
PARABOLIC ATTITUDE

FILIPPO BRACCI

Abstract. Being parabolic in complex dynamics is not a state of fact, but it is more
an attitude. In these notes we explain the philosophy under this assertion.

1. Introduction

The word “dynamics” is one of the most used in mathematics. Here we use it in the
sense of local discrete holomorphic dynamics, namely, the study of iterates of a germ of a
holomorphic map in Cn, n ≥ 1 near a fixed point. Aside from its own interest, the study
of such dynamics is useful to understand global dynamics of foliations or vector fields
(considering the germ as the holonomy on a compact leaf). Although the germ might be
non-invertible, here we will concentrate only on holomorphic diffeomorphisms.

Let F denote such a germ of holomorphic diffeomorphism in a neighborhood of the
origin 0 in Cn. As expected, the dynamical behavior of the sequence of iterates {F ◦q}q∈N
of F in a neighborhood of 0 is described at the first order by the dynamics of its differential
dF0. In fact, depending on the eigenvalues λ1, . . . , λn of dF0, in some cases both dynamics
are the same.

The so-called “hyperbolic case” is the generic case, that is, when none of the eigenvalues
is of modulus 1. In this case the map is topologically conjugated to its differential (by
the Hartman-Grobman theorem [26], [21]) and the dynamics is then completely clear.
In case the eigenvalues have either all modulus strictly smaller than one or all strictly
greater than one, then the origin is an attracting or respectively repelling fixed point
for an open neighborhood of 0. Also, by the stable/unstable manifold theorem, there
exists a holomorphic (germ of) manifold invariant under F and tangent to the sum of the
eigenspaces of those λj’s such that |λj| < 1 (resp. |λj| > 1) which is attracted to (resp.
repelled from) 0. However, already in case when all eigenvalues have modulus different
from 1, holomorphic linearization is not always possible due to the presence of resonances
among the eigenvalues (see, for instance, [7, Chapter IV]).

The “non-hyperbolic case” is the most interesting from a dynamical point of view. In
dimension one, F (z) = λz + . . . and |λ| = 1, the dynamics depends on the arithmetic
properties of λ. Namely, if λ is a root of 1 (the so called “parabolic case”) then either F is
linearizable (which is the case if and only if F ◦m = id for somem ∈ N) or there exist certain
F -invariant sets, called “petals”, which form a pointed neighborhood of 0 and which are
alternatively attracting and repelling (and permuted each other by the multiplicity of λ as
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a root of unity). On such petals the map F (or F−1) is conjugated to an Abel translation
of the type z 7→ z + 1 via a change of coordinates which is nowadays known as “Fatou
coordinates”. This is the content of the famous Leau-Fatou flower theorem, which we will
recall in detail in Section 2. In such a parabolic (non linearizable) case, the topological
classification is rather simple (see [14] and [27]), in fact, the map is topologically equivalent
to z 7→ λz(1 + zmk), where λm = 1. While, from the formal point of view, the map F
is conjugated to z 7→ λz + zmk+1 + az2mk+1 for some “index” a ∈ C which can be
computed as a residue around the origin. The holomorphic classification is however much
more complicated and it is due to Voronin [40] and Écalle [17], [18]. The very rough
idea for germs tangent to identity is to consider the changes of Fatou coordinates on
the intersection between an attracting petal and the subsequent repelling petal. This
provides twice the multiplicity of F of certain holomorphic functions which are known as
“sectorial invariants”. These invariants, together with the multiplicity and the index, are
the searched for complete system of holomorphic invariants.

In case λ has modulo one but it is not a root of unity, the map is called “elliptic”. In
such a case the germ is always formally linearizable, but, as strange as it might be, it is
holomorphically linearizable if and only if topologically linearizable (and this last condition
is related to boundedness of the orbits in a neighborhood of 0). Writing λ = e2πiθ, first
Siegel and later Bruno and Yoccoz [41] showed that holomorphic linearization depends
on the arithmetic properties of θ ∈ R. In particular they showed that for almost every
θ ∈ R the germ is holomorphically linearizable. Later Yoccoz proved that the arithmetic
condition for which every map starting with e2πiθz+. . . is linearizable can be characterized
exactly (in the sequel we will refer to such a condition as the “Bruno condition”, but we are
not going to write it here explicitly). In particular, the quadratic polynomial e2πiθz+ z2 is
holomorphically linearizable if and only if θ satisfies the Bruno condition. Non-linearizable
elliptic germs present very interesting dynamics that we are not going to describe in details
here, leaving the reader to check the survey papers [2], [8], [9].

In higher dimension, the situation is much more complicated. To be precise, only the
definition of “hyperbolic germs” makes really sense. There is not such a clear distinction
between parabolic or elliptic germs. And, as we will try to make clear in these notes,
this is not just a matter of definition, but it is really a matter of dynamics that, in
higher dimension, can mix different types of behaviors without privileging none. We will
concentrate on the parabolic behavior. And we will see how, even germs which one would
call “elliptic” can have a parabolic attitude.

The first instance of parabolic behavior in higher dimension is clearly a map tangent
to the identity. This is the prototype of parabolic dynamics. It has been proved by Écalle
[18] and Hakim [25] that generically there exist “petals”, also called “parabolic curves”,
namely, one-dimensional F -invariant analytic discs having the origin in their boundary
and on which the dynamics is of “parabolic type”, namely, the restriction of the map is a
Abel type translation. Later, Abate [1] (see also [3]) proved that such petals always exist
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in dimension two. Hakim also gave conditions for which the petals are “fat” in the sense
that there exist basins of attraction modeled on such parabolic curves. We will describe
such results in details in Section 3.

Other examples of parabolic behaviors are when one eigenvalue is 1. However, in such
a case it is not always clear that some “parabolic attitude” exists, depending on the other
eigenvalues and some invariants. Hakim [24] (based on the previous work by Fatou [19]
and Ueda [38], [39] in C2) studied the semi-attractive case, with one eigenvalue equal to
1 and the rest of eigenvalues having modulus less than 1. She proved that either there
exists a curve of fixed points or there exist attracting open petals, modeled on parabolic
curves. Such a result has been later generalized by Rivi [32] and Rong [36].

The case when one eigenvalue is 1 and the other has modulus equal to one, but not a
root of unity, has been studied in [10]—the so-called “quasi-parabolic” case—and it has
been proved that, under a certain generic hypothesis called “dynamical separation”, there
exist petals tangent to the eigenspace of 1, so that, in such a case, there is a parabolic
attitude. Such a result has been generalized to higher dimension by Rong [33], [34], [35].
We will describe more in details such results in Section 4.

However, as recently proved in [12], parabolic behavior can appear, maybe unexpected,
also in those situations when no eigenvalue is a root of unity. Indeed, the new phenome-
non, which generates “parabolic attitude” discovered in [12] can be roughly summarized
as follows. Assume for simplicity that the eigenvalues λ1, . . . , λn of the differential dF0

have a unique one-dimensional resonance of type λα1
1 · · ·λαn

n = 1. Let F̂ be the formal

Poincaré-Dulac normal form of F . For the moment, assume that F̂ and the formal con-
jugation are converging. Then F̂ has an invariant one-codimensional foliation given by
F := {zα1

1 · · · zαn
n = const} (and so does F ). Considering the map ϕ : Cn → C given by

ϕ(z1, . . . , zn) = zα1
1 · · · zαn

n , it follows that ϕ ◦ F̂ (z) = f(ϕ(z)), where f is a germ in C
tangent to the identity. In other words, F̂ acts as a germ tangent to the identity on the
space of leaves of the foliation F . The idea is then that the parabolic dynamics (petals)
on such a space can be pulled back to Cn and creates invariant sets that, under some
suitable conditions, are basins of attraction for F̂ (and thus for F ). In fact, the similar
argument is correct also when the conjugation of F to its formal Poincaré-Dulac normal
form is not converging, although much more complicated. We will describe more in details
that in Section 5, where we also provide explicit examples.

A final warning about the paper. These notes are by no means intended to be a survey
paper on parabolic dynamics in higher dimensions, so that we are not going to cite all the
results proved in this direction so far: for this, we refer the readers to the papers [8] and,
mainly, [2]. These notes are intended to be a hint of what the word “parabolic” should
mean in higher dimensional local holomorphic dynamics.

The author wishes to thank Ovidiu Costin, Frédéric Fauvet, Frd́éric Menous and David
Sauzin for the kind invitation to the workshop “Asymptotics in Dynamics, Geometry and
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PDEs; Generalized Borel Summation” and to give the talk from which these notes are
taken.

The author also thanks the referee for precious suggestions.

2. Parabolic dynamics in one variable

Definition 2.1. Let f(z) = z+ak+1z
k+1+O(zk+2) be a holomorphic germ in C at 0 with

ak+1 6= 0. We say that v ∈ ∂D is an attracting direction if A
|A|v

k = −1.

We say that v ∈ ∂D is a repelling direction if A
|A|v

k = 1.

Clearly there exist exactly k attracting and k repelling directions.

Remark 2.2. The attracting directions of f are the repelling directions of f−1 and con-
versely the repelling directions of f are the attracting directions of f−1.

Definition 2.3. Let f(z) = z+ak+1z
k+1+O(zk+2) be a holomorphic germ in C at 0 with

ak+1 6= 0. An attracting petal centered at an attracting direction v is a simply connected
open set Pv such that

(1) O ∈ ∂Pv,
(2) f(Pv) ⊆ Pv,

(3) limn→∞ f ◦n(z) = O and limn→∞
f◦n(z)
|f◦n(z)| = v for all z ∈ Pv.

A repelling petal centered at a repelling direction v is an attracting petal for f−1 centered
at the attracting direction v (for f−1).

As a matter of notation, let f(z) = z + ak+1z
k+1 + O(zk+2) with ak+1 6= 0. We write

v+1 , . . . , v
+
k for the attracting directions of f and v−1 , . . . , v

−
k for the repelling directions of

f , ordered so that starting from 1 and moving counterclockwise on ∂D the first point we
meet is v+1 , then v−1 , then v+2 and so on.

Here we state the following version of the Leau-Fatou flower theorem:

Theorem 2.4 (Leau-Fatou). Let f(z) = z+ak+1z
k+1+O(zk+2) be a holomorphic germ in

C at 0 with ak+1 6= 0. Let {v+1 , . . . , v+k , v−1 , . . . , v−k } be the ordered attracting and repelling
directions of f . Then

(1) For any v±j there exists an attracting/repelling petal Pv±j
centered at v±j .

(2) Pv+j
∩ Pv+l

= ∅ and Pv−j
∩ Pv−l

= ∅ for j 6= l.

(3) For any attracting petal Pv+j
the function f |P

v+
j

is holomorphically conjugated to

ζ 7→ ζ + 1 defined on {ζ ∈ C : Re ζ > C} for some C > 0.
(4) |f ◦m(z)|k ∼ 1

m
for all z ∈ Pv+j

, j = 1, . . . , k.

Proof. The proof can be found, e.g. in [16] or [28]. We only mention here how (4) is
obtained. Up to a dilation one can assume ak+1 = −1/k and v+1 = 1. By the Leau-Fatou
construction, if C > 0 is sufficiently large, then setting H := {w ∈ C : Rew > C},
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Ψ(w) := w−1/k for w ∈ H with the kth root chosen such that 11/k = 1 and P := Ψ(H),
the conjugated map ϕ := Ψ−1 ◦ f ◦Ψ: H → H satisfies

ϕ(w) = w + 1 +O(|w|−1), w ∈ H.

From this, (4) follows at once. ¤

3. Germs tangent to the identity

Definition 3.1. Let F be a germ of Cn fixing O and tangent to the identity at O. Let
F (X) = X + Ph(X) + . . ., h ≥ 2 be the expansion of F in homogeneous polynomials,
Ph(X) 6= 0. The polynomial Ph(X) is called the Hakim polynomial and the integer h the
order of F at O.

Let v ∈ Cn be a nonzero vector such that Ph(v) = αv for some α ∈ C. Then v is
called a characteristic direction for F . If moreover α 6= 0 then v is said a nondegenerate
characteristic direction.

A parabolic curve for a map F tangent to the identity is a holomorphic map ϕ : D→ Cn

from the unit disc to Cn, continuous up to the boundary and such that F (ϕ(D)) ⊂ ϕ(D)
and F ◦m(ϕ(ζ)) → 0 for all ζ ∈ D. Moreover, the parabolic curve ϕ is tangent to a direction
v ∈ Cn \ {0} if [ϕ(ζ)] → [v] in Pn−1 as D 3 ζ → 0 (here [v] denotes the class of v in Pn−1).

It can be proved that if P is a parabolic curve for F at O tangent to v then v is a
characteristic direction. However there exist examples of germs tangent to the identity
with a parabolic curve not tangent to a single direction (that is with tangent cone spanning
a vector space of dimension greater than one).

Theorem 3.2 (Écalle, Hakim). Let F be a germ of holomorphic diffeomorphism of Cn fix-
ing O and tangent to the identity at O with order h. If v is a nondegenerate characteristic
direction for F then there exist (at least) h− 1 parabolic curves tangent to v.

Hakim’s proof relies essentially on a finite number of blow-ups and changes of coordi-
nates in such a way that the map assumes a good form and one can define an operator
(which is a contraction) on a suitable space of curves. The fixed point of such an operator
is the wanted curve.

Actually Hakim’s work provides the existence of basins of attraction or lower dimen-
sional invariant manifolds which are attracted to the origin, called parabolic manifolds,
according to other invariants related to any nondegenerate characteristic direction. Let v
be a nondegenerate characteristic direction for F and let Ph be the Hakim polynomial.
We denote by A(v) := d(Ph)[v] − id : T[v]CPn−1 → T[v]CPn−1. Then we have

Theorem 3.3 (Hakim). Let F be a germ of holomorphic diffeomorphism of Cn fixing O
and tangent to the identity at O. Let v be a nondegenerate characteristic direction. Let
β1, . . . , βn−1 ∈ C be the eigenvalues of A(v). Moreover assume Re β1, . . . ,Re βm > 0 and
Re βm+1, . . . ,Re βn−1 ≤ 0 for some m ≤ n − 1 and let E be the sum of the eigenspaces
associated to β1, . . . , βm. Then there exists a parabolic manifold M of dimension m + 1
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tangent to Cv ⊕ E at O such that for all p ∈ M the sequence {F ◦k(p)} tends to O along
a trajectory tangent to v.

In particular if all the eigenvalues of A(v) have positive real part then there exists a
basin of attraction for F at O.

In [1] Abate proved the following:

Theorem 3.4 (Abate). Let F be a germ of holomorphic diffeomorphism of C2 having the
origin as an isolated fixed point and tangent to the identity at O with order h. Then there
exist (at least) h− 1 parabolic curves.

The original proof of Abate is rather involved. Other simpler or clearer proofs have been
discovered later. In [3], a very general construction explaining the essence of the argument
in Abate’s proof has been developed. In [13] Brochero, Cano and Hernanz gave a proof of
such a theorem which relies on foliations. Namely, they associate to the germ F a formal
vector field X such that exp(X) = F . Then they perform a number of blow-ups to “solve”
the singularities of X using the Seidenberg theorem (which holds in the formal category)
and then use the Camacho-Sad construction [15] proving that, on a smooth component
of the exceptional divisor, there exists a suitable “good” singularity for X. Such a good
singularity corresponds to the existence of a nondegenerate characteristic direction for the
blow-up of F , hence applying Theorem 3.2 one gets parabolic curves that can be projected
downstairs.

This method of taking a germ tangent to the identity and associating a formal vector
field whose time one flow is the germ itself is a good way to transfer the result from
the better known theory of vector fields to the study of germs tangent to the identity.
However, there is a disadvantage with respect to more direct methods: since the vector
field is in general only formal, deep problems of resurgence can occur. For instance, it
is likely that one can get a proof of Abate’s theorem directly in the category of formal
vector fields (namely, without using Theorem 3.2) by proving using resurgence that given
a formal vector field and one of its formal separatrix, the latter is convergent on pieces
which are exactly the parabolic curves for the map.

In the same direction, in the recent paper [6], Abate and Tovena studied real dynamics of
complex homogeneous vector fields. Besides its intrinsic interest, this is an useful problem
to study because the discrete dynamics of the time 1-map is encoded in the real integral
curves of the vector field, and time 1-maps of homogeneous vector fields are prototypical
examples of holomorphic maps tangent to the identity at the origin. The main idea here
is that, roughly speaking, integral curves for homogeneous vector fields are geodesics for
a meromorphic connection on a projective space.

More generally, thanks to a result by Takens [37] (see also [23, Chapter 1]), in case
of diffeomorphisms with unipotent linear part, one can embed such germs in the flow of
formal vector fields, so that this type of argument might be used also in such cases. On
the other hand, when the linear part of the diffeomorphism is not unipotent, the author
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is not aware of any general result about embedding such a diffeomorphism into the flow
of a formal vector field. In fact, one encounters somewhat unexpected differences between
the dynamics of diffeomorphisms and that of vector fields, see Raissy [31].

In [3] (see also [11], [4], [5]) a different point of view, more abstract but more intrin-
sic, has been adopted. Blowing up the origin one obtains a new germs of diffeomorphism
pointwise fixing the exceptional divisor. Thus the situation is that of considering a holo-
morphic self-map of a complex manifold having a (hyper)surface of fixed points. Roughly
speaking, the differential of the map acts on the normal bundle of such a hypersurface in
a natural way and thus creates a meromorphic connection, whose singularities essentially
rule the dynamics of the map.

4. Semiattractive and Quasi-parabolic germs

4.1. Semiattractive germs. We say that a parabolic germ F is semi-attractive if 1 is
an eigenvalue of dFO and all the other eigenvalues have modulus strictly less than 1 (if
all the other eigenvalues have modulus strictly greater than 1 we argue on F−1). There
are essentially two cases to be distinguished here: either F has or has not a submanifold
of fixed points.

In case F has a submanifold of fixed points (of the right dimension) there is a result
due to Nishimura [29] which roughly speaking says that, in absence of resonances, F is
conjugated along S to its action on the normal bundle NS to S in Cn.

In case F has no curves of fixed points, Hakim [24] (based on the previous work by
Fatou [19] and Ueda [38], [39] in C2) proved that, under suitable generic hypotheses,
there exist “fat petals” (called parabolic manifolds or basins of attraction when they have
dimension n) for F at O. That is

Theorem 4.1 (Hakim). Let F be a semi-attractive parabolic germ at O, with 1 as eigen-
value of dFO of (algebraic) multiplicity 1. If O is an isolated fixed point of F then there
exist k disjoint basins of attraction for F at O, where k + 1 ≥ 2 is the “order” of F − id
at O.

It is worth noticing that if F is an automorphism of C2 then each basin of attraction
provided by Theorem 4.1 is biholomorphic to C2 (the existence of proper subsets of Cn

biholomorphic to Cn for n > 1 is known as the Fatou-Bierbach phenomenon).
Theorem 4.1 is a special case of the procedure described in the Introduction and in

Section 5. Indeed, write the map F as

F (z, w) = (z + azk+1 +O(‖zw‖, ‖w‖2, |z|k+2), λw +O(‖z‖2, ‖zw‖, ‖w‖2),
where w ∈ Cn−1, λ is a (n− 1)× (n− 1) matrix with eigenvalues of modulus strictly less
than one, k ∈ N ∪ {∞} and a ∈ C \ {0} . The case k = ∞ (namely, no pure terms in z
are present in the first component) corresponds to the existence of a curve of fixed points.
So we assume k ∈ N. The monomials in w are not resonant in the first component, thus
they can be killed by means of a Poincaré-Dulac formal change of coordinates. Hence, the
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foliation {z = const} is invariant by the formal normal form of F , and the action on the
“space of leaves” (which is nothing but C) is given exactly by z 7→ z + azk+1 + . . .. If we
perform the Poincaré-Dulac procedure solving only finitely many homological equations
to kill terms in w in the first component, the map F has the form:

F (z, w) = (z + azk+1 +O(zk+2) +O(‖w‖l), λw + . . .)

with l >> 1 as big as we want. Hence, the map F does not preserve the foliation {z =
const}, but it moves it slowly at order l in w. This implies that the preimage under the
map (z, w) 7→ z of a (suitable) sector S contained in some petals of z 7→ z + azk+1 is
in fact invariant for F . Taking open sets of the form {(z, w) : ‖w‖ < |z|β, z ∈ S} for
a suitable β > 0, it can be then proved that such open sets are invariant and, via the
dynamics “downstair”, they are actually basins of attraction for F .

4.2. Quasi-parabolic germs. We call quasi-parabolic a germ if all eigenvalues of dFO

have modulus 1 and at least one, but not all, is a root of unity—and, up to replace the
germ with some of its iterates, we can assume all roots of unity are 1.

Let us write the spectrum of dFO as R ∪ E, where R contains the roots of unity and
E the other unimodular eigenvalues. In case the eigenvalues in E have no resonances and
satisfy a Bruno-type condition, a result of Pöschel [30] assures the existence of a complex
manifold M tangent to the eigenspace associated to E at O which is F -invariant and such
that the restriction of F to M is holomorphically conjugated to the rotation z 7→ Ez.

We describe here the “parabolic attitude” of quasi-parabolic germs in C2. For results
in Cn we refer to [33], [34]. As strange as it may seem, it is not known whether all
quasi-parabolic germs have “parabolic attitude”!

Using Poincaré-Dulac theory, since all resonances are of the type (1, (m, 0)), (2, (m, 1))—
namely, in the first coordinates the resonant monomials are just zm and in the second
coordinates the resonant monomials are zmw, the map F can be formally conjugated to
a map of the form

(4.1) F̂ (z, w) = (z +
∞∑
j=ν

ajz
j, e2πiθw +

∞∑
j=µ

bjz
jw),

where we assume that either aν 6= 0 or ν = ∞ if aj = 0 for all j. Similarly for bµ.
As it is proved in [10], the number ν(F ) := ν is a formal invariant of F . Moreover, it

is proved that, in case ν < +∞, the sign of Θ(F ) := ν − µ− 1 is a formal invariant. The
map F is said dynamically separating if ν < +∞ and Θ(F ) ≤ 0.

The next proposition is proved in [12] and its proof is a simple argument based on the
implicit function theorem:

Proposition 4.2. Let F be a quasi-parabolic germ of diffeomorphism of C2 at 0. Then
ν(F ) = +∞ if and only if there exists a germ of (holomorphic) curve through 0 that
consists of fixed points of F .
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In case ν(F ) < +∞, the following result is proved in [10]:

Theorem 4.3. Let F be a quasi-parabolic germ of diffeomorphism of C2 at 0. If F is
dynamically separating then there exist ν(F )− 1 parabolic curves for F at 0.

The argument in [10] is based on a series of blow-ups and changes of coordinates which
allow to write F into a suitable form so that one can write a similar operator to the one
defined by Hakim and prove that its fixed points in a certain Banach space of curves are
exactly the sought parabolic curves.

As in the semi-attractive case, one can argue using the invariant formal foliation {z =
const}. Contractiveness in the w-variable is however not for free here. Indeed, in [12] (see
also Section 5) it is proved

Proposition 4.4. Let F be a dynamically separating quasi-parabolic germ, formally con-
jugated to (4.1). If

Re

(
bν−1

e2πiθaν

)
> 0.

then there exist ν(F )− 1 disjoint connected basins of attraction for F at 0.

It should be remarked that the condition in the previous proposition is destroyed under
blow-ups.

The non-dynamically separating case is still open. In such a case there is still a for-
mal foliation {z = const} which is invariant, but the w-variable cannot be controlled
appropriately by the z variable.

F. Fauvet [20] told me that using Écalle’s resurgence theory it is possible to prove
that parabolic curves exist also in the non-dynamically separating case when the other
eigenvalue satisfies a Bruno-type condition.

5. One resonant germs

Let F be a germ of holomorphic diffeomorphism in Cn fixing 0. Let λ1, . . . , λn be the
eigenvalues of the linear part. We say that F is one-resonant with respect to the first
m eigenvalues {λ1, . . . , λm} (1 ≤ m ≤ n) (or partially one-resonant) if there exists a
fixed multi-index α = (α1, . . . , αm, 0, . . . , 0) 6= 0 ∈ Nn such for s ≤ m, the resonances

λs =
∏n

j=1 λ
βj

j are precisely of the form λs = λs

∏m
j=1 λ

kαj

j , where k ≥ 1 ∈ N is arbitrary.

This notion has been introduced in [12]. The main advantage of such a notion of partial
one-resonance is that it can be applied to the subset of all eigenvalues of modulus equal
to 1 that is natural to be treated differently from the rest of the eigenvalues.

In case of partial one-resonance, the classical Poincaré-Dulac theory implies that, when-
ever F is not formally linearizable in the firstm components, F is formally conjugated to a
map whose first m components are of the form λjzj+ajz

αkzj+Rj(z), j = 1, . . . ,m, where,
the number k ∈ N is an invariant, called the order of F with respect to {λ1, . . . , λm}, the
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vector (a1, . . . , am) 6= 0 is invariant up to a scalar multiple and the Rj’s contain only
resonant terms. The fact that the number

Λ(F ) :=
m∑
j=1

aj
λj

αj

is equal or not to zero is an invariant, and the map F is said to be non-degenerate provided
Λ(F ) 6= 0. In fact, one can always rescaling the map to make Λ(F ) = 1 provided it is not
zero.

In [12] it is proved that a partially one-resonant non-degenerate germ F has a simple

formal normal form F̂ such that

F̂j(z) = λjzj + ajz
kαzj + µ

αj

λj

z2kαzj, j = 1, . . . ,m.

Although none of the eigenvalues λj, j = 1, . . . ,m, might be roots of unity, such a normal
form is the exact analogue of the formal normal form for parabolic germs in C. In fact, a
one-resonant germ acts as a parabolic germ on the space of leaves of the formal invariant
foliation {zα = const} and that is the reason for this parabolic-like behavior.

Let F be a one-resonant non-degenerate diffeomorphism with respect to the eigenvalues
{λ1, . . . , λm}. We say that F is parabolically attracting with respect to {λ1, . . . , λm} if

|λj| = 1, Re

(
aj
λj

1

Λ(F )

)
> 0, j = 1, . . . ,m.

Again, such a condition is invariant, indeed, conjugating the map, both Λ(F ) and the aj’s
vary suitably and the sign of the previous expression persists invariant. Such a condition
is vacuous in dimension 1 or whenever m = 1 since in that case α = (α1, 0, . . . , 0) with
α1 > 0. In [12] it is proved the following:

Theorem 5.1. Let F be a holomorphic diffeomorphism germ at 0 that is one-resonant,
non-degenerate and parabolically attracting with respect to {λ1, . . . , λm}. Suppose that
|λj| < 1 for j > m. Let k ∈ N be the order of F with respect to {λ1, . . . , λm}. Then
F has k disjoint basins of attraction having 0 on the boundary.

The different basins of attraction for F (that may or may not be connected) project
via the map z 7→ u = zα into different petals of the germ u 7→ u+ Λ(F )uk+1.

A semi-attractive germ is always one-resonant, non-degenerate and parabolically at-
tracting, thus the previous theorem is a generalization of Hakim’s result.

It should be noticed that the conditions about non-degeneracy and parabolically at-
tractiveness are sharp. In [12] examples are given of one-resonant germs for which such
conditions are not satisfied and that have no basins of attractions.

More interesting for the purpose of these notes is the following example (still from [12]).
Let λ = e2πiθ for some θ ∈ R \Q. Let

F (z, w) = (λz + az2w + . . . , λ−1w + bzw2 + . . .),
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with |a| = |b| = 1. Then F is one-resonant with index of resonance (1, 1) and for each
choice of (a, b) such that the germ is non-degenerate (i.e. aλ−1 + bλ 6= 0), there exists a
basin of attraction for F at 0. Indeed, it can be checked that the non-degeneracy condition
implies that F is parabolically attracting with respect to {λ, λ−1} and hence Theorem 5.1
applies.

A similar argument can be applied to F−1, producing a basin of repulsion for F at 0.
Hence we have a parabolic type dynamics for F .

On the other hand, suppose further that θ satisfies a Bruno condition. Since λq 6= λ
for all q ∈ N, it follows from Pöschel’s theorem [30, Theorem 1] that there exist two
analytic discs through 0, tangent to the z-axis and to the w-axis respectively, which are
F -invariant and such that the restriction of F on each such a disc is conjugated to ζ 7→ λζ
or ζ 7→ λ−1ζ respectively. Thus, in such a case, the elliptic and parabolic dynamics mix,
although the spectrum of dF0 is only of elliptic type.
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