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ABSTRACT. We prove that Baum-Bott residues vary continuously in an appropriate sense under
smooth deformations of holomorphic foliations. This provides an effective way of computing
residues.

1. INTRODUCTION

A holomorphic foliation F on a complex manifold M is known to produce a “holomorphic
action”, as discovered by P. Baum and R. Bott in [4], on the virtual bundle TM/F . Such a par-
tial holomorphic action provides a holomorphic connection for the bundle TM/F along F out-
side the singularities of F and thus produces localization of sufficiently high degree classes of
TM/F around the singularities of F . Such localizations give rise to the “Baum-Bott residues”
(see [4, Thm. 2], [11, Ch.VI, Thm. 3.7]). When the singularity is isolated the Baum-Bott
residue can be expressed in terms of a Grothendieck residue (see [4, (0.6)]). When the singular
set is non-isolated in some cases some formulas are available (see [4, Thm. 3] and [5]) but, in
general, explicit computation of the residues is rather difficult.

The aim of the present paper is to study the behavior of the Baum-Bott residues under smooth
deformations. This provides an effective tool for computing residues explicitly.

More in details, we consider a smooth deformation of a complex manifold. This is essentially
a smooth fibration over a smooth manifold, whose fibers are complex manifolds (see Section 2).
On each such a fiber we consider a holomorphic foliation which varies smoothly (see Section
3). We prove that the Baum-Bott residues (when taken together suitably) vary continuously
under smooth deformations.

We state here a simple consequence of our main Theorem 5.4 for the case of classes of top
degree, referring the reader to Section 5 for the general case. Thus, let P be a real manifold, the
“parameter space”. Let M̃ := {Mt}t∈P , be a deformation of complex manifolds of dimension
n. Let F̃ := {Ft} be a deformation of holomorphic foliations on Mt. Then F̃ defines naturally
a smooth foliation on M̃ (see Section 3).
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Suppose the singular set St0 of Ft0 in Mt0 is compact and connected. The analytic set St0
is contained in a connected component in M̃ of the singular set of the smooth foliation F̃ , and
we denote by St the intersection of such component with Mt. The set St is contained in the
singular set of Ft but in general may not be connected. Thus, we let St = ∪Sλt be the connected
components decomposition of St. Under some assumption on TM̃/F̃ , which is always satisfied
for instance if F̃ is locally generated by a single vector field, we have:

Theorem 1.1. Suppose that St is compact for all t ∈ P . Let ϕ be a homogeneous symmetric
polynomial of degree n and denote by BBϕ(Ft;Sλt ) the Baum-Bott residue of Ft at Sλt . Then

lim
t→t0

∑
λ

BBϕ(Ft;Sλt ) = BBϕ(Ft0 ;St0).

A general version of the previous theorem is Theorem 5.4, whose proof is contained in Sec-
tions 4 and 5. The rough idea of the proof is to construct a special connection on the regular
part of the virtual bundle TM̃/F̃ such that on each fiber Mt it induces the special connection
given by the Baum-Bott action and to see the residues as the integral of a smooth form on M̃
along the fibers.

In Section 6 we give explicit examples of the previous result. In particular, aside from explicit
computation, the examples show that if the residues in the same connected component of M̃ are
not taken together, continuity is lost.

A part of this work was done while the first named author was visiting the University of
Tokyo. We would like to thank Prof. J. Noguchi for providing us inspiring environment for
research.

2. DEFORMATION OF MANIFOLDS

The theory of deformation of complex structures was first systematically developed by K.
Kodaira and D. C. Spencer [7], here we recall the basic material relevant for our needs.

Definition 2.1. A deformation of manifolds is a triple (M̃, P, π), where P is a C∞ manifold of
real dimension s, called the parameter space, M̃ is a C∞ manifold of real dimension 2n + s,
called the ambient manifold, and π : M̃ → P is a surjective C∞ map such that there exists a
covering {Uα} (called an adapted deformation coordinates covering) of M̃ with the following
properties:

(1) for each α, the open set Uα is diffeomorphic to D × V , where D is an open set of Cn

and V is an open set of Rs, with coordinates (zα1 , . . . , z
α
n , t

α
1 , . . . , t

α
s ),

(2) π(Uα) is diffeomorphic to V and π is compatible with the projection D × V → V ,
(3) on Uα ∩ Uβ 6= ∅ we may express as

(2.1)

{
zβi = zβi (zα, tα) i = 1, . . . , n

tβj = tβj (tα) j = 1, . . . , s
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and, for each fixed tα, the map zα 7→ zβ(zα, tα) is holomorphic.

For t ∈ P we let Mt := π−1(t) be the fiber over t. By definition the fibers Mt, for t ∈ P ,
are complex manifolds. In particular we can define the sheaf ÕM̃ of C∞ functions holomorphic
along the fibers on M̃ so that f ∈ ÕM̃(U) if for all x ∈ U , f |Ut ∈ OMt(Ut), where t = π(x),
Ut = U ∩Mt and OMt denotes the sheaf of holomorphic functions on Mt.

Remark 2.2. Let Uα ⊂ M̃ be a coordinate chart of an adapted coordinate covering for M̃ . A
function f belongs to ÕM̃(Uα) if and only if f(zα, tα) is a C∞ function such that f(·, tα) is
holomorphic (note that this is well defined by (2.1)).

Definition 2.3. Let E be a C∞ complex vector bundle of rank r over M̃ . We say that E is an
ÕM̃ -(vector) bundle if there exists a trivializing atlas {Uα} for E, with frames {eα1 , . . . , eαr } for
E|Uα , such that the transition matrices with respect to those frames have entries which are local
sections of ÕM̃ . Such frames {eα1 , . . . , eαr } are called ÕM̃ -frames.

Given an ÕM̃ -bundleE, we denote by ÕM̃(E) the ÕM̃ -module of ÕM̃ sections ofE. Namely,
s ∈ ÕM̃(E)(U) is a C∞ section of E over the open set U ⊂ M̃ such that in any ÕM̃ -frame
{eα1 , . . . , eαr } over Uα with Uα ∩ U 6= ∅ the section s is given by

s(zα, tα) =
r∑
j=1

fαj (zα, tα)eαj , fαj ∈ ÕM̃(Uα ∩ U).

Let TRπ := Ker π∗. Since the fibers of the fibration π : M̃ → P are holomorphic, we can
define the complex vector bundles

Tπ :=
⋃
x∈M̃

TxMπ(x), Tπ :=
⋃
x∈M̃

T xMπ(x).

Local frames for Tπ and Tπ in an adapted deformation coordinates covering are given respec-
tively by { ∂

∂zαi
}i=1,...,n and { ∂

∂zαi
}i=1,...,n and

TRπ ⊗ C = Tπ ⊕ Tπ.
Using an adapted deformation coordinates covering, by (2.1), it is easy to see that Tπ is an
ÕM̃ -vector bundle over M̃ . Moreover, it has a natural structure of ÕM̃ -Lie algebra, namely,
using local coordinates, one can easily see that if v, w ∈ ÕM̃(Tπ)(U) then

[v, w] ∈ ÕM̃(Tπ)(U).

3. DEFORMATION OF FOLIATIONS

Deformations of holomorphic foliations, especially from the viewpoint of moduli spaces,
have been studied by a number of authors (e.g., [6], [9], [10]). Here we consider C∞ families
of singular holomorphic foliations.
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Let S be an ÕM̃ -module. We say that S is coherent if, for each point x ∈ M̃ there exists an
open neighborhood U ⊂ M̃ of x and two integers p, q ≥ 0 such that

(3.1) ÕM̃ |
p
U

ϕ−→ ÕM̃ |
q
U −→ S|U → 0,

is an exact sequence of ÕM̃ |U -modules, where ϕ is a suitable ÕM̃ -morphism.

Definition 3.1. Let (M̃, P, π) be a deformation of manifolds . A deformation of foliations on
(M̃, P, π) is a coherent ÕM̃ -submodule F̃ of ÕM̃(Tπ) such that [F̃ , F̃ ] ⊂ F̃ .

Given a deformation of foliations F̃ on a deformation of manifolds (M̃, P, π), we denote
by C∞P the sheaf of germs of complex valued smooth functions on P , and for each t ∈ P ,
by It := {f ∈ C∞P : f(t) = 0} the ideal sheaf of smooth functions vanishing at t. The set
R := π∗C∞P is the sheaf of smooth functions on M̃ that are constant along the fibers, and it is
naturally a subsheaf of ÕM̃ . Noting thatR/π∗It is supported on Mt = π−1(t), we define

Ft := F̃ ⊗R R/π∗It.

Note that ÕM̃ ⊗RR/π
∗It = OMt , the sheaf of holomorphic functions on Mt. Hence, if E is an

ÕM̃ -module over M̃ , then E ⊗R R/π∗It is an OMt-module over Mt.
In particular, the sheafFt is anOMt-module. In adapted deformation coordinates, ifX1, . . . , Xr

are local generators of F̃ , given by

Xj(z
α, tα) =

∑
fij(z

α, tα)
∂

∂zαi
,

then Ft0 is locally generated by the Xj(z
α, tα0 )’s. Namely it is generated by the vector fields

(3.2) Xj(z
α, tα0 ) =

∑
fij(z

α, tα0 )
∂

∂zαi

obtained by evaluating fij(zα, tα) at t = t0. From this remark, it follows easily:

Lemma 3.2. For all t ∈ P , the sheaf Ft defines a holomorphic foliation on Mt.

The normal sheaf NF̃ of F̃ is defined by the following exact sequence of ÕM̃ -modules on
M̃ :

(3.3) 0 −→ F̃ −→ ÕM̃(Tπ) −→ NF̃ −→ 0.

The singular set of F̃ is by definition

S(F̃) := {x ∈ M̃ : NF̃ ,x is not OM̃,x − free}.

Remark 3.3. As in the case of usual singular holomorphic foliations, even if F̃ is locally free,
it is possible that NF̃ is not locally free. On the other hand, if NF̃ is locally free, so is F̃ , as
ÕM̃(Tπ) is locally free.
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The rank of F̃ is defined to be the rank of the locally free part of F̃ .

Lemma 3.4. For each point x ∈ M̃ there exists an open neighborhood U ⊂ M̃ of x and two
integers p, q ≥ 0 such that

(3.4) ÕM̃ |
p
U

ϕ−→ ÕM̃ |
q
U −→ NF̃ |U → 0,

is an exact sequence of ÕM̃ |U -modules. Moreover,

S(F̃)|U = {x ∈ U : rankϕx is not maximal}.

Proof. Since F̃ is ÕM̃ -coherent and ÕM̃(Tπ) is ÕM̃ -locally free, from (3.3) it follows that NF̃
is ÕM̃ -coherent as well, so that (3.4) holds. The final statement follows from (3.4) and standard
commutative algebra. �

Lemma 3.5. For each t ∈ P such that Mt 6⊂ S(F̃) the following sequence of OMt-modules
over Mt is exact:

(3.5) 0→ F̃ ⊗R R/π∗It
ι→ ÕM̃(Tπ)⊗R R/π∗It → NF̃ ⊗R R/π

∗It → 0.

Proof. Since taking tensor products is right exact, it suffices to prove that ι is injective.
It is true on the stalk over each x ∈ Mt such that x 6∈ S(F̃), since NF ,x is ÕM̃,x-free. We

note that according to Lemma 3.4, S(F̃)|U∩Mt = {x ∈ U ∩ Mt : rankϕx is not maximal}.
Hence, for t fixed, these equations give rise to an analytic subset S(F̃) ∩Mt of Mt, provided
Mt 6⊂ S(F̃). As a consequence, S(F̃)∩Mt is thin inMt. This shows that, since F̃ is a subsheaf
of ÕM̃(Tπ), ι is also injective on the stalk over x ∈ S(F̃) ∩Mt. �

For each t ∈ P we have the following exact sequence of OMt-modules:

(3.6) 0 −→ Ft −→ OMt(TMt) −→ NFt −→ 0.

Definition 3.6. Let t ∈ P . If Mt ⊂ S(F̃), we let S(Ft) := Mt. Otherwise we let

S(Ft) := {x ∈Mt : NFt,x is not OMt − free}.

Proposition 3.7. For all t ∈ P it holds

S(Ft) = S(F̃) ∩Mt.

Proof. If Mt ⊂ S(F̃) there is nothing to prove.
Thus, assume Mt 6⊂ S(F̃). Since ÕM̃(Tπ)⊗R R/π∗It = OMt(TMt), comparing (3.5) and

(3.6) we see that

(3.7) NFt = NF̃ ⊗R R/π
∗It,

from which the statement follows at once. �
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4. RELATIVE BOTT VANISHING FOR A DEFORMATION OF FOLIATIONS

In this section we discuss a Bott type vanishing theorem for deformations of foliations. Thus,
we let (M̃, P, π) be a deformation of manifolds and F̃ a deformation of foliations on M̃ . In this
section we assume

S(F̃) = ∅.
This means that NF̃ and hence F̃ is locally free so that there exists an ÕM̃ -subbundle F̃ of Tπ
such that F̃ = ÕM̃(F̃ ).

We refer to [4] for the notion of partial connections (see also [1], [2], [11]). As an example,
given an ÕM̃ -bundle E over M̃ , we can define a “relative ∂-connection” for E along Tπ as
follows. We define

∂E : C∞
M̃

(E)→ C∞
M̃

(T
∗
π ⊗ E),

imposing that, given an ÕM̃ -frame {σα1 , . . . , σαr }, and a C∞ section of E, σα :=
∑
fαj σ

α
j , it

holds

∂E(σα) =
r∑
j=1

n∑
i=1

∂fαj
∂zαi

dzαi ⊗ σαj .

Since the transition matrices for E with respect to ÕM̃ -frames contains only entries in ÕM̃ , it is
easy to see that such a definition is well posed and it is a partial connection for E along Tπ.

Definition 4.1. Let E be an ÕM̃ -bundle over M̃ and let E be the sheaf of its ÕM̃ -sections. A
partial ÕM̃ -connection for E along F̃ is a C-linear map

δ : E → F̃∗ ⊗ E
with the properties that for all X ∈ F̃ , f, g ∈ ÕM̃ and σ ∈ E

δ(fX)(gσ) = f (gδX(σ) + dg(X)σ) .

Moreover, it is said to be flat if

δX ◦ δY − δY ◦ δX − δ[X,Y ] = 0, ∀X, Y ∈ F̃ .
If δ is as above, it induces a (C∞) partial connection

δ : C∞
M̃

(E)→ C∞
M̃

(F̃ ∗ ⊗ E)

such that, for X ∈ F̃ and σ ∈ E , we have δX(σ) ∈ E . Thus

δ ⊕ ∂̄E : C∞
M̃

(E)→ C∞
M̃

((F̃ ∗ ⊕ T ∗π)⊗ E)

is a partial connection. We say that a connection∇ : C∞
M̃

(E)→ C∞
M̃

((T ∗M̃ ⊗C)⊗E) extends
δ ⊕ ∂̄E if ∇X = (δ ⊕ ∂̄E)X for all sections X of F ⊕ Tπ. Such a connection ∇ always exists
(cf. [4]).

We have the following “relative Bott vanishing” theorem for actions of deformations of foli-
ations:
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Theorem 4.2. Let (M̃, P, π) be a deformation of manifolds and F̃ a deformation of foliations
on M̃ of rank p. Assume that S(F) = ∅. Let E be the sheaf of ÕM̃ -sections of an ÕM̃ -bundle
E over M̃ . Assume there exists a flat partial ÕM̃ -connection δ for E along F̃ . Then, for any
connection ∇ for E extending δ ⊕ ∂̄E , denoting by ιt : Mt ↪→ M̃ the natural embedding, it
follows

ι∗t (ϕ(∇)) = 0,

for all t ∈ P and all symmetric homogeneous polynomials ϕ of degree d > n− p.

Proof. Let F̃ be the ÕM̃ -bundle whose associated sheaf of sections is F̃ . Write

TM̃ ⊗ C = F̃ ⊕ F1 ⊕ Tπ ⊕ π∗(TP ⊗ C),

where F1 is any C∞ complement of F̃ in Tπ.
LetK be the curvature of∇. Let {s1, . . . , sp} be a local ÕM̃ -frame for F̃ , and { ∂

∂z1
, . . . , ∂

∂zn
}

the natural frame for Tπ in adapted deformation coordinates. Since F̃ is an ÕM̃ -subbundle of
Tπ, we can write sj =

∑n
k=1 ak(z, t)

∂
∂zk

for j = 1, . . . , p and ak ∈ ÕM̃ . Hence, [sj,
∂
∂zk

] = 0
for j = 1, . . . , p and k = 1, . . . , n.

Arguing similarly as in the proof of [4, Prop. 3.27] (see also [2, Thm. 6.1]) since ÕM̃ -sections
of E generate as C∞

M̃
-module the sheaf of C∞-sections of E, one can see that

K(sj, sk) = K(sj,
∂

∂zh
) = K(

∂

∂zh
,
∂

∂zl
) = 0

for all j, k = 1, . . . , p and h, l = 1, . . . , n. In fact, for the second term, given σ an ÕM̃ -section
of E, we have

K(sj,
∂

∂zh
)(σ) = ∇sj(∇ ∂

∂zh

σ)−∇ ∂
∂zh

(∇sjσ)−∇[sj ,
∂
∂zh

]σ = 0,

because∇ ∂
∂zh

σ = (∂E) ∂
∂zh

σ = 0 by definition, since σ is an ÕM̃ -section;∇sjσ is another ÕM̃ -

section of E, hence ∇ ∂
∂zh

(∇sjσ) = (∂E) ∂
∂zh

(∇sjσ) = 0; and [sj,
∂
∂zh

] = 0. The first and third

terms vanish as δ and ∂̄E are flat.
As a consequence, the entries of the matrix representingK are 2-forms belonging to the ideal

generated by a dual basis of F1 (which has dimension n − p) and by dt1, . . . , dts, where these
latter are a basis of π∗(T ∗P ). Therefore, if ϕ has degree d greater than n− p, it follows that

ϕ(∇) =
∑

ωj ∧ dtj,

for some (2d− 1)-forms ωj , hence, ι∗(ϕ(∇)) = 0. �

We recall that if M is a complex manifold and F is a non-singular holomorphic foliation
on M then there exists a natural holomorphic partial connection δ for the normal bundle of the
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foliation NF along F given by the so called Baum-Bott action (see [4], [11]). Such a partial
connection is flat, in the sense similar to the one in Definition 4.1. It is defined as follows:

(4.1) δX(σ) := ρ([X, σ̃])

where σ ∈ NF is a holomorphic section of the normal bundle to the foliation, σ̃ ∈ OM(TM) is
a holomorphic section of the tangent bundle to M such that ρ(σ̃) = σ, where ρ : OM(TM)→
NF is the natural projection, and X ∈ F .

We are going to show that a deformation of foliations gives rise to a flat partial ÕM̃ -connection
for NF̃ along F̃ such that its “restriction” to each fiber Mt is the holomorphic flat partial con-
nection for the normal bundle to Ft given by the Baum-Bott action:

Proposition 4.3. Let (M̃, P, π) be a deformation of manifolds and F̃ a deformation of foliations
on M̃ . Assume that S(F̃) = ∅. Then there exists a flat partial ÕM̃ -connection δ̃ for NF̃ along
F̃ . Moreover, if ιt : Mt ↪→ M̃ is the natural embedding, then ι∗t (δ̃) is the holomorphic flat
partial connection for NF along Ft given by the Baum-Bott action.

Proof. Let ρ̃ : ÕM̃(Tπ)→ NF̃ be the natural projection. For X ∈ F̃ and σ ∈ NF̃ we define

(4.2) δ̃X(σ) := ρ̃([X, σ̃]),

where σ̃ ∈ ÕM̃(Tπ) is such that ρ̃(σ̃) = σ. Involutivity of F̃ shows that δ̃ is well-defined and
flatness follows from the Jacobi identity, so that δ̃ is a flat partial ÕM̃ -connection for NF̃ along
F̃ .

Comparing (4.2) with (4.1), it is easy to see that ι∗t (δ̃) is the flat partial OMt-connection for
NFt along Ft given by the Baum-Bott action. �

In particular, Theorem 4.2 and Proposition 4.3 imply the following:

Corollary 4.4. Let (M̃, P, π) be a deformation of manifolds and F̃ a deformation of foliations
on M̃ . Assume that S(F̃) = ∅. Then there exists a connection∇ for NF̃ such that, denoting by
ιt : Mt ↪→ M̃ the natural embedding, it follows

ι∗t (ϕ(∇)) = 0,

for all t ∈ P and all symmetric homogeneous polynomials ϕ of degree d > n− p.

5. RESIDUES OF BAUM-BOTT TYPE ON DEFORMATIONS OF MANIFOLDS

In this section we assume (M̃, P, π) is a deformations of manifolds and F̃ is a deformation
of foliations on M̃ . We also assume thatNF̃ admits a C∞ locally free resolution, namely, there
exists an exact sequence of C∞

M̃
-modules:

(5.1) 0→ Eq → · · · → E0 → NF̃ ⊗Õ
M̃
C∞
M̃
→ 0,

such that each Ej is locally C∞
M̃

-free.
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Remark 5.1. Every coherent OM -module on a complex manifold M admits a real analytic
locally free resolution (see [3]). This fact is used in the original construction of the Baum-Bott
residues in [4]. What we need is a relative version of this. In practice, a resolution as above
often arises naturally with a given F̃ . The simplest is the case where F̃ is locally ÕM̃ -free; we
may let q = 1 and E1 = F̃ ⊗Õ

M̃
C∞
M̃

, E0 = ÕM̃(Tπ)⊗Õ
M̃
C∞
M̃

. This applies in particular to the

case where F̃ is generated locally by a single vector field.

Let Ej be the vector bundle over M̃ whose sheaf of C∞ sections is Ej . Then NF̃ is a virtual
bundle in the K-group K(M̃) and its total Chern class is defined as

c(NF̃) =

q∏
i=0

c(Ei)
(−1)i .

We briefly sketch here the theory we need for localizing characteristic classes and obtaining
the associated residues in the framework of the Chern-Weil theory adapted to the Čech-de Rham
cohomology, and refer the reader to [4, Section 4], [8] and [11, Ch.II, 8] for details.

Let Ũ1 be an open neighborhood of S(F̃) and let Ũ0 := M̃ \ S(F̃). We denote by (∇•0,∇•1)
the family of q+1 connections compatible with (5.1) and adapted to the covering Ũ := {Ũ0, Ũ1}
of M̃ . Namely, ∇•l = (∇q

l , . . . ,∇0
l ), l = 0, 1 is a family such that ∇j

l is a connection for Ej|Ũl ,
j = 0, . . . , q, l = 0, 1 and the following diagram is commutative for i = 1, . . . , q and l = 0, 1:

(5.2)

Ei|Ũl
∇il−−−→ C∞

M̃
((T ∗M̃ ⊗ C)⊗ Ei|Ũl)y y

Ei−1|Ũl
∇i−1
l−−−→ C∞

M̃
((T ∗M̃ ⊗ C)⊗ Ei−1|Ũl).

Moreover, let NF̃ be the vector bundle on Ũ0 whose sheaf of sections is NF̃ ⊗Õ
M̃
C∞
M̃
|Ũ0

. Let

∇ be an extension of the flat partial ÕM̃ -connection δ̃ for NF̃ |Ũ0
along F̃ given by Proposition

4.3. It is then possible to choose∇•0 to be compatible with∇ (in the sense explained before).
Now, we let ϕ be a homogeneous symmetric polynomial of degree d > n−p. One can define

the class ϕ(NF̃) in the Čech-de Rham cohomology Ȟ2d(Ũ) which is represented by

ϕ(∇•∗) := (ϕ(∇•0), ϕ(∇•1), ϕ(∇•0,∇•1)),

where, by the compatibility condition, ϕ(∇•0) = ϕ(∇) is a 2d-form on Ũ0, ϕ(∇•1) is the 2d-
form on Ũ1 associated to the family∇•1 and ϕ(∇•0,∇•1) is a (2d− 1)-form on Ũ0 ∩ Ũ1 such that
dϕ(∇•0,∇•1) = ϕ(∇•1)−ϕ(∇•0). The Čech-de Rham cohomology Ȟ∗(Ũ) is naturally isomorphic
to the de Rham cohomology H∗dR(M̃,C).
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If Mt 6⊂ S(F̃), tensorizing (5.1) with R/π∗It we obtain the following exact sequence of
C∞Mt

-modules (cf. the proof of Lemma 3.5):

(5.3) 0→ Eq ⊗R R/π∗It → · · · → E0 ⊗R R/π∗It → NF̃ ⊗Õ
M̃
C∞
M̃
⊗R R/π∗It → 0,

where Ej ⊗R R/π∗It is the sheaf of C∞ sections of the restriction of the bundle Ej to Mt. By
(3.7), it is then easy to see the following:

Lemma 5.2. Let t ∈ P and let ιt : Mt → M̃ be the natural embedding. If Mt 6⊂ S(F̃) then
(ι∗t (∇•0), ι∗t (∇•1)) is a family of connections for the virtual bundle NFt compatible with (5.3).

By Corollary 4.4 and by the compatibility condition, it follows that for all homogeneous
symmetric polynomials ϕ of degree d > n − p, the class ϕ(NFt) is represented in the Čech-
de Rham cohomology associated to the covering Ũ ∩Mt of Mt by the cocyle

ϕ(ι∗t∇•∗) = (ι∗tϕ(∇•0), ι∗tϕ(∇•1), ι∗tϕ(∇•0,∇•1)) = (ι∗tϕ(∇), ι∗tϕ(∇•1), ι∗tϕ(∇•0,∇•1))
= (0, ι∗tϕ(∇•1), ι∗tϕ(∇•0,∇•1)).

Suppose thatMt 6⊂ S(F̃) and that S(Ft), which is S(F̃)∩Mt by Proposition 3.7, is compact.
Since Ũ0 ∩Mt = Mt \ S(Ft), the above cocycle ϕ(ι∗t∇•∗) defines a localization of ϕ(NFt), call
it ϕ(NFt ,Ft), in the relative Čech-de Rham cohomology Ȟ2d(Ũ ∩Mt,Mt \S(Ft)). The Baum-
Bott residue is the image of ϕ(NFt ,Ft) by the Alexander homomorphism

A : Ȟ
2d

(Ũ ∩Mt,Mt \ S(Ft))→ H2n−2d
dR (Ũ1 ∩Mt)

∗.

If S(Ft) is made of k connected components and Ũ1 is small enough, then H2n−2d
dR (Ũ1 ∩Mt)

∗

is a direct sum of k addends, and we can consider the Baum-Bott residue at each connected
component of S(Ft). Note that if Ũ1 ∩ Mt is a regular neighborhood of S(Ft), we have
H2n−2d

dR (Ũ1∩Mt)
∗ ∼→ H2n−2d(S(Ft),C) and the above Alexander homomorphism is an isomor-

phism. Thus in this case the above residue, as well as the ones corresponding to the connected
components of S(Ft), does not depend on Ũ1.

Now, let S ′(F̃) ⊆ S(F̃) be a connected component. We assume that

St := S ′(F̃) ∩Mt is compact ∀t ∈ P.

Note that St may not be connected. Let Ũ ′1 be a neighborhood of S ′(F̃), small enough so that
it does not intersect with any other components of S(F̃), and R̃ a real manifold of dimension
2n + s with boundary in Ũ ′1 such that S ′(F̃) is contained in the interior of R̃ and that ∂R̃ is
transverse to Mt for all t ∈ P . Moreover, we can take R̃ in such a way that Rt := R̃ ∩Mt is
compact for all t ∈ P .

We let Ut := Ũ ′1 ∩Mt. By the previous construction, we can express the Baum-Bott residue
BBϕ(Ft;St) ∈ H2n−2d

dR (Ut)
∗ as follows:

(5.4) BBϕ(Ft;St) : H2n−2d
dR (Ut) 3 [τ ] 7→

∫
Rt

ι∗tϕ(∇•1) ∧ τ −
∫
∂Rt

ι∗tϕ(∇•0,∇•1) ∧ τ.
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Remark 5.3. 1. If d = n, the Baum-Bott residue is a complex number given by

BBϕ(Ft;St) =

∫
Rt

ι∗tϕ(∇•1)−
∫
∂Rt

ι∗tϕ(∇•0,∇•1).

2. As mentioned above, if Ut is a regular neighborhood of St, H2n−2d
dR (Ut)

∗ ∼→ H2n−2d(St,C)

and one can remove the dependence on Ũ ′1 or R̃ in this construction.

Now we are in good shape to prove our main result:

Theorem 5.4. Let (M̃, P, π) be a deformation of manifolds and F̃ a deformation of foliations
on M̃ of rank p. Suppose that NF̃ admits a C∞ locally free resolution. Let S ′(F̃) ⊆ S(F̃) be
a connected component of the singular set of F̃ and let St := S ′(F̃) ∩Mt. Assume that for all
t ∈ P the set St is compact and St 6= Mt. Let ϕ be a homogeneous symmetric polynomial of
degree d > n− p. Under these assumptions, the Baum-Bott residue BBϕ(Ft;St) is continuous
in t ∈ P . Namely, for any C∞ (2n− 2d)-form τ̃ on M̃ such that ι∗t (τ̃) is closed for all t ∈ P ,

lim
t→t0

BBϕ(Ft;St) (ι∗t (τ̃)) = BBϕ(Ft0 ;St0)
(
ι∗t0(τ̃)

)
.

Proof. From the previous construction and (5.4) it follows that the Baum-Bott residues on Mt

are expressed by means of smooth forms on M̃ . Hence, they vary continuously. �

Note that, if St is not connected and St = ∪λSλt is its connected components decomposition,
then

BBϕ(Ft;St) =
∑
λ

BBϕ(Ft;Sλt ).

6. EXAMPLES

Let P3 denote the three dimensional complex projective space with homogeneous coordinates
[x1 : x2 : x3 : x4].

Example 6.1. On P3 we consider the vector field which is defined in the affine chart x4 6= 0
with coordinates x = x1/x4, y = x2/x4, z = x3/x4 by

X(x, y, z) := x
∂

∂x
+ x

∂

∂y
+ y

∂

∂z
.

The singularities are the line L given by x1 = x2 = 0 and the point at infinity given by Q :=
[1 : 1 : 1 : 0] (see the next expression (6.2)).

The vector field X generates a one-dimensional foliation F given by X : P3 × C → TP3

on P3. By the Baum-Bott theorem, we can localize ϕ(TP3/F) for homogeneous symmetric
polynomials ϕ of degree 3. Such polynomials are essentially given by c31, c1c2 and c3. Moreover,
since F is trivial, we see that ϕ(TP3/F) = ϕ(TP3). Let O(1) be the hyperplane bundle
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on P3 and let ξ := c1(O(1)) ∈ H2
dR(P3). From the Euler exact sequence, it follows that

c(TP3) = (1 + ξ)4, from which

(6.1)
∫
P3

c31(TP3) = 64,

∫
P3

c1c2(TP3) = 24,

∫
P3

c3(TP3) = 4.

Changing coordinates, in the affine chart x3 6= 0 with coordinates x̃ = x1/x3, ỹ = x2/x3, z̃ =
x4/x3 the vector field X has the expression:

(6.2) X(x̃, ỹ, z̃) = (x̃− x̃ỹ)
∂

∂x̃
+ (x̃− ỹ2) ∂

∂ỹ
− ỹz̃ ∂

∂z̃
.

From this it follows that the first jet of X at Q is given by the non-degenerate matrix

A :=

 0 −1 0
1 −2 0
0 0 −1

 .

Hence since Q is a non-degenerate isolated singularity for X it follows (see, e.g. [4, (0.7)] or
[11])

(6.3) BBϕ(X;Q) =
ϕ(A)

detA
,

that is

(6.4) BBc31
(X;Q) = 27 BBc1c2(X;Q) = 9 BBc3(X;Q) = 1.

By the Baum-Bott theorem,∫
P3

ϕ(TP3) = BBϕ(X;Q) + BBϕ(X;L).

From this and by (6.1) and (6.4) we obtain

(6.5) BBc31
(X;L) = 37 BBc1c2(X;L) = 15 BBc3(X;L) = 3.

However, it sometimes happens that we need to compute such residues only from the local
data near the singularity, without using the Baum-Bott theorem, and it is usually very compli-
cated to do so particularly if the singular set is non-isolated.

We present now a deformation procedure which allows to compute the previous residues and
explain in practice how our Theorem 1.1 works.

Let M̃ := P3× (−1, 1) and let F̃ be the deformation of foliations defined by the vector fields
Xt, t ∈ (−1, 1), which on the chart x4 6= 0 are defined as

Xt(x, y, z) = (x+ tz)
∂

∂x
+ x

∂

∂y
+ y

∂

∂z
.

On the chart x3 6= 0 the vector field Xt is given by

Xt(x̃, ỹ, z̃) = (x̃− x̃ỹ + t)
∂

∂x̃
+ (x̃− ỹ2) ∂

∂ỹ
− ỹz̃ ∂

∂z̃
.
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The singularities of Xt for t 6= 0 are given by O := [0 : 0 : 0 : 1] and Pi(t) := [u2t,i : ut,i : 1 : 0]

for i = 1, 2, 3, where the ut,i’s are the three roots of the equation λ3 − λ2 − t = 0.
At the point O the first jet of Xt, t 6= 0, is non-degenerate and it is given by the matrix 1 0 t

1 0 0
0 1 0

 .

From this and (6.3),

(6.6) BBc31
(Xt;O) =

1

t
BBc1c2(Xt;O) = 0 BBc3(Xt;O) = 1.

Remark 6.2. It is interesting to note that limt→0 BBc31
(Xt;O) =∞, namely the residue by itself

may not be continuous. Only the sum of the residues for all the singularities belonging to one
connected component in the ambient space M̃ is guaranteed to be continuous.

At the point Pi(t) the vector field Xt has first jet given by the matrix

B(t, i) :=

 1− ut,i −u2t,i 0
1 −2ut,i 0
0 0 −ut,i

 ,

with determinant detB(t, i) = u2t,i(2 − 3ut,i). Thus, for t → 0, t 6= 0 the points Pi(t) are
isolated non-degenerate singularities for Xt and one can use (6.3) to compute the residues:

BBc31
(Xt;Pi(t)) =

(4ut,i − 1)3

u2t,i(3ut,i − 2)
BBc1c2(Xt;Pi(t)) =

3(2ut,i − 1)(4ut,i − 1)

ut,i(3ut,i − 2)

BBc3(Xt;Pi(t)) = 1.

Now, as t→ 0, two of the roots of of the equation λ3−λ2−t = 0 tend to 0 and one tends to 1.
We assume that ut,1, ut,2 → 0 and ut,3 → 1. Hence, if S ′(F̃) is the connected component which
contains the line L in the manifold deformation M × (−1, 1), the intersection of S ′(F̃) with
M×{t} is given by the pointsO,P1(t), P2(t). While, the connected component inM×(−1, 1)
which contains Q contains all the points P3(t).

A direct computation, taking into account that ut,1 + ut,2 + ut,3 = 1, ut,1ut,2 + ut,1ut,3 +
ut,2ut,3 = 0 and ut,1ut,2ut,3 = t, shows that

(6.7) BBϕ(Xt;P1(t)) + BBϕ(Xt;P2(t)) =


37− 1

t
, ϕ = c31

15, ϕ = c1c2

2, ϕ = c3.

By Theorem 1.1, we have

BBϕ(X;L) = lim
t→0

[BBϕ(Xt;O) + BBϕ(Xt;P1(t)) + BBϕ(Xt;P2(t))]

and we recover (6.5) from (6.6) and (6.7).
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We note that the residues at P3(t) remain the same for ϕ = c31, c1c2, c3:

BBϕ(Xt;P3(t)) = BBϕ(X;Q).

We may also apply our method to the following example in [5], where the residues are com-
puted by a rather involved way. We thank D. Lehmann for drawing our attention to this.

Example 6.3. Again on P3 we consider the vector field

X(x, y, z) := z
∂

∂x
+ y

∂

∂y
.

The singularities are the line L given by x2 = x3 = 0 and the point Q := [0 : 1 : 0 : 0]. The
residues at Q are the same as (6.4). To compute the residues at L, we consider the deformation

Xt(x, y, z) = z
∂

∂x
+ y

∂

∂y
+ tx

∂

∂z
.

On the chart x1 6= 0 with coordinates x′ = x2/x1, y
′ = x3/x1, z

′ = x4/x1 the vector field Xt

is given by

Xt(x
′, y′, z′) = x′(1− y′) ∂

∂x′
+ (t− y′2) ∂

∂y′
− y′z′ ∂

∂z′
.

Also on the chart x2 6= 0 with coordinates x′′ = x1/x2, y
′′ = x3/x2, z

′′ = x4/x2 it is given by

Xt(x
′′, y′′, z′′) = (y′′ − x′′) ∂

∂x′′
+ (tx′′ − y′′) ∂

∂y′′
− z′′ ∂

∂z′′
.

The singularities of Xt for t 6= 0 are the four points given by O := [0 : 0 : 0 : 1], Q and
Pi(t) := [1 : 0 : ut,i : 0] for i = 1, 2, where the ut,i’s are the roots of the equation λ2 − t = 0.

At the point O the first jet of Xt, t 6= 0, is non-degenerate and it is given by the matrix 0 0 1
0 1 0
t 0 0

 .

From this and (6.3),

(6.8) BBc31
(Xt;O) = −1

t
BBc1c2(Xt;O) = 1 BBc3(Xt;O) = 1.

At the point Pi(t) the vector field Xt has first jet given by the matrix

B(t, i) :=

 1− ut,i 0 0
0 −2ut,i 0
0 0 −ut,i

 .

Thus, for t→ 0, t 6= 0 one can use (6.3) to compute the residues:

BBc31
(Xt;Pi(t)) =

(1− 4ut,i)
3

2t(1− ut,i)
BBc1c2(Xt;Pi(t)) =

(1− 4ut,i)(5t− 3ut,i)

2t(1− ut,i)
BBc3(Xt;Pi(t)) = 1.
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If S ′(F̃) is the connected component which contains the line L in the manifold deformation
M × (−1, 1), the intersection of S ′(F̃) with M × {t} is given by the points O,P1(t), P2(t).
While, the connected component in M × (−1, 1) which contains Q equals Q× (−1, 1).

A direct computation, taking into account that ut,1 + ut,2 = 0 and ut,1ut,2 = −t, shows that

(6.9) BBϕ(Xt;P1(t)) + BBϕ(Xt;P2(t)) =


−64t2+36t+1

t(1−t) , ϕ = c31
2(7−10t)

1−t , ϕ = c1c2

2, ϕ = c3.

By Theorem 1.1, we have

BBϕ(X;L) = lim
t→0

[BBϕ(Xt;O) + BBϕ(Xt;P1(t)) + BBϕ(Xt;P2(t))]

and using (6.8) and (6.9) we see that we have the same values as (6.5) for the residues at L.
The residues at Q are given

BBc31
(Xt;Q) =

27

1− t
BBc1c2(Xt;Q) =

3(3− t)
1− t

BBc3(Xt;Q) = 1.

Note that they depend on t and as the limits as t→ 0, we have the same values as (6.4).
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