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COMMUTING HOLOMORPHIC MAPS IN STRONGLY CONVEX
DOMAINS

FILIPPO BRACCI

Abstract. Let D be a bounded strongly convex C3 domain of Cn. We prove
that if f, g ∈ Hol(D,D) are commuting holomorphic self-maps of D, then they

have a common fixed point in D (if it belongs to ∂D, we mean fixed in the
sense of K-limits). Furthermore, if f and g have no fixed points in D and
f ◦ g = g ◦ f then f and g have the same Wolff point, unless their restrictions
to the complex geodesic whose closure contains the Wolff points of f and g,
are two commuting (hyperbolic) automorphisms of such geodesic.

0. Introduction

In 1964 A.L. Shields [17] proved that a family of continuous functions mapping
the closed unit disk into itself, holomorphic in the open disk and commuting under
composition, has a common fixed point. Since then the structure of families of
commuting holomorphic self-maps of various cases of domains has been deeply in-
vestigated. In particular the result by Shields was generalized to the unit ball Bn of
Cn by T.J. Suffridge [19], and M. Abate [1], to the case of strongly convex domains
by Abate [1] and finally to the case of convex domains and Riemann surfaces by
Abate and J.P. Vigué [4].
On the other hand, a result due to Wolff (which we shall refer to as the Wolff
Lemma [20], see also A. Denjoy [12]) states that the sequence of iterates {fk} of a
holomorphic self-map f of the unit disk ∆ converges (if f is not an elliptic automor-
phism of ∆) to a single point τ ∈ ∆, the Wolff point of f . The Wolff point τ belongs
to ∆ if and only if τ is the only fixed point of f . In this case, if g is a holomorphic
self-maps of ∆ which commutes with f , then g(τ) = τ and τ is the Wolff point of g,
too. If f has no fixed points in ∆, by the classical Julia-Wolff-Carathéodory The-
orem, f has non-tangential limit τ at τ . A result by M.H. Heins [13] states that a
holomorphic self-map of ∆ which commutes with a hyperbolic automorphism of ∆
is itself a hyperbolic automorphism of ∆ (unless it is the identity). Subsequently, in
1973 D.F. Behan [5] proved that two commuting holomorphic self-maps of ∆ with
no fixed points in ∆ either have the same Wolff point or they are two hyperbolic
automorphisms of ∆. As a consequence (the so-called “Behan-Shields Theorem”),
two commuting holomorphic self-maps of ∆ always have a common fixed point,
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either in the interior of the disk or as non-tangential limit at the boundary.
In the multidimensional case the situation is richer (and more complicated) than
in the case of one variable. For instance, C. de Fabritiis and G. Gentili [11] and
de Fabritiis [10] showed that in the unit ball Bn of Cn (n > 1) there is a large fam-
ily of holomorphic (non-automorphisms) self-maps which commute with a given
hyperbolic automorphism of Bn. Moreover, the fixed points set of a holomorphic
self-map of Bn is (generally) not reduced to one point, and there are couples of
commuting holomorphic self-maps of Bn of which only one has fixed points in Bn

(for instance there are elliptic automorphisms commuting with hyperbolic auto-
morphisms). Another feature of the multidimensional case is that, in a bounded
C2 domain of Cn, the natural admissible regions for the study of boundary behav-
iours of maps are not cones (i.e. non-tangential limits), but regions which approach
the boundary non-tangentially along the normal direction, and tangentially along
the complex tangential directions (see E.M. Stein [18], E.M. Čirca [9], J.A. Cima
and S.G. Krantz [8], Abate [2], [1]). In this paper we will use Abate’s K-regions for
strongly convex domains (which are however comparable to the admissible approach
regions of Stein, Čirka and Cima and Krantz). Then our boundary admissible lim-
its will be the K-limits (see §2).
In spite of all the differences, at least in a strongly convex domain D of Cn, the
behaviour of the sequence of iterates of f ∈ Hol(D,D) -if f has no fixed points-
is similar to the behaviour in ∆. In fact {fk} converges to a unique boundary
point τ(f) ∈ ∂D, the Wolff point of f ; moreover f has K-limit τ(f) at τ(f) (see
[1],[2] and §1, §2). It is then natural to investigate whether a Behan-Shields-type
Theorem holds in strongly convex domains. Indeed we proved (see [6]) that such
a result holds in Bn (n > 1). If f, g ∈ Hol(Bn,Bn) and f ◦ g = g ◦ f , then f
and g have a “common fixed point” (possibly at the boundary in the sense of
K-limits). Moreover if f and g have no fixed points in Bn then either f and g
have the same Wolff point or, up to conjugation in the group of automorphisms of
Bn, there exist f1 and g1, commuting hyperbolic automorphisms of ∆, such that
f(ζ, 0, . . . , 0) = (f1(ζ), 0, . . . , 0) and g(ζ, 0, . . . , 0) = (g1(ζ), 0, . . . , 0) for all ζ ∈ ∆.

The aim of this paper is to generalize the above result to any bounded strongly
convex domain with C3 boundary.
Firstly, setting Fix(f) = {z ∈ D : f(z) = z}, we prove the following Shields-type
Theorem with no assumption of boundary continuity:

Theorem 0.1. Let D be a bounded strongly convex C3 domain. Suppose that
f, g ∈ Hol(D,D) and f ◦ g = g ◦ f .

(i) If Fix(f) 6= ∅ and Fix(g) 6= ∅ then Fix(f)
⋂

Fix(g) 6= ∅.
(ii) If Fix(f) = ∅ and x ∈ ∂D is the Wolff point of f , then g has K-limit x at

x. In particular, f and g have K-limit x at x.

To state our version of the Behan Theorem we need the “geodesic projection device”
of L. Lempert (see [15], [16], and also [2]). We recall that a complex geodesic
ϕ : ∆ → D is a holomorphic isometry with respect to the Poincaré distance on ∆
and the Kobayashi distance on D (see §1, §2). Since D is bounded, C3 and strongly
convex, it follows that for every a ∈ ∂D and b ∈ ∂D, a 6= b, there exists a unique
(up to parametrizations of ∆) complex geodesic ϕ : ∆ → D such that ϕ ∈ C1(∆)
and ϕ(−1) = a, ϕ(1) = b (see [7], [15], [1], [2], [14]). Then our Behan-type Theorem
in D can be stated as follows:
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Theorem 0.2. Let D be a bounded strongly convex C3 domain in Cn. Let f, g ∈
Hol(D,D) have no fixed points and let f ◦ g = g ◦ f . Then either f and g have
the same Wolff point or there exists a complex geodesic ϕ : ∆ → D such that
f(ϕ(∆)) = ϕ(∆), g(ϕ(∆)) = ϕ(∆) and f |ϕ(∆), g|ϕ(∆) are commuting (hyperbolic)
automorphisms of ϕ(∆). In the last case, the complex geodesic ϕ is the unique (up
to parametrizations of ∆) such that ϕ(−1) is the Wolff point of g and ϕ(1) is the
Wolff point of f .

The paper is organized as follows. In the first section we recall some facts about
iteration theory in strongly convex domains, as developed by Abate (see [1], [2]).
We give a (weak) version of the Shields Theorem with no assumption about the
continuity at the boundary. That is, using an ad hoc version of Julia’s Lemma, we
shall prove that two commuting holomorphic self-maps of D have a “common fixed
point in D (if it lies in ∂D, here we mean “fixed” in the sense of non-tangential
limit). In the second section we introduce the notions of K-regions, K-limits and we
briefly discuss the geodesic projection device of Lempert. Then we state a (maimed)
version of the Julia-Wolff-Carathéodory Theorem in D. With these tools we gen-
eralize the Shields Theorem in order to obtain Theorem 0.1. The third section is
devoted to the proof of Theorem 0.2.

The author warmly thanks Graziano Gentili for some helpful conversations.

1. Iteration theory in strongly convex domains

From now on D will denote a bounded strongly convex C3 domain in Cn. More-
over we fix once for all a point z0 ∈ D.
As a consequence of a deep result due to Lempert [15] we can define the Kobayashi
distance on D by

kD(x1, x2) := inf{ω(ζ1, ζ2) : ∃Φ ∈ Hol(∆, D),Φ(ζj) = xj (j = 1, 2)},
where ω is the Poincaré distance in the unit disc ∆.
An useful property of kD is the following (see [1], [14]):

Lemma 1.1. Let d(., .) denote the euclidean distance in Cn. Then there are two
constants C1 > 0, C2 > 0 depending only on D and z0 such that for all z ∈ D

−C1 − 1
2

log d(z, ∂D) ≤ kD(z0, z) ≤ C2 − 1
2

log d(z, ∂D).

Through the whole paper we will say that h ∈ Hol(D,D) has no fixed points to
mean that Fix(h) = ∅. With this convention we state this type of Wolff-Denjoy
Lemma:

Theorem 1.2 (Abate [1], [2]). Let h ∈ Hol(D,D) . Then {hk} is compactly di-
vergent if and only if h has no fixed points. Moreover if h has no fixed points then
{hk} converges uniformly on compacta to a constant x ∈ ∂D.

Since we have a Wolff Lemma, we can define a “Wolff point”:

Definition 1.3. Let h ∈ Hol(D,D) be with no fixed points. We call Wolff point
of h the unique point defined by Theorem 1.2.
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Definition 1.4. The boundary dilatation coefficient of h at τ ∈ ∂D is the value
αh(τ) ∈ R⋃{∞} such that

1
2

log αh(τ) := lim inf
w→τ

[
kD

(
z0, w

)− kD

(
z0, h(w)

)]
.

Proposition 1.5 (Abate [1], [2]). Let h ∈ Hol(D,D) . Then

(i) αh(τ) > 0 for every τ ∈ ∂D.
(ii) If h has no fixed point and τ ∈ ∂D is its Wolff point, then

0 < αh(τ) ≤ 1.

By the Julia-type Lemma in D (see [1], [2]), and from the uniqueness of the Wolff
point, it follows:

Proposition 1.6. Let h ∈ Hol(D,D) have no fixed points. A point τ ∈ ∂D is the
Wolff point of h if and only if αh(τ) ≤ 1 and h has non-tangential limit τ at τ .

We recall that a continuous curve γ : [0, 1) → D (resp. a sequence {wk} ⊂ D) is
said to be a τ -curve (resp. τ -sequence) if limt→1 γ(t) = τ (resp. limk→∞ wk = τ).
The following proposition is a Julia-type Lemma for strongly convex domains. Even
if it seems to the author that the Julia’s Lemma appears in this form for the first
time, the proof is not presented since it is just a re-assembling of the proofs of
several versions of Julia-type Lemmas given by Abate (see [1], [2]).

Proposition 1.7. Let h ∈ Hol(D,D) , let τ ∈ ∂D and let γ(t) be a τ -curve. If

(1.1) lim sup
t→1

[
kD

(
z0, γ(t)

)− kD

(
z0, h(γ(t))

)]
< +∞,

then there exists a unique point σ ∈ ∂D such that

lim
t→1

h
(
γ(t)

)
= σ.

Moreover h has non-tangential limit σ at τ .

Of course, in the above statement one can replace the τ -curve γ(t) with any
τ -sequence.
Proposition 1.7 has the following interpretation. We say that a map h : D → D
has J-limit L ∈ D at τ ∈ ∂D if h

(
γ(t)

) → L as t → 1 for any τ -curve γ for which
(1.1) holds. Then

Corollary 1.8. Let h ∈ Hol(D,D) . Suppose that the boundary dilatation coeffi-
cient of h at τ ∈ ∂D is finite. Then h has J-limit σ ∈ ∂D at τ .

Notice that J-limit implies non-tangential limit, since if the boundary dilatation
coefficient of h at τ is finite then non-tangential τ -curves have property (1.1) (one
can check this directly by means of Lemma 1.1, or by means of one of the versions
of Julia-Wolff-Carathéodory Theorem).
With this tools we can state and prove a (weak) version of the Shields Theorem in
D:

Theorem 1.9. Let f, g ∈ Hol(D,D) . Suppose that f has no fixed points, x ∈ ∂D
is the Wolff point of f and f ◦ g = g ◦ f . Then f and g have non-tangential limit
x at x.
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Proof. Let wk := fk(z0). By Theorem 1.2 it follows that wk → x. By the hypothesis
f and g commute, and by Theorem 1.2, we have

lim
k→∞

g(wk) = lim
k→∞

fk
(
g(z0)

)
= x.

Now, thanks to Proposition 1.7 (applied to the x-sequence wk) we are left to show
that

lim sup
k→∞

[
kD

(
z0, wk

)− kD

(
z0, g(wk)

)]
< +∞.

Since holomorphic maps contract the Kobayashi distance, it follows that

kD

(
z0, wk

)− kD

(
z0, g(wk)

)
= kD

(
z0, f

k(z0)
)− kD

(
z0, f

k(g(z0))
)

≤ kD

(
fk(z0), fk(g(z0))

) ≤ kD

(
z0, g(z0)

)
< +∞.

As we claimed. ¤

2. Admissible tangential limits

In the previous section we showed that two commuting holomorphic self-maps
of D (one of which with no fixed points) have a common “boundary fixed point”
in the sense of non-tangential limits. A careful reading of the proof of Theorem 1.9
shows that g has finite boundary dilatation coefficient at the Wolff point of f . This
will be the key to get complex tangential directions available as admissible limits.
Recall that D is a bounded strongly convex C3 domain and that z0 ∈ D.

Definition 2.1 (Abate [1], [2]). Let τ ∈ ∂D and M > 1. The K-region Kz0(τ,M)
of center τ , amplitude M and pole z0 is given by

Kz0(τ,M) :=
{

z ∈ D : lim
w→τ

[kD(z, w)− kD(z0, w)] + kD(z0, z) < log M
}

.

We remark that in general the above limit does not exist if D is not strongly convex.
For the properties of K-regions we refer to [1],[2]. As customary we say that a holo-
morphic self-map h of D has K-limit σ at τ ∈ ∂D if f(wk) → σ as k →∞ for every
τ -sequence {wk} for which there exists M > 1 such that {wk} belongs to Kz0(τ, M).

Before going ahead we need now to recall some facts. A holomorphic map ϕ :
∆ → D is a complex geodesic if

∀ζ1, ζ2 ∈ ∆ kD

(
ϕ(ζ1), ϕ(ζ2)

)
= ω

(
ζ1, ζ2

)
.

Lempert (see [15],[16]) has shown that the complex geodesics in a strongly convex
C3 domain extend C1 to ∂∆ and furthermore that for every z0 ∈ D and τ ∈ ∂D
there exists a unique complex geodesic ϕτ : ∆ → D such that ϕτ (0) = z0 and
ϕτ (1) = τ . Moreover Lempert has constructed a holomorphic map pτ : D → ϕτ (∆),
such that pτ ◦ pτ = pτ and pτ ◦ ϕτ = ϕτ . We set p̃τ := ϕ−1

τ ◦ pτ and we call p̃τ the
left inverse of ϕτ (because of p̃τ ◦ ϕτ = id∆).
From now on we shall use the above terminology on complex geodesics.

Remark 2.2. From the very definition of complex geodesic, it follows that r 7→ ϕτ (r)
belongs to any K-region of center τ .

Definition 2.3. Let τ ∈ ∂D and let γ : [0, 1) 7→ D be a τ -curve. We set

γτ (t) := pτ

(
γ(t)

)
,
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and
γ̃τ (t) := p̃τ

(
γ(t)

)
.

Now we can state a (maimed) version of the Julia-Wolff-Carathéodory Theorem
in strongly convex domains:

Theorem 2.4 (Abate [1], [2]). Let h ∈ Hol(D,D) and τ ∈ ∂D be such that the
boundary dilatation coefficient ατ (h) of h at τ is finite. Then there exists a unique
σ ∈ ∂D such that h has K-limit σ at τ . Moreover

(i) lim
r→1

1− h̃σ(ϕτ (r))
1− r

= ατ (h).

(ii) lim
r→1

h(ϕτ (r))− hσ(ϕτ (r))√
1− r

= 0.

We can prove Theorem 0.1:

Theorem 2.5. Let D be a bounded strongly convex C3 domain. Suppose that
f, g ∈ Hol(D,D) and f ◦ g = g ◦ f .

(i) If Fix(f) 6= ∅ and Fix(g) 6= ∅ then Fix(f)
⋂

Fix(g) 6= ∅.
(ii) If Fix(f) = ∅ and x ∈ ∂D is the Wolff point of f , then g has K-limit x at

x. In particular, f and g have K-limit x at x.

Proof. (i)(sketch, see also [1] Prop. 2.5.14). Since f ◦ g = g ◦ f then f(Fix(g)) ⊆
Fix(g) and (since Fix(g) is a connected closed submanifold of D) Theorem 1.2
implies that f has a fixed point in Fix(g).
(ii) Let x be the Wolff point of f . By Theorem 1.9, g has non-tangential limit x at
x and the boundary dilatation coefficient of g at x is finite. Then Theorem 2.4 and
Proposition 1.6 imply the statement. ¤

3. A Behan-type Theorem for strongly convex domains

In this section we prove Theorem 0.2. Because of the length of the proof, we
first give a sketch and then we examine it in detail.

Sketch of the proof. Let f, g ∈ Hol(D,D) be such that f, g have no fixed points
and f ◦ g = g ◦ f . Denote by x the Wolff point of f and by y the Wolff point of g.
If x 6= y let ϕ : ∆ → D be the complex geodesic such that ϕ(−1) = y and ϕ(1) = x
and let p̃ be the left-inverse of ϕ. Proposition 1.6 and Theorem 2.4 imply that g has
K-limit y at y and Theorem 0.1 implies that g has K-limit x at x (The same holds
for f , of course). So g has two boundary fixed points (in the sense of K-limits) with
finite boundary dilatation coefficients at each point. Then the key to the whole
proof is to show that the product of the boundary dilatation coefficients of g at x
and at y is less than or equal to 1. Once we do this it turns out that p ◦ g ◦ ϕ is a
(hyperbolic) automorphism of ∆ thanks to the following:

Lemma 3.1 (Behan [5]). Let η ∈ Hol(∆,∆) be such that limr→1 η(r) = 1 and
limr→−1 η(r) = −1. If dη(µ) is the boundary dilatation coefficient of η at µ ∈ ∂∆,
i.e. dη(µ) := lim infξ→µ

1−|η(ξ)|
1−|ξ| , we have

(3.1) dη(1) · dη(−1) ≥ 1.

Moreover the equality holds in (3.1) if and only if η is a (hyperbolic) automorphism
of ∆.
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Then we shall show that p ◦ g ◦ ϕ = g ◦ ϕ, and since the same holds for f and
f ◦ g = g ◦ f then Theorem 0.2 will follow.

The most difficult part of the proof is the estimate of the boundary dilatation
coefficient of g at the Wolff point of f . We begin by recalling the following (see [1],
[2]):

Definition 3.2. Let σ ∈ ∂D. A σ-curve γ : [0, 1) → D is special if

lim
t→1

kD(γ(t), γσ(t)) = 0,

and it is restricted if γσ(t) → σ non-tangentially as t → 1.

The relationship among K-regions, special curves and restricted curves is the
following (see [2] and [1], Prop. 2.7.11):

Lemma 3.3. Let σ ∈ ∂D and let γ : [0, 1) → D be a σ-curve in D.
(i) If γ(t) ∈ Kz0(σ,M) eventually for some M > 1, then γ is restricted.
(ii) If γ is restricted, if

(3.2) lim
t→1

‖γ(t)− γσ(t)‖2
d(γσ(t), ∂D)

= 0,

and if there exists an euclidean ball B ⊂ D tangent to ∂D at σ such that
γ(t) ∈ B eventually, then γ is special.

We remind that if h ∈ Hol(D,D) and σ ∈ ∂D then hσ := pσ ◦h, where pσ is the
holomorphic retraction associated to the complex geodesic ϕσ. With this notation
we prove:

Proposition 3.4. Let h ∈ Hol(D,D) . Suppose that αh(τ) < ∞ at τ ∈ ∂D and let
σ ∈ ∂D be the point defined by Theorem 2.4 such that K-limz→τ h(z) = σ. Then

(3.3) lim
r→1

kD

(
h(ϕτ (r)), hσ(ϕτ (r))

)
= 0.

Remark 3.5. The curve r 7→ h(ϕτ (r)) is a well-defined σ-curve by Remark 2.2 and
by Theorem 2.4. The above Proposition 3.4 asserts that such a curve is special.
Furthermore, since h maps K-regions with center τ into K-regions with center σ
(see [2], Cor.1.8), then by Lemma 3.3(i), it follows that r 7→ hσ(ϕτ (r)) is non-
tangential.

Proof of Prop. 3.4. Our aim is to apply Lemma 3.3(ii) to the σ-curve r 7→ h(ϕτ (r)).
Such a curve is restricted as pointed out in Remark 3.5. Firstly we will show that

(3.4) lim
r→1

‖h(ϕτ (r))− hσ(ϕτ (r))‖2
d(hσ(ϕ(r)), ∂D)

= 0.

Up to dilatation and traslation we can suppose that D ⊂ Bn and Bn is tangent to
∂D at σ. Moreover since r 7→ hσ(ϕτ (r)) is non-tangential by Remark 3.5, we can
change the denominator of (3.4) with 1 − ‖hσ(ϕτ (r))‖. Then we are led to prove
that

(3.5) lim
r→1

‖h(ϕτ (r))− hσ(ϕτ (r))‖2
1− ‖hσ(ϕτ (r))‖ = 0.

But now

(3.6)
‖h(ϕτ (r))− hσ(ϕτ (r))‖2

1− ‖hσ(ϕτ (r))‖ =
[‖h(ϕτ (r))− hσ(ϕτ (r))‖√

1− r

]2

· 1− r

1− ‖hσ(ϕτ (r))‖ .
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By Theorem 2.4 the first factor on the right-hand side of (3.6) tends to zero as r
goes to 1. Then equation (3.5) holds whenever we show that the second factor on
the right-hand side of (3.6) is bounded as r goes to 1. Let kn be the Kobayashi
distance on Bn (ω is the Poincaré distance on ∆). Then, for r ≈ 1

1
2

log
1− r

1− ‖hσ(ϕτ (r))‖ ≈ kn

(
0, hσ(ϕτ (r))

)− ω
(
0, r

)
.

Since D ⊂ Bn then kD ≥ kn, hence

kn

(
0, hσ(ϕτ (r))

)− ω
(
0, r

) ≤ kD

(
z0, hσ(ϕτ (r))

)− kD

(
z0, ϕτ (r)

)
+ kn

(
0, z0

)
.

So we have to show that kD

(
z0, hσ(ϕτ (r))

) − kD

(
z0, ϕτ (r)

)
< +∞ as r → 1.

Keeping in mind that pσ : D → D is a contraction for kD and pσ(z0) = z0, we have

lim sup
r→1

[
kD

(
z0, hσ(ϕτ (r))

)− kD

(
z0, ϕτ (r)

)] ≤

lim sup
r→1

[
kD

(
z0, h(ϕτ (r))

)− kD

(
z0, ϕτ (r)

)]
=

− lim inf
r→1

[
kD

(
z0, ϕτ (r)

)− kD

(
z0, h(ϕτ (r))

)] ≤

− lim inf
w→τ

[
kD

(
z0, w

)− kD

(
z0, h(w)

)]
= −1

2
log αh(τ).

Now it is left to show that there exists an euclidean ball B ⊂ D tangent to ∂D at
σ and such that h(ϕτ (r)) ∈ B for r close to 1.
Let nσ be the outer unit normal vector to ∂D at σ. Let πσ : D → σ + Cnσ be
the euclidean projection given by πσ(z) := σ + 〈z − σ,nσ〉nσ. Since h(ϕτ (r)) ⊂
Kz0(σ,M) for some M > 1, then the σ-curve r 7→ πσ

(
h(ϕτ (r))

)
is non-tangential

(see [3] Lemma 1.3(ii)). It is then easy to see that if it holds:

(3.7) lim
r→1

‖h(ϕτ (r))− πσ(h(ϕτ (r)))‖2
d(πσ(h(ϕτ (r))), ∂D)

= 0,

then the curve r 7→ h(ϕτ (r)) is belonging eventually to a ball contained in D and
tangent to ∂D at σ. Therefore we will prove equation (3.7).
Notice that if D is balanced then (up to choose z0 = 0) the assertion follows from
pσ = πσ, and if ∂D has constant real sectional curvatures at σ then the “ball-
condition” is clearly satisfied.
Firstly we claim that for every r ∈ [0, 1):

(3.8)
d(hσ(ϕτ (r)), ∂D)

d(πσ(h(ϕτ (r))), ∂D)
≤ C < +∞.

By Lemma 1.1, if u ∈ Hol(D,D) then there exists c0 > 0 such that for each w ∈ D
(3.9)

−c0 +
1
2

log
d(u(w), ∂D)

d(w, ∂D)
≤ [kD(z0, w)− kD(z0, u(w))] ≤ c0 +

1
2

log
d(u(w), ∂D)

d(w, ∂D)
.

Since the boundary dilatation coefficient is strictly positive at every boundary point
(see Prop. 1.5), then by (3.9), with u = πσ ◦ h and w = ϕτ (r), we get (for every r)

(3.10)
d(ϕτ (r), ∂D)

d(πσ(h(ϕτ (r))), ∂D)
≤ C1 < +∞.

On the other hand, since (see [1], [2])

lim
r→1

[
kD

(
z0, ϕτ (r)

)− kD

(
z0, hσ(ϕτ (r))

)]
= 1/2 log αh(τ),
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then (3.9) implies that (for every r):

(3.11)
d(hσ(ϕτ (r)), ∂D)

d(ϕτ (r), ∂D)
≤ C2 < +∞.

Hence formulae (3.10) and (3.11) imply that

d(hσ(ϕτ (r)), ∂D)
d(πσ(h(ϕτ (r))), ∂D)

=
d(hσ(ϕτ (r)), ∂D)

d(ϕτ (r), ∂D)
· d(ϕτ (r), ∂D)
d(πσ(h(ϕτ (r))), ∂D)

≤ C < +∞

for each r ∈ [0, 1), as we claimed.
And now we are able to prove (3.7):

‖h(ϕτ (r))− πσ(h(ϕτ (r)))‖√
d(πσ(h(ϕτ (r))), ∂D)

≤

‖h(ϕτ (r))− hσ(ϕτ (r))‖√
d(hσ(ϕτ (r)), ∂D)

·
√

d(hσ(ϕτ (r)), ∂D)
d(πσ(h(ϕτ (r))), ∂D)

+

+
‖hσ(ϕτ (r))− σ‖√
d(hσ(ϕτ (r)), ∂D)

·
√

d(hσ(ϕτ (r)), ∂D)
d(πσ(h(ϕτ (r))), ∂D)

+
‖σ − πσ(h(ϕτ (r)))‖√
d(πσ(h(ϕτ (r))), ∂D)

.

By the estimates (3.8) and (3.4) the first addend goes to zero as r → 1. The second
addend tends to zero as r goes to 1 by estimate (3.8) and since r 7→ hσ(ϕτ (r)) is
non-tangential, then ‖hσ(ϕτ (r))−σ‖ ≈ d(hσ(ϕτ (r)), ∂D). Finally the third addend
tends to zero as r goes to 1 since r 7→ πσ(h(ϕτ (r)) is non-tangential. ¤
Lemma 3.6 (Estimate at the Wolff point). Let f, g ∈ Hol(D,D) have no fixed
points and let f ◦ g = g ◦ f . Let x be the Wolff point of f and let y be the Wolff
point of g. Then

αg(x) ≤ 1
αg(y)

.

Proof. Recall that 1
2 log αg(x) := lim infz→x [kD(z0, z)− kD(z0, g(z))]. By setting

L := αg(y) for clarity, we claim that

lim inf
z→x

[
kD

(
z0, z

)− kD

(
z0, g(z)

)] ≤ −1
2

log L.

By Theorem 1.2, fk(w) → x as k →∞ for all w ∈ D. Since f ◦ g = g ◦ f , we have:

lim inf
z→x

[
kD

(
z0, z

)− kD

(
z0, g(z)

)] ≤
lim

k→∞
[
kD

(
z0, f

k(w)
)− kD

(
z0, g(fk(w))

)] ≤ kD

(
w, g(w)

)
,

for all w ∈ D. We evaluate kD

(
w, g(w)

)
for w = ϕy(r) as r tends to 1. By

Proposition 1.6 and Proposition 3.4 we have

0 ≤ kD

(
ϕy(r), g(ϕy(r))

)− kD

(
ϕy(r), gy(ϕy(r))

) ≤ kD

(
g(ϕy(r)), gy(ϕy(r))

) r→1−→ 0,

where the first inequality follows from px ◦ ϕx = ϕx and since holomorphic maps
are contractions for kD. Then we are led to evaluate kD(ϕy(r), gy(ϕy(r))) as r → 1.
If Φr(ζ) is a Möebius transformation of ∆ which brings r to 0 we get

kD(ϕy(r), gy(ϕy(r))) = ω(r, g̃y(ϕy(r)))

= ω(0,Φr(g̃y(ϕy(r)))) =
1
2

log
1 + |Φr(g̃y(ϕy(r)))|
1− |Φr(g̃y(ϕy(r)))| .
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Now we have
(3.12)

Φr(g̃y(ϕy(r))) =
r − g̃y(ϕy(r))
1− rg̃y(ϕy(r))

=
(

1− g̃y(ϕy(r))
1− r

+
r − 1
1− r

)
· 1− r

1− rg̃y(ϕy(r))
.

The first factor on the right-hand side of (3.12) tends to L − 1 by Theorem 2.4.
The second factor, again by Theorem 2.4, is

1− r

1− rg̃y(ϕy(r))
=

1− r

1− g̃y(ϕy(r))
· 1
r + 1−r

1−g̃y(ϕy(r))

r→1−→ 1
L
· 1
1 + 1

L

.

This implies that ∣∣Φr

(
g̃y(ϕy(r))

)∣∣ → 1− L

1 + L
,

and lim infz→x [kD(z0, z)− kD(z0, g(z))] ≤ − 1
2 log L. ¤

And now we can prove our main theorem (Th.0.2):

Theorem 3.7. Let D be a bounded strongly convex C3 domain in Cn. Let f, g ∈
Hol(D,D) have no fixed points and let f ◦ g = g ◦ f . Then either f and g have
the same Wolff point or there exists a complex geodesic ϕ : ∆ → D such that
f(ϕ(∆)) = ϕ(∆), g(ϕ(∆)) = ϕ(∆) and f |ϕ(∆), g|ϕ(∆) are commuting (hyperbolic)
automorphisms of ϕ(∆). In the last case, the complex geodesic ϕ is the unique (up
to parametrizations of ∆) such that ϕ(−1) is the Wolff point of g and ϕ(1) is the
Wolff point of f .

Proof. Suppose f and g have different Wolff points, respectively x and y belonging
to ∂D. Let ϕ : ∆ → D be the unique (up to parametrization of ∆) complex
geodesic such that ϕ(1) = x and ϕ(−1) = y. Let p̃ be the left inverse of ϕ and let p
be the associated holomorphic retraction. Set η(ζ) := p̃ ◦ g ◦ ϕ(ζ) for ζ ∈ ∆. Then
η : ∆ 7→ ∆ is holomorphic. Moreover limr→1 η(r) = 1 and limr→−1 η(r) = −1 by
Theorem 0.1 and Theorem 2.4. By Theorem 2.4 and Lemma 3.6 it holds

lim inf
ζ→1

1− |η(ζ)|
1− |η| ≤ lim inf

r→1

1− |p̃ ◦ g(ϕ(r))|
1− r

≤

lim
r→1

|1− p̃ ◦ g(ϕ(r))|
1− r

= αg(x) ≤ 1
αg(y)

.

In the same way

lim inf
ζ→−1

1− |η(ζ)|
1− |η| ≤ αg(y).

Hence Lemma 3.1 implies that η -and then p̃◦g◦ϕ- is a (hyperbolic) automorphism
of ∆. And hence (p◦g)|ϕ(∆) is a (hyperbolic) automorphism of ϕ(∆). Now we want
to prove that, by setting gϕ := p ◦ g, the equality gϕ(ϕ(ζ)) = g(ϕ(ζ)) holds for any
ζ ∈ ∆. Let g̃ϕ(z) := p̃◦g. Since we have just proved that g̃ϕ◦ϕ is an automorphism
of ∆, then we have, for all ζ1, ζ2 ∈ ∆

kD

(
g(ϕ(ζ1)), g(ϕ(ζ2))

) ≤ ω
(
ζ1, ζ2

)
= ω

(
g̃ϕ(ϕ(ζ1)), g̃ϕ(ϕ(ζ2))

)

= kD

(
gϕ(ϕ(ζ1)), gϕ(ϕ(ζ2))

) ≤ kD

(
g(ϕ(ζ1)), g(ϕ(ζ2))

)
.

Therefore kD(g(ϕ(ζ1)), g(ϕ(ζ2))) = ω(ζ1, ζ2) for all ζ1, ζ2 ∈ ∆, and g ◦ϕ : ∆ → D is
a complex geodesic with the properties that g(ϕ(1)) = ϕ(1) and g(ϕ(−1)) = ϕ(−1).
By the uniqueness (up to parametrization) of complex geodesics with prescribed
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boundary data, this means that g(ϕ(∆)) = ϕ(∆). Moreover, since p ◦ ϕ = ϕ, we
have p ◦ g ◦ ϕ ≡ g ◦ ϕ and then g|ϕ(∆) is a (hyperbolic) automorphism of ϕ(∆).
Since the same holds for f and f ◦ g = g ◦ f the assertion is proved. ¤

References

1. M. Abate Iteration theory of holomorphic maps on taut manifolds. Mediterranean Press,
Rende, Cosenza 1989.
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4. M. Abate, J.P. Vigué Common fixed points in hyperbolic Riemann surfaces and convex do-
mains. Proc. Amer. Math. Soc. 112 (1991), 503-512.

5. D.F. Behan Commuting analytic functions without fixed points. Proc. Amer. Math. Soc. 37
(1973), 114-120.

6. F. Bracci Common fixed points of commuting holomorphic maps in the unit ball of Cn. To
appear in Proc. Amer. Math. Soc.

7. C.H. Chang, M.C. Hu, H.P. Lee Extremal analytic discs with prescribed boundary data. Trans.
Amer. Math. Soc. 310, 1 (1988), 355-369.
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