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Abstract. This is a small survey about the pluricomplex Green function of

M. Klimek, J.-P. Demailly and L. Lempert and the recently introduced pluricom-

plex Poisson kernel by the author and G. Patrizio. Aside from reviewing basic

properties, we give a new look to iteration theory and semigroups using those

tools.

Sommario. Questo è un breve sunto sulla funzione di Green pluricomp-

lessa definita da M. Klimek, J.-P. Demailly e L. Lempert e sul nucleo di Poisson

pluricomplesso recentemente introdotto dall’autore e G. Patrizio. Oltre ad un

breve ripasso delle proprietà di base, daremo una visione nuova alla teoria della

iterazione e dei semigruppi utilizzando tali strumenti.

This paper is in definitive form and no version of it will be published elsewhere.
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1 Introduction

In the past decades the study of homogeneous Monge-Ampère equations with

some prescribed singularity played a central role in pluripotential theory, espe-

cially due to many applications it has, such as in Ricci’s flow, extremal metrics,

representation formulas, etc...

In one dimension a homogeneous Monge-Ampère equation is nothing but a

Dirichlet-type problem and the solution (when it exists) is a harmonic function

with some prescribed singularity. For instance, the Green function in the unit

disc can be defined as the solution to a homogeneous Monge–Ampère equation,

zero on the boundary and with a logarithmic singularity at a given point. Or, in

other terms, using Perron’s point of view, it can be described as the maximum of a

family of negative subharmonic functions having at least a logarithmic singularity

at a given point. This point of view is very useful in iteration theory because a

given holomorphic self-map of the unit disc maps such a family into another such

family, and hence it contracts the Green function, providing information on the

dynamics of the map itself. Moreover, such argument can be used to characterize

semicomplete holomorphic vector fields of the unit disc.

Similar arguments work for the Poisson kernel in the unit disc. The Poisson

kernel is nothing but the solution to a homogeneous Monge-Ampère equation

with a prescribed non-tangential simple pole at a boundary point. Again, it can

be seen as the maximal element of a particular family of subharmonic functions

(this is in fact the content of the classical Phragmen-Lindelöf theorem) and hence

used in iteration theory.

The Green function and the Poisson kernel can be also used to obtain repre-

sentation formulas for subharmonic functions of the unit disc (and allow to solve

non-homogeneous Dirichlet problem).

In higher dimensions, in the case of strongly convex domains in the 80’s L.

Lempert developed an amazing tool to study the Kobayashi distance. As a re-

sult of his theory, he was able to solve a particular homogeneous Monge-Ampère

equation with prescribed logarithmic singularity at a given point which resem-

bles completely the one dimensional equation giving rise to the Green function.

More or less in the same ages, M. Klimek proposed to name pluricomplex Green

function the maximal element of a given family of plurisubharmonic functions.

J.-P. Demailly proved that for hyperconvex domains such a function is unique

and solves the same homogeneous Monge-Ampère equation as Lempert’s (thus

being the same in the strongly convex case). Moreover, Demailly proved a rep-

resentation formula for plurisubharmonic functions, replacing the Poisson kernel

with a measure coming from the cut-off Monge-Ampère mass of the pluricomplex

Green function.



Recently, the author and G. Patrizio studied a homogeneous Monge-Ampère

equation with prescribed non-tangential simple pole in strongly convex domains.

The solution shares many properties with the classical Poisson kernel and thus it

was named pluricomplex Poisson kernel. Later, the two authors and S. Trapani

proved that such a pluricomplex Poisson kernel satisfies a higher dimensional

Phragmen-Lindelöf theorem and the Demailly boundary measure in his represen-

tation formula is essentially given by such a function.

More recently, the author with M. Contreras and S. Diaz-Madrigal, applied

those tools to study iteration theory and semigroups.

The present paper is a small survey along the previously described lines. Start-

ing from the unit disc we review the theory, especially with a view toward iteration

theory and semigroups.

The content of this paper is based on the conference the author gave in

Bologna in May 2007. The author wishes to sincerely thank prof. Salvatore

Coen for both the invitation to give that talk and the opportunity to write this

survey.

2 The unit disc

Let D := {ζ ∈ C : |ζ| < 1} be the unit disc. Let z ∈ D. The Green function with

pole at z is defined as

GD,z(ζ) := log |Tz(ζ)|,
where Tz(ζ) = ζ−z

1−zζ
is an automorphism of D which maps z to ζ.

The Green function GD,z is a negative subharmonic function in D (harmonic

in D \ {z} with a logarithmic singularity at z) which extends continuously up to

∂D and is identically zero there. Its sub-level sets are exactly the discs for the

Poincaré distance of D.

Let subh(D) denote the real cone of subharmonic functions in D. It can be

proved that

GD,z = max{u ∈ subh(D) : u < 0, lim sup
ζ→z

[u(ζ)− log |ζ − z|] < +∞}. (1)

Given a holomorphic self-map of the unit disc, f : D → D, it follows that if

u ∈ {u ∈ subh(D) : u < 0, lim supζ→z[u(ζ) − log |ζ − z|] < +∞} then f ∗u :=

u ◦ f ∈ {v ∈ subh(D) : v < 0, lim supζ→f(z)[v(ζ)− log |ζ − f(z)|] < +∞}. Hence,

by the previous result, we obtain the classical Schwarz lemma rephrased in the

following way:



Theorem [Potential form of the Schwarz lemma] For all f : D → D holo-

morphic it holds

f ∗(GD,f(z)) ≤ GD,z. (2)

Moreover, at some—hence any—point it holds = if and only if f is an automor-

phism of D.

A strict relative of the Green function is the Poisson kernel. Let z ∈ ∂D. The

Poisson kernel with pole at z is defined as

PD,z(ζ) := −1− |ζ|2
|z − ζ|2 .

It is a negative harmonic function on D, which extends smoothly on ∂D \ {z}
and has a simple pole at z when moving nontangentially to z (namely, for any

sequence {ζk} ⊂ D such that ζk → z and |ζk − z| < c(1− |ζk|) for some constant

c > 0 independent of k, it follows that PD,z(ζk) ≈ |z − ζk|−1 as k →∞).

The sublevel sets of the Poisson kernel PD,z are discs tangent to ∂D at z. A

direct computation (see, [16] or [12]) shows that the Poisson kernel is the normal

derivative of the Green function. In fact, a theorem similar to Schwarz’s lemma

holds at the boundary. Such a theorem is usually known as the Julia lemma, see,

e.g., [1] and it is stated in terms of horodiscs (i.e. level sets of the Poisson kernel).

Here is its theoretical potential rephrasing:

Theorem [Potential form of the Julia lemma]Let f : D → D be holomor-

phic. Suppose that z0, z1 ∈ ∂D and that f has nontangential limit z1 at z0. Then

there exists λ ≥ 0 such that

f ∗(PD,z1) ≤ λPD,z0 .

Moreover, at some—hence any—point it holds = (and necessarily λ > 0) if and

only if f is an automorphism of D.

The Poisson kernel satisfies a maximal condition similar to (1). Indeed, the

content of the classical Phragmen-Lindelöf theorem is the following:

PD,z = max{u ∈ subh(D) : u < 0, lim sup
R3r→1

u(r)(1− r) ≤ −2}. (3)

The Poisson kernel can be used to reproduce harmonic functions on D which

extends continuously up to ∂D (see [16] or any book of potential theory).

3 The pluricomplex Green function in higher di-

mension

Let D ⊂ CN be a bounded domain. Let z0 ∈ D. Let Psh(D) denote the space of

plurisubharmonic functions on D, namely subharmonic functions which remain



subharmonic under holomorphic changes of variables. We recall here that in

dimension one harmonic functions can be characterized as maximal subharmonic

functions, namely, if u is subharmonic in D and C ⊂⊂ D is a disc, then u is

harmonic if and only if for every subharmonic function v on D such that v ≤ u on

∂C it follows that v ≤ u on C. Harmonic functions are smooth by the Caccioppoli-

Weil lemma. In higher dimension however, not all pluriharmonic functions are

smooth, not even continuous, but definitely they are maximal. Moreover, by a

deep result of Bedford and Taylor [3], [4] if u ∈ L∞loc(D)∩Psh(D) then u is maximal

(and hence pluriharmonic) if and only if (ddcu)N ≡ 0, where dc := i(∂ − ∂) and

the operator (ddc·)n has a meaning (see also, [16]) in the sense of currents. Note

that if u ∈ C2(D) ∩ Psh(D) then (ddcu)n ≡ 0 if and only if the complex Hessian

matrix of u has determinant zero at any point.

Let us consider the following family

FD,z0 := {u ∈ Psh(D) : u < 0, lim sup
z→z0

[u(z)− log ‖z − z0‖] < +∞}.

According to Klimek [16] we define the pluricomplex Green function with loga-

rithmic pole at z0 as

GD,z0(z) := sup
u∈FD,z0

u(z).

Klimek proved that GD,z0 exists, it is actually the maximum of the family FD,z0 ,

it is plurisubharmonic and maximal. Later and independently Demailly [13], [14]

and Lempert [17], [18] proved regularity results of the pluricomplex Green’s func-

tion and its relation to the complex Monge-Ampére equation. Moreover, Guan

[15] and BÃlocki [5] provided finer regularity for strongly pseudoconvex domains

D. We collect all the results in the following theorem.

Theorem A

• (Demailly) Let D ⊂ CN be a bounded hyperconvex domain. Then the pluri-

complex Green function GD,·(·) is continuous in D×D \Diag and it is the unique

plurisubharmonic function u ∈ Psh(D) ∩ L∞loc(D) such that (∂∂u)N(z) = δz0 (the

Dirac delta), u(z) = 0 for z ∈ ∂D and u(z)− log ‖p− z‖ = O(1) as z → z0.

• (Lempert) If D is strongly convex with smooth boundary then GD,·(·) is C∞

in D × D \ Diag. Moreover, GD,z(w) = log tanh kD(z, w) where kD denotes the

Kobayashi distance of D, and the associated Monge–Ampére foliation consists of

complex geodesics passing through z0.

• (Guan/BÃlocki) If D is strongly pseudoconvex then GD,z0(·) is C1,1(D \ {z0})
in D.

It is worth to say that the three previous results are proved with completely

different techniques.



We recall that a complex geodesic is a holomorphic isometry between the unit

disc endowed with the Poincaré distance and the domain D endowed with the

Kobayashi distance.

Demailly [14, Théorème 5.1] proved moreover that for all F ∈ Psh(D)∩C0(D)

the following representation formula holds:

F (z) = µz(F )− 1

2πn

∫

w∈D

|LD,z(w)| ddcF (w) ∧ (ddcLD,z)
n−1(w), (4)

where µz is defined by taking the limit in the sense of distributions as R → 0

of the measures (ddc max{GD,z(·), R})N supported on the level set {w ∈ D :

GD,z(w) = R}.
If D = D the unit disc of C then GD,z(w) is nothing but the Green function.

By the very definition of the pluricomplex Green function as maximal element

of the family FD,z0 and using complex geodesics and Lempert’s theorem one can

prove (see [6]) the following Schwarz’type lemma:

Theorem Let D ⊂⊂ Cn be a strongly convex domain with smooth boundary

and let z0 ∈ D. Let h : D → D be holomorphic. Then h(z0) = z0 if and only if

for all z ∈ D

GD(z0, h(z)) ≤ GD(z0, z). (5)

Moreover, if equality holds in (5) for some z 6= z0 and ϕ : D→ D is the complex

geodesic such that ϕ(0) = z0 and ϕ(t) = z for some t ∈ (0, 1), it follows that

h◦ϕ : D→ D is a complex geodesic and h : ϕ(D) → h(ϕ(D)) is an automorphism.

Such a theorem is the bulk for an interesting application to the theory of semi-

groups. Given a holomorphic vector field X on D, one is interested in studying the

behavior of its trajectories. By the holomorphic flow box theorem, for any z ∈ D

there exists a compact subset K ⊂⊂ D and δ > 0 and a map φ : [0, δ)×K → D

holomorphic in w ∈ K and real analytic in t ∈ [0, δ) such that ϕ(0, w) = w for

all w ∈ K and
∂ϕ(t, w)

∂t
= X(ϕ(t, w)).

The vector field X is said to be semicomplete provided δ = +∞ for all z ∈ D.

Obviously, this holds also for negative times and a vector field is said to be

complete if it is semicomplete both for positive and negative times. In case a

vector field is semicomplete, for each t ≥ 0 the map z 7→ ϕt(z) := ϕ(t, z) is

a holomorphic self-map of D. Moreover, the family (ϕt) forms a semigroup in

the sense that the map (R+, +) 3 t 7→ ϕt ∈ (Hol(D, D), ◦) is a morphism of

semigroup, continuous with respect to the Euclidean topology of R+ and with

the topology of uniform convergence on compacta of Hol(D, D).



The semigroup (ϕt) fixes a point z0 ∈ D if and only if X(z0) = 0. And, by

the previous theorem, in case D is strongly convex, this is the case if and only

if GD,z0(ϕt(z)) ≤ GD,z0(z) for all t ≥ 0. Differentiating in t, it follows that if X

is semicomplete and X(z0) = 0 then dGD,z0(X)(z) ≤ 0 for all z ∈ D. It can be

shown that also the converse holds, also, dropping the hypothesis of a singular

point, indeed, we have

Theorem [6]. Let D ⊂⊂ Cn be a strongly convex domain with smooth boundary.

Let X be a holomorphic vector field in D. Then X is semicomplete if and only if

for all z, w ∈ D with z 6= w it follows d(GD)|(z,w) · (F (z), F (w)) ≤ 0 (where here

we consider GD : D ×D → R).

Such a condition can be computed in specific cases such as the unit disc, the

polydisc or the unit ball, giving rise to some handleable conditions. In particular,

in the unit disc case, it reduces to the infamous Berkson-Porta formula (see, e.g.,

[1]).

In some very recent papers [7], [8] such a condition (and a similar one related

to the Kobayashi distance on manifolds) has been used to characterize evolution

families and Herglotz vector fields in the Loewner equation in one and several

complex variables.

4 The pluricomplex Poisson kernel in higher di-

mension

Let D ⊂⊂ CN be a strongly convex domain with smooth boundary, z0 ∈ D

and let p ∈ ∂D. In the paper [9], G. Patrizio and the author introduced a

smooth plurisubharmonic function uD,p : D → (−∞, 0) which extends smoothly

on D \ {p} such that d(uD,p)z 6= 0 for all z ∈ D, uD,p(q) = 0 for all q ∈ ∂D \ {p}
and uD,p has a simple pole at p along non-tangential directions. Up to a real

positive multiple, we assume here that uD,p(z0) = −1. The function uD,p solves

the following homogeneous Monge-Ampère equation:





u plurisubharmonic in D

(ddcu)N = 0 in D

u < 0 in D

u(w) = 0 for all w ∈ ∂D \ {p}
u(w) ≈ ‖w − p‖−1 as w → p non-tangentially.

(6)

In the papers [9] and [10], the authors prove that uD,p shares many proper-

ties with the classical Poisson kernel for the unit disc, so it deserves the name

pluricomplex Poisson kernel. In case D = D the unit disc in C, the function



uD,p (normalized so that uD,p(0) = −1) is in fact the classical (negative) Poisson

kernel. In case D = Bn, the pluricomplex Poisson kernel (normalized so that

uBn,p(0) = −1) is given by

uBn,p(z) = − 1− ‖z‖2

|〈p− z, p〉|2 .

The level sets of uD,p are exactly boundaries of Abate’s horospheres [1]. Recall

that a horosphere ED(p,R) of center p ∈ ∂D and radius R > 0 (with respect to

z0) is given by

ED(p,R) = {z ∈ D : lim
w→p

[kD(z, w)− kD(z0, w)] <
1

2
log R}.

Notice that the existence of the limit in the definition of ED(p,R) is a character-

istic of smooth strongly convex domains and follows again from Lempert’s theory

(see [1, Theorem 2.6.47]). Thanks to our normalization uD,p(z0) = −1, it follows

that

ED(p,R) = {z ∈ D : uD,p(z) < −1/R}. (7)

In particular horospheres are smooth strongly pseudoconvex domains, but one

can prove that if D is strongly convex they are also strongly convex [10].

For the unit disc, these level sets are boundaries of horocycles and, in case

D = Bn, these are boundaries of horospheres in Bn with center p, whose explicit

expression is

EBn(p,R) = {z ∈ Bn :
|1− 〈z, p〉|2
1− ‖z‖2

< R}.

In the paper [10] it is shown that the pluricomplex Poisson kernel is the

maximum of a special family, thus generalizing the classical Phragmen-Lindelöf

theorem. More precisely, let D ⊂ CN be a bounded strongly convex domain with

smooth boundary. We let Γp be the set of all C∞ curves γ : [0, 1] → D∪{p} such

that γ(1) = p and γ′(1) 6∈ Tp∂D (notice that, if νp is the unit outward normal to

∂D at p then γ′(1) 6∈ Tp∂D if and only if Re 〈γ′(1), νp〉 > 0).

Theorem PL. Let D ⊂ CN be a bounded strongly convex domain with smooth

boundary and let p ∈ ∂D. Let νp be the unit outward normal to ∂D at p.

Consider the following family Sp(D):





u ∈ Psh(D)

lim supz→x u(z) ≤ 0 for all x ∈ ∂D \ {p}
lim inf

t→1
|u(γ(t))(1− t)| ≥ 2Re (〈γ′(1), νp〉−1) for all γ ∈ Γp,

(8)

Then uD,p ∈ Sp(D) and u ≤ uD,p for all u ∈ Sp(D).



The function uD,p is unique as the maximal solution to (6), and has some

other uniqueness features, although an “absolute” uniqueness (such as the pluri-

complex Green function) is not known because the Monge-Ampère problem (6)

only establishes non-tangential behavior at p.

The pluricomplex Poisson kernel is related to the pluricomplex Green function

as follows [10]

Theorem B. Let D be a bounded strongly convex domain in CN with smooth

boundary. Let z0 ∈ D and p ∈ ∂D. Let νp be the outer normal of ∂D at p. Then

uD,p(z0) = −∂GD,z0

∂νp

(p).

Moreover, denoting by ω∂D the normalized Levi form of ∂D,

dµz(p) = |uD,p(z)|Nω∂D(p).

The last equation allows to give an “explicit” representation formula for

plurisubharmonic functions in D, namely, putting together Theorem A and The-

orem B we obtain

Corollary. Let D be a strongly convex domain with smooth boundary. Let

F ∈ Psh(D) ∩ C0(D). Then for all z ∈ D

F (z) =
∫

p∈∂D
|uD,p(z)|nF (p)ω∂D(p)

− 1
2πn

∫
w∈D

|GD,z(w)| ddcF (w) ∧ (ddcLD,z)
n−1(w).

In particular if F is pluriharmonic then

F (z) =

∫

p∈∂D

|uD,p(z)|nF (p)ω∂D(p).

In case of domains which are not strongly convex, one can try to use Theorem

PL to define a candidate for the pluricomplex Poisson kernel. This is done is [11],

and in fact, in case of a strongly pseudoconvex domain D contained in a Stein

manifold, one can show that supremum of the family Sp(D) exists, it is continuous

up to the boundary and shares many property with the one-dimensional Poisson

kernel.

We end up this little survey by presenting some applications of the pluri-

complex Poisson kernel for strongly convex domains to the theory of semigroups.

First, we give the following generalization to the Julia’s Lemma [6].



Let D ⊂⊂ Cn be a strongly convex domain with smooth boundary, p ∈ ∂D,

and h : D → D holomorphic. The boundary dilatation coefficient αh(p) ∈
(0, +∞] is defined as

αh(p) = inf
q∈∂D

{sup
z∈D

uD,p(z)

uD,q(h(z))
}.

Theorem. Let D ⊂⊂ CN be a strongly convex domain with smooth boundary,

p ∈ ∂D and h : D → D holomorphic. If the boundary dilatation coefficient

αh(p) < +∞, then there exists a unique point q ∈ ∂D such that h has non-

tangential limit q at p and, for all z ∈ D,

uD,q(h(z)) ≤ 1

αh(p)
uD,p(z). (9)

Moreover, if equality holds in (9) for some z ∈ D and ϕ : D→ D is the complex

geodesic such that ϕ(1) = p and ϕ(0) = z, it follows that h ◦ ϕ : D → D is a

complex geodesic and h : ϕ(D) → h(ϕ(D)) is an automorphism.

Equation (9) has a geometric meaning, namely, the map h maps any horo-

sphere ED(p,R) into the horosphere ED(q, αh(p)R), exactly as in the unit disc

case.

Again, this theorem can be used to characterizes “boundary sinks” for semi-

groups. Let (Φt) be a one-parameter semigroup of holomorphic self-maps of D. A

point p ∈ ∂D is called a sink for (Φt), if p is a fixed point for Φt as non-tangential

limit and αΦt(p) < +∞ for all t ≥ 0. It can be proved that if p ∈ ∂D is a sink

for (Φt) then there exists β ∈ R such that αΦt(p) = eβt for all t ≥ 0.

The question is how to characterize sinks in terms of the associated semi-

complete vector field. The answer is obtained by means of the pluricomplex

Poisson kernel [6]:

Theorem. Let D ⊂⊂ Cn be a strongly convex domain with smooth bound-

ary. Let F : D → Cn be a semicomplete holomorphic vector field generating a

semigroup (Φt). Let β ∈ R and p ∈ ∂D. The following are equivalent:

1. The semigroup (Φt) has a sink at p with boundary dilatation coefficients

αt(p) ≤ eβt for all t ≥ 0.

2. d(uD,p)z · F (z) + βuD,p(z) ≤ 0 for all z ∈ D.

Moreover, if p is a sink for (Φt) then the boundary dilatation coefficient of Φt is

αt(p) = e−tb with b = infz∈D d(uD,p)z · F (z)/uD,p(z).
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