 0). By a direct computation one can see that F is an infinitesimal generator of a
semigroup (Φt) of holomorphic self-maps of B2 which pointwise fixes the slice D 3 ζ 7→
(ζ, 0). Clearly d(uB2,e1)z ◦ F (z) ≤ 0 for all z ∈ B2. Thus F has a stationary point at e1.
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Also, hF (z), e1i = 0 for all z ∈ B2 and therefore the radial limit lim(0,1)3r→1 F (re1)
1−r = 0, as

predicted by Theorem 0.3. Now let us consider the following map

η(z1, z2) =

µ−sz2 + (1− β)z1 + β

−sz2 − βz1 + 1 + β
,

z2 + sz1 − s

−sz2 − βz1 + 1 + β

¶
where Reβ > 0 and s =

√
2Reβ. Notice that η : B2 → B2 is a parabolic automorphism

such that η(e1) = e1 (see [6, Example 5.1]). Hence F̃ (z1, z2) := dη−1η(z1,z2) · F (η(z1, z2)) is
the infinitesimal generator of the semigroup (Φ̃t) of holomorphic self-maps of B2, where
Φ̃t = η−1◦Φt◦η. Thus Φ̃t pointwise fixes the slice η−1(ζ, 0) for ζ ∈ D. A direct computation
shows that F (η(r, 0)) = (0, s) for r ∈ (0, 1). Thus, since

dηre1 =
1

(−rβ + 1 + β)2

µ
1 s(r − 1)
s β̄(r − 1) + 1

¶
,

it follows that F̃ (r, 0) = (β(1−r)+1)(−s2(r−1), s) for r ∈ (0, 1). In particular the radial
limit of F̃ at e1 is not zero. A direct computation shows that

lim
(0,1)3r→1

F̃1(re1)

r − 1 = −s2 < 0.

Hence the semigroup of D generated by the “projection” F̃1(ζe1) of F̃ to the slice D 3 ζ 7→
ζe1 has Denjoy-Wolff point at 1, with boundary dilatation coefficients (e−s

2t). However,
by construction, e1 is a stationary point for the semigroup (Φ̃t), with boundary dilatation
coefficients all equal to 1.

Example 4.3. Let G : B2 → C2 be the map defined by G(z1, z2) = (
−1
3
iz1, iz2). The map

G is an infinitesimal generator of a (semi)group (Φt) of elliptic automorphisms fixing the
origin (see Lemma 4.1). Let us consider the automorphism of B2 given by

ψ(z1, z2) =

Ã
−√3z1
2− z2

,
1− 2z2
2− z2

!
(see [1, Lemma 2.2.1]). We note that ψ = ψ−1. Such an automorphism maps the slice
{(z1, z2) ∈ B2 : z2 = 0} to the slice {(z1, z2) ∈ B2 : z2 = 1/2}. Let us define P (z1, z2) :=
dψψ−1(z1,z2) ·G(ψ−1(z1, z2)). A direct computation shows that

P (z1, z2) =

µ−2i
3

z1z2,
−i
3
(z2 − 2)(2z2 − 1)

¶
.

Let (ΦP
t ) be the group of automorphisms generated by P . Such a group is obtained by

conjugation from the group (Φt) and therefore has only one fixed point. Since P (z1, 0) =
(0, −2i

3
) (and P is holomorphic past the boundary) then (ΦP

t ) cannot have BRFP at any
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point of the boundary of the slice {(z1, z2) ∈ B2 : z2 = 0}. However, obviously

lim
D3ζ→1

P1(ζ, 0)

ζ − 1 = 0.

Finally, let

H(z1, z2) =

µ
2i

3
z2(z1 − 1), 2i

3
(1 + z22 − z1)

¶
.

The map H : B2 → C2 is the infinitesimal generator of a group of automorphisms (see
again Lemma 4.1) with the property that H(e1) = (0, 0). Let us define F = P +H. Then
F is the infinitesimal generator of a group of automorphisms and a direct computation
shows that

F (z1, z2) =

µ
−2i
3
z2,−5i

3
z2 − 2i

3
z1

¶
.

Thus the group generated by F has a unique fixed point at (0, 0) and no BRFPs on ∂B2.
However the semigroup generated by D 3 ζ 7→ F1(ζ, 0) on D is the trivial semigroup and

lim
D3ζ→eiθ

F1(ζ, 0)

ζ − 1 = 0

for all θ ∈ R. Notice that the slice {(z1, z2) ∈ B2 : z2 = 0} contains the fixed point of the
semigroup.

The previous two examples show that, on the one hand, the requirement that the radial
limit exists in Theorem 0.3 is sufficient but not necessary for the existence of BRFP’s.
Also, even if a BRFP exists, say at p ∈ ∂Bn, the radial limit of the incremental ratio of
the projection of the infinitesimal generator along p might not give information on the
boundary dilatation coefficients of the semigroup at p. On the other hand, the sole infor-
mation on the existence of the limit of the incremental ratio along a given point p ∈ ∂Bn
does not imply existence of a BRFP at p. Last but not least, an unexpected phenome-
non takes place for infinitesimal generators: the behavior of the semigroup generated by
the “restriction” of the infinitesimal generator to one complex geodesic–even a complex
geodesic containing fixed points of the semigroup–can be completely different from the
behavior of the semigroup in the ball (cfr. Theorem 2.7).

Definition 4.4. Let F : D→ Cn be a holomorphic infinitesimal generator. For a Lempert
projection device (ϕ, ρϕ, eρϕ) we will denote by fϕ(ζ) := d(eρϕ)ϕ(ζ) ·F (ϕ(ζ)) the holomorphic
vector field on D.

Proposition 4.5. Let F : D → Cn be a holomorphic infinitesimal generator. Let
(ϕ, ρϕ, eρϕ) be a Lempert projection device with p = ϕ(1) ∈ ∂D. Then the vector field fϕ(ζ)
is a holomorphic infinitesimal generator in D. Moreover, if there exists β ∈ R such that
d(uD,p)z · F (z) + βuD,p(z) ≤ 0 for all z ∈ D, then d(uD,1)ζ · fϕ(ζ) + βuD,1(ζ) ≤ 0 for all
ζ ∈ D.
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Proof. Considering the pluricomplex Green function GD : D × D → R. Its differential
dGD : TD × TD → TR can be decomposed as dGD = dzGD + dwGD where, if (u, v) ∈
TD × TD we have dG(u, v) = dzGD(u) + dwGD(v). With this notation, Theorem 3.5
implies that for all z 6= w

d(GD)(z,w) · (F (z), F (w)) = dz(GD)|(z,w) · F (z) + dw(GD)|(z,w) · F (w) ≤ 0.
Now let z = ϕ(η) and w = ϕ(ζ) for η 6= ζ ∈ D. We claim that

(4.2) dw(GD)|(ϕ(η),ϕ(ζ)) · F (ϕ(ζ)) = dw(GD)|(ϕ(η),ϕ(ζ))(d(ρϕ)ϕ(ζ) · F (ϕ(ζ))).
Assume that (4.2) is true. According to (1.5) we also have GD(ϕ(η), ϕ(ζ)) = GD(η, ζ) for
all ζ ∈ D, thus by (4.2)

dw(GD)|(η,ζ)(fϕ(ζ)) = dw(GD)|(ϕ(η),ϕ(ζ)) · (dϕζ(fϕ(ζ)))

= dw(GD)|(ϕ(η),ϕ(ζ)) · (d(ρϕ)ϕ(ζ)(F (ϕ(ζ))))
= dw(GD)|(ϕ(η),ϕ(ζ)) · F (ϕ(ζ)).

A similar equation holds for dz(GD)|(z,w)|(ϕ(η),ϕ(ζ)) · F (ϕ(η)), swapping the roles of η and
ζ in the previous argument. Thus

d(GD)|(η,ζ) · (fϕ(η), fϕ(ζ)) = d(GD)|(ϕ(η),ϕ(ζ)) · (F (ϕ(η)), F (ϕ(ζ)))) ≤ 0,
for all ζ, η ∈ D with ζ 6= η, which implies that fϕ is an infinitesimal generator on D by
Theorem 3.5.
Now we are left to prove claim (4.2). Since ρϕ is holomorphic, then dρϕ = ∂ρϕ and

the Lempert projection ρϕ determines a holomorphic splitting of the exact sequence of
holomorphic bundles

0 −→ Tϕ(D) ι−→ TD|ϕ(D) −→ Nϕ(D),D −→ 0,

given by
Tϕ(ζ)D = ι(dρϕ(Tϕ(ζ)D))⊕ Kerd(ρϕ)ϕ(ζ).

Now let BD(ϕ(0), R) = {z ∈ D : kD(z, ϕ(0)) < R} be a Kobayashi ball for D and let
ζ1 ∈ D be such that ϕ(ζ1) ∈ ∂BD(ϕ(0), R). It is known–and can be easily proven using
Lempert’s special coordinates, see [24], [25]–that

(4.3) TCϕ(ζ1)∂BD(ϕ(0), R) = Kerd(ρϕ)ϕ(ζ1)

where, as usual, TCϕ(ζ1)∂BD(ϕ(0), R) denotes the complex tangent space of ∂BD(ϕ(0), R)

at ϕ(ζ1). By (1.2) it follows that

∂BD(ϕ(0), R) = {z ∈ D : GD(ϕ(0), z) = r}
for a suitable r < 0, and in particular

(4.4) Tϕ(ζ1)∂BD(ϕ(0), R) = Ker(dwGD)(ϕ(0),ϕ(ζ1)).
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Now, consider the Kobayashi ball BD(ϕ(η), R) with R = R(ϕ(ζ)) > 0 such that ϕ(ζ) ∈
∂BD(ϕ(η), R). Equations (4.3) and (4.4) yield

Kerd(ρϕ)ϕ(ζ) = TCϕ(ζ)∂BD(ϕ(η), R) ⊂ Tϕ(ζ)∂BD(ϕ(η), R) = Ker(dwGD)(ϕ(η),ϕ(ζ))

from which equation (4.2) follows, and the claim is proved.
In order to prove the last assertion of the proposition, we argue similarly as before. Let

ζ ∈ D and let ED(ϕ(1), R) be the horosphere in D which contains ϕ(ζ) on its boundary.
Then (again using Lempert’s special coordinates, see [12, p. 517])

(4.5) TCϕ(ζ1)∂ED(ϕ(1), R) = Kerd(ρϕ)ϕ(ζ1),

and

(4.6) Tϕ(ζ1)∂ED(ϕ(1), R) = Kerd(uD,ϕ(1))ϕ(ζ1).

Since TCϕ(ζ)∂ED(ϕ(1), R) ⊂ Tϕ(ζ)∂ED(ϕ(1), R), equation (4.5) yields

d(uD,ϕ(1))ϕ(ζ) · F (ϕ(ζ)) = d(uD,ϕ(1))ϕ(ζ)(d(ρϕ)ϕ(ζ) · F (ϕ(ζ))),
and since uD,ϕ(1) ◦ ϕ(ζ) = aϕuD,1(ζ) for some aϕ > 0 by (1.6), we have

(4.7) d(uD,1)ζ · fϕ(ζ) + βuD,1(ζ) =
1

aϕ
[d(uD,p)ϕ(ζ) · F (ϕ(ζ)) + βuD,p(ϕ(ζ))].

If d(uD,p)z · F (z) + βuD,p(z) ≤ 0 for all z ∈ D then d(uD,1)ζ · fϕ(ζ) + βuD,1(ζ) ≤ 0 for all
ζ ∈ D as stated. ¤
Before stating and proving the main result of this section we need a preliminary lemma.

Lemma 4.6. Let D ⊂ C be the unit disc in C. Let G be the infinitesimal generator of a
semigroup (ηt) of holomorphic self-maps of D. The following are equivalent:
(1) The point 1 is a boundary regular fixed point for (ηt).
(2) There exists C > 0 such that the radial limit

lim sup
(0,1)3r→1

|G(r)|
1− r

≤ C.

Moreover, if 1 is a BRFP for (ηt) with boundary dilatation coefficients αt(1) = ebt then

∠ lim
ζ→1

G(ζ)

ζ − 1 = b.

Proof. If (1) holds then the result follows directly from [14, Theorem 1].
Conversely, hypothesis (2) implies that limr→1G(r) = 0. By Berkson-Porta’s theo-

rem 0.1, there exists a point b ∈ D and a holomorphic function p : D→ C with Re p ≥ 0
such that

G(z) = (z − b)(bz − 1)p(z), z ∈ D.
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If b = 1, we have that 1 is the Denjoy-Wolff point of the semigroup (ηt) and (1) follows.
Otherwise, we have that limr→1 p(r) = 0. Then the function ϕ(z) =

1−p(z)
1+p(z)

is a self-map of
the unit disc and limr→1 ϕ(r) = 1. By [26, Proposition 4.13], the function ϕ has angular
derivative (possibly infinite) at 1. Thus, p, and so G, has angular derivative at 1. That is,
there exists the radial limit

lim
r→1

G(r)

r − 1 .
By (2), such a limit is finite and again by [14, Theorem 1], we obtain that 1 is a boundary
regular fixed point of the semigroup. ¤
Theorem 4.7. Let D ⊂⊂ Cn be a strongly convex domain with smooth boundary, F the
infinitesimal generator of a semigroup (Φt) of holomorphic self-maps of D, and p ∈ ∂D.
The following are equivalent:
(1) The point p is a BRFP for (Φt).
(2) There exists C > 0 such that for any Lempert’s projection device (ϕ, ρϕ, eρϕ) with

ϕ(1) = p it follows

lim sup
(0,1)3r→1

|fϕ(r)|
1− r

≤ C.

Moreover, if p is a BRFP for (Φt) with boundary dilatation coefficients αt(p) = eβt then
the non-tangential limit

A(ϕ, p) := ∠ lim
ζ→1

fϕ(ζ)

ζ − 1
exists finite, A(ϕ, p) ∈ R and A(ϕ, p) ≤ β. Also, β = supA(ϕ, p), with the supremum
taken as ϕ varies among all complex geodesics with ϕ(1) = p.

Proof. Suppose (1) holds. By Theorem 3.8 there exists β ∈ R such that d(uD,p)z · F (z) +
βuD,p(z) ≤ 0 for all z ∈ D. Let (ϕ, ρϕ, eρϕ) be a Lempert’s projection device with ϕ(1) = p
and let fϕ be the associated vector field. By Proposition 4.5, the map fϕ is an infinitesimal
generator and satisfies d(uD,1)ζ · fϕ(ζ) + βuD,1(ζ) ≤ 0 for all ζ ∈ D. By Theorem 3.8, the
semigroup generated by fϕ in D has a BRFP at 1 with boundary dilatation coefficients
αt(1) ≤ etβ. By Lemma 4.6, it follows that the non-tangential limit ∠ limζ→1

fϕ(ζ)
ζ−1 exists

finite and it is a real number less than or equal to β, and thus (1) and part of the last
statement are proved.
Suppose (2) holds. By Theorem 3.8, it is enough to show that there exists β ∈ R such

that for all z ∈ D it holds d(uD,p)z · F (z) + βuD,p(z) ≤ 0. Fix z ∈ D and let ϕ : D→ D
be the complex geodesic such that ϕ(0) = z and ϕ(1) = p. By Proposition 4.5, the vector
field fϕ is an infinitesimal generator in D. Hypothesis (2) and Lemma 4.6 imply that 1 is
a BRFP for the semigroup generated by fϕ with boundary dilatation coefficients less than
or equal to eCt. Therefore Theorem 3.8 applied to fϕ yields d(uD,1)z ·fϕ(ζ)+CuD,1(ζ) ≤ 0
for all ζ ∈ D. By (4.7) it follows that d(uD,p)ϕ(ζ) ·F (ϕ(ζ))+CuD,p(ϕ(ζ)) ≤ 0 for all ζ ∈ D
and thus, in particular for ζ = 0, we have d(uD,p)z · F (z) + CuD,p(z) ≤ 0 as needed.
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Finally, notice that, again by Theorem 3.8, the previous arguments show also that if p
is a BRFP with boundary dilatation coefficients αt(p) = eβt then β is the supremum of
all A(ϕ, p). ¤

Corollary 4.8. Let F : D → Cn be the holomorphic infinitesimal generator of a semi-
group (Φt) with a stationary point p ∈ ∂Bn. Then for any Lempert’s projection device
(ϕ, ρϕ, eρϕ) with ϕ(1) = p

(1) ∠ limζ→1 fϕ(ζ) = 0,
(2) ∠ limζ→1 fϕ(ζ)/(ζ − 1) = A(ϕ, p) is a finite real number, A(ϕ, p) ≤ 0 and the

boundary dilatation coefficients αt(p) = etβ are such that A(ϕ, p) ≤ β ≤ 0 for all
ϕ.

Moreover,

a) if F (z) = 0 for some z ∈ D then there exists a complex geodesic ϕ : D → D
with ϕ(1) = p such that F (ϕ(ζ)) = 0 for all ζ ∈ D and all points of ϕ(∂D) are
stationary points for (Φt) with boundary dilatation coefficients αt(ϕ(e

iθ)) = 1 for
all θ ∈ R. Also A(ϕ,ϕ(eiθ)) = 1 for all θ ∈ R.

b) If F (z) 6= 0 for all z ∈ D then p is the Denjoy-Wolff point of (Φt).

Proof. Taking into account that if z ∈ D then F (z) = 0 if and only if z ∈ Fix(Φt), the
statement is a direct consequence of Theorem 4.7 and Proposition 2.9. ¤

5. Boundary repelling fixed points and the non-linear resolvent

In [27] Reich and Shoikhet proved the following result.

Theorem 5.1. Let D ⊂ Cn be a bounded convex domain (not necessarily strongly con-
vex). Let F : D → Cn be a holomorphic infinitesimal generator of a semigroup (Φt) of
holomorphic self-maps of D. Then there exists a family {Gt} of holomorphic self-maps of
D, with G0 = idD, depending on the parameter t ∈ [0,+∞) such that for all z ∈ D and
t ∈ [0,+∞)
(5.1) Gt(z)− z = tF (Gt(z)),

and for all z ∈ D

(5.2) F (z) = lim
t→0+

Gt(z)− z

t
.

Moreover, if z, w ∈ D are such that w − z = tF (w) then w = Gt(z).

The above family {Gt} is called the non-linear resolvent of F . This non-linear resolvent
reads some dynamical properties of the semigroup. Indeed, by (5.1) (and uniqueness) it
follows easily that

Fix(Gt) = {z ∈ D : F (z) = 0} = Fix(Φt).
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In [27, Proof of Corollary 1.6], it is also proved that if D ⊂⊂ Cn is a strongly convex
domain with smooth boundary and (Φt) has no fixed points in D, and τ ∈ ∂D is the
Denjoy-Wolff point of the semigroup, then

Gt(ED(τ,R)) ⊆ ED(τ, R),

for all R > 0 and all t > 0. Then, by Theorem 2.3, we obtain that τ is a stationary
point for all Gt. Since F has no zeros in D, then Fix(Gt) = ∅ and, by Proposition 2.9, we
conclude that τ is the Denjoy-Wolff point of Gt, for all t > 0. That is, the functions Φt

and Gt share the same Denjoy-Wolff point.
For boundary regular fixed points, we can prove:

Proposition 5.2. Let D ⊂⊂ Cn be a strongly convex domain with smooth boundary. Let
F : D → Cn be a holomorphic infinitesimal generator with associated semigroup (Φt),
non-linear resolvent {Gt}, and p ∈ ∂D. Suppose there exists β ∈ R such that for any
t > 0 the point p is a BRFP for Gt with boundary dilatation coefficients αGt(p) ≤ etβ.
Then p is a BRFP for (Φt) with boundary dilatation coefficients αt(p) ≤ etβ.

Proof. By Theorem 3.8 it is enough to prove that d(uD,p)z · F (z) + βuD,p(z) ≤ 0 for all
z ∈ D. Fix z ∈ D. Since p is a BRFP for {Gt} and αGt(p) ≤ etβ, by Theorem 2.4, we have

g(t) := uD,p(Gt(z))− e−tβuD,p(z) ≤ 0
for all t ∈ [0,∞). Since g(0) = 0, using (5.1) and the fact that Gt(z) → z for t → 0+ by
(5.2), we have

0 ≥ lim
t→0+

g(t)

t
= lim

t→0+
uD,p(Gt(z))− uD,p(z)

t
+ βuD,p(z)

= lim
t→0+

uD,p(tF (Gt(z)) + z)− uD,p(z)

t
+ βuD,p(z)

= d(uD,p)z · F (z) + βuD,p(z),

proving the statement. ¤
Remark 5.3. If p ∈ ∂D is a BRFP for {Gt} with boundary dilatation coefficients
αGt(p) ≤ eβt for some β ∈ R, then (see Remark 2.5), for any t ∈ [0,∞), it follows that
K− limz→pGt(z) = p. In particular, from (5.1), it follows that for all t > 0 and R > 1

lim
Gt(K(p,R))3z→p

F (z) = 0.

However, even in this case, F might not have radial limit 0 at p. In fact, looking at the
infinitesimal generator F̃ in Example 4.2, one easily sees that the non-linear resolvent
{Gt} has a BRFP at e1 with boundary dilatation coefficients αGt(e1) = 1 (because by
construction Gt(z) = z on a complex geodesic containing e1 on its boundary). But F̃ does
not have radial limit 0 at e1.

The converse to Proposition 5.2 is false, as the following example shows:
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Example 5.4. Let f(ζ) = 1 − ζ2. Then f is the infinitesimal generator of a group of
hyperbolic automorphisms in D, with Denjoy-Wolff point 1 and boundary repelling fixed
point −1. It is easy to check that the non-linear resolvent of f is given by

Gt(z) =
1

2t
(−1 + exp(1

2
Log(1 + 4t(t+ z)))

for all t > 0 and z ∈ D. Now, a direct computation shows Gt(−1) = |2t−1|−1
2t

6= −1.

6. Boundary behavior in the the unit ball

In this section we translate our results on BRFP’s for semigroups of the unit ball
Bn ⊂ Cn, where most expressions have computable forms.
In order to simplify our statements and without loss of generality, we will assume that,

up to conjugation, the base point is e1 = (1, 0, . . . , 0) ∈ ∂Bn.

Theorem 6.1. Let F : Bn → Cn be the infinitesimal generator of a semigroup (Φt) of
holomorphic self-maps of Bn. The following are equivalent:
(1) The point e1 ∈ ∂Bn is a BRFP for (Φt).
(2) There exists C > 0 such that for all automorphisms H = (H1, . . . , Hn) : Bn → Bn

such that H(e1) = e1 it follows

(6.1) lim sup
(0,1)3r→1

|d(H1)H−1(re1)(F (H
−1(re1)))|

1− r
≤ C.

Moreover, if e1 is a BRFP for (Φt) with boundary dilatation coefficients αt(e1) = eβt then
the non-tangential limit

A(H, e1) := ∠ lim
ζ→1

d(H1)H−1(ζe1)(F (H
−1(ζe1)))

ζ − 1
exists finitely, A(H, e1) ∈ R and A(H, e1) ≤ β. Also, β = supA(H, e1), with the supremum
taken as H varies among all automorphisms of Bn with H(e1) = e1.

Proof. The result follows from Theorem 4.7 as soon as one realizes how Lempert’s pro-
jection devices in the unit ball are related to automorphisms of Bn. Indeed, thanks to the
double transitivity of the group of automorphisms of Bn on ∂Bn, any complex geodesic
ϕ : D → Bn of Bn passing through e1 can be written as ζ 7→ H−1(ζe1) for some suitable
automorphism H : Bn → Bn . The associated Lempert projection ρϕ is thus given by
ρϕ(z) = H−1(hH(z), e1ie1) = H−1(H1(z), 0 . . . , 0) and the left inverse is eρϕ(z) = H1(z).
Therefore

fϕ(ζ) = d(eρϕ)ϕ(ζ) · F (ϕ(ζ)) = d(H1)H−1(ζe1) · F (H−1(ζe1)),

from which the statement follows. ¤
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In the statement of Theorem 6.1, the sufficient condition for e1 to be a BRFP can be
checked considering only the class of parabolic automorphismsH (namely, those for which
the boundary dilatation coefficient at e1 is 1). For the sake of clearness, we examine in
detail the case n = 2. In such a case we can limit ourselves to (parabolic) automorphisms
of B2 of the form

(6.2) Hs,θ(z) =
(−sz2 + (1− β)z1 + β, eiθ(z2 + sz1 − s))

−sz2 − βz1 + 1 + β
,

where β ≥ 0, s = √2β and θ ∈ R. Notice that (Hs,θ)
−1 also has the same form of Hs,θ

and the differential of Hs,θ at e1 is

d(Hs,θ)e1 =

µ
1 0
seiθ eiθ

¶
.

If ϕ : D → B2 is a complex geodesic with ϕ(1) = e1 and we write ϕ0(1) in projective
coordinates as ϕ0(1) = [1 : seiθ], with s ≥ 0 and θ ∈ R, the corresponding Hs,θ in (6.2)
is such that Hs,θ(D × {0}) = ϕ(D) and therefore, by uniqueness of complex geodesics,
ϕ(ζ) = Hs,θ(ψ(ζ), 0) for some automorphism ψ of D. Thus, in the statement of Theorem
6.1 for n = 2, it is enough to check condition (6.1) for H belonging to the class of Hs,θ’s.
Theorem 6.1 and the previous observation can be used to obtain the boundary behavior

of infinitesimal generators with some bounds on the image. To explain this fact, we prove
the following corollary in B2, which can be easily generalized to Bn for any n ≥ 2, and
can be considered a Julia-Wolff-Carathéodory type theorem for infinitesimal generators.

Corollary 6.2. Let F : B2 → C2 be the infinitesimal generator of a semigroup with a
BRFP at e1. Suppose there exist a horosphere EB2(e1, R) and two distinct points a0, a1 ∈ C
such that F1(EB2(e1, R)) ⊂ C \ {a0, a1}. Then
(1) F1 has non tangential limit 0 at e1, namely, ∠ limz→e1 F1(z) = 0.
(2) ∠ limζ→1(1− ζ)F2(

((1−β)ζ+β,eiθ(sζ−s))
−βζ+1+β ) = 0 for all β ≥ 0, s = √2β and θ ∈ R.

Proof. By the very definition of horospheres in B2, there exists a ball B ⊂ EB2(e1, R)
such that B is tangent to B2 at e1. Let {zk} ⊂ B2 be any sequence converging to e1
non-tangentially. Then the sequence {zk} is eventually contained in B. Hence

(6.3) kEB2(e1,R)(zk, hzk, e1ie1) ≤ kB(zk, hzk, e1ie1).
For k → ∞ we have kB(zk, hzk, e1ie1) → 0 because zk → e1 non-tangentially in B (and
non-tangential sequences are special in the sense of Abate [1, Lemma 2.2.24]). Therefore

(6.4) lim
k→∞

kEB2 (e1,R)(zk, hzk, e1ie1) = 0.
Now let g := F1|EB2 (e1,R) : EB2(e1, R) → L := C \ {a0, a1}. By the monotonicity of
Kobayashi distance we have

ωL(g(zk), g(hzk, e1ie1)) ≤ kEB2(e1,R)(zk, hzk, e1ie1),
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and (6.4) forces
lim
k→∞

ωL(g(zk), g(hzk, e1ie1)) = 0.
Since L is hyperbolic, this means that if g(hzk, e1ie1) tends to some b ∈ C then g(zk) must
have the same limit as k →∞. By (6.1) it follows that g(ζe1) has non-tangential limit 0
at 1. Since zk → e1 non-tangentially, the same does {hzk, e1ie1}. Then

lim
k→∞

F1(zk) = lim
k→∞

g(zk) = lim
k→∞

g(hzk, e1ie1) = 0,
proving that F1 has non-tangential limit 0 at e1.
As for (2), from Theorem 6.1 with H = Hs0,θ0 (for s0 ≥ 0, θ0 ∈ R) as in (6.2), we have

∠ lim
ζ→1

d((Hs0,θ0)1)H−1
s0,θ0(ζe1)

(F (H−1
s0,θ0(ζe1))) = 0.

By the very definition of Hs0,θ0 (and keeping in mind that (Hs0,θ0)
−1 = Hs,θ for some s ≥ 0

and θ ∈ R) an easy computation shows that
d((Hs0,θ0)1)H−1

s0,θ0(ζe1)
(F (H−1

s0,θ0(ζe1))) = C(ζ)[F1(Hs,θ(ζe1)) + (1− ζ)F2(Hs,θ(ζe1))],

where C(ζ) is a smooth function which tends to some real number C 6= 0 for ζ → 1. Thus,
since F1 has non-tangential limit 0 at e1 by (1), statement (2) follows. ¤
Example 6.3. The infinitesimal generator F (z1, z2) = (0,−z2/(1 − z1)) in Example 4.2
has the boundary behavior prescribed by Corollary 6.2 at e1. Notice that F2 has not
(non-tangential) limit 0 at e1.
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