
A NOTE ON INDICES THEOREMS

FILIPPO BRACCI

These are the notes for the talk Splittings, comfortably embedded subvarieties and index
theorems I gave at the RIMS Symposium on Topological and geometrical methods of complex
differential equations in Kyoto, 19-23 January 2004. I wish to sincerely thank prof. Shishikura
and prof. Ito for the invitation.

These notes contain some well known facts (maybe with a new interpretation) and statements
of new results which will be proved in a forthcoming paper.

1. WHAT IS AN INDEX THEOREM?

Let X be a n-dimensional complex variety and let ϕ ∈ H•(X) be a (nonzero) element of its
cohomology. Often it is not possible to “calculate” such an element directly. It is then important
when one can calculate such element using tools like differential geometry or complex analysis.
For instance the Chern classes of a vector bundle on X can be calculated using the Chern-Weil
theory of connections, provided X is nonsingular.

In applications however it is important to know the image of P (ϕ) ∈ H2n−• where P denotes
the Poincaré homomorphism (isomorphism if X is nonsingular).

Suppose that S is an analytic subset of X and let U = X \ S. Look at the cohomological
exact sequence

. . . −→ H•(M,U) −→ H•(M) −→ H•(U) −→ . . .

and assume that H•(M) 3 ϕ 7→ 0 ∈ H•(U). Therefore there exists a lifting ϕ̂ ∈ H•(M, U) of
ϕ in the relative cohomology. This lifting is not unique in general. Anyhow, by the Alexander
homomorphism (isomorphism if S is nonsingular) A : H•(M,U) → H2n−•(S) we have the
following commuting diagram:

(1.1)

H•(M,U) −−−→ H•(M)

A

y
yP

H2n−•(S)
i∗−−−→ H2n−•(M)

therefore we have the following formula, which can be called an “index theorem”:

P (ϕ) = i∗(ϕ̂).
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In particular if • = 2n and S is a finite set of points, denoting by Res(ϕ̂, p) ∈ C the “residue”
at p ∈ S, we have

(1.2)
∫

M

ϕ =
∑
p∈S

Res(ϕ̂, p).

Typical examples of this situation appears when ϕ = cn(TM) (the top Chern class) and then the
left-hand side of (1.2) is just the Euler characteristic χ(M) of M . An example is the classical
Poincaré-Hopf theorem.

However, an “index theorem” as in 1.1 is not very useful. To make it useful one needs

(1) A “good reason” for ϕ 7→ 0 and thus a “good” lifting ϕ̂.
(2) Explicit calculations of i∗(A(ϕ̂)).

Both these problems are interesting and many papers have been written on that, see, e.g. [21].
In these notes we look at the first point, therefore we examine the question of when “ϕ 7→ 0”.

2. HOLOMORPHIC ACTION AND BOTT VANISHING

Let M be a n-dimensional complex manifold and V a holomorphic vector bundle on M . We
say that there is a holomorphic action on V in the sense of Bott (and Lehmann-Suwa) provided
F ⊂ TM is an involutive subbundle and there exists a C-bilinear map θ : C∞(F )× C∞(V ) →
C∞(V ) such that

(1) θ([u, v], s) = θ(u, θ(v, s))− θ(v, θ(u, s)) for u, v ∈ C∞(F ) and s ∈ C∞(V );
(2) θ(hu, s) = hθ(u, s) for h ∈ C∞, u ∈ C∞(F ) and s ∈ C∞(V );
(3) θ(u, hs) = hθ(u, s) + u(h)s for h ∈ C∞, u ∈ C∞(F ) and s ∈ C∞(V );
(4) θ(u, s) ∈ V for u ∈ F and s ∈ V .

If there is a holomorphic action of F of rank r on V , there exists a connection ∇ for V such
that for any symmetric homogeneous polynomial ϕ of degree d > n− r it follows

(2.1) ϕ(∇) = 0.

This last equation is known as Bott vanishing theorem. In particular one has ct(V ) = 0 for
t > 2(m− r).

Notice that if M has (complex) dimension 1 and V = L is a line bundle on M then θ defines
itself a holomorphic connection for L and from Bianchi identity one obtains that the curvature
of such a connection is identically zero on M . In particular c1(L) = 0.

Given a complex vector bundle V on M , in general one cannot hope to have a holomorphic
action on V on all of M . Usually (see next section) there exists an analytic set S such that on
M \ S there exists a holomorphic action on V . Therefore one has the Bott vanishing outside
S. Using compact supported forms as in [4] or Čech-de Rham cohomology as in [17] (see also
[18] and [21]) one can define an element of the cohomology of M vanishing on M \S and then
having an index theorem as said before.
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3. WHEN ARE THERE HOLOMORPHIC ACTION?

We provide three examples and later a general principles.
1. Holomorphic action given by foliations. If F is a one dimensional holomorphic foliation

on a 2 dimensional manifold leaving a curve S invariant then we have the following index
theorem

S · S =
∑

p∈Sing(F)∪Sing(S)

Res(F , S; p).

The previous formula is known as the Camacho-Sad index theorem and it is due to Camacho
and Sad [11] for the case S is nonsingular, Lins Neto [20] and Suwa (see [21]) in case S is
singular.

The fact that S is F invariant allows to define, outside Sing(F) ∪ Sing(S), a holomorphic
action of TF on the line bundle LS associated to the divisor S in M . The holomorphic action
is given by

θ(f |S, s) = π([f, s̃]|S)

for f ∈ F and s ∈ OS(LS) such that s̃ ∈ OM(TM) and π(s̃|S) = s, where, since LS = NS the
normal bundle of S in M outside Sing(S), π : OM(TM)⊗OM

OS → OS(LS) is the projection.
Such a theorem has been generalized to higher dimension (see [17], [18]).

2. Holomorphic action given by diffeomorphisms. Assume f : M → M is holomorphic
and S ⊂ M is a reduced, globally irreducible hypersurface. Suppose that f |S = IS .

As an example of this picture one can think to the blow up of a point in Cn and a germ of
biholomorphism fixing such a point and tangent to the identity there.

Suppose for the moment that S is smooth. Let NS be the normal bundle to S in M . One can
consider the morphism induced by df − I from NS to TM |S . However it might happen that
such a morphism is identically zero. Thus one should take “higher order differentials”. The
way to define it is as follows. Let p ∈ S. For h ∈ OM,p, let

νf (h, S, p) := max{T ∈ N : h ◦ f − h ∈ IT
S,p},

and
νf (S, p) := min{νf (h, S, p) : h ∈ OM,p}.

The number νf (S, p) is independent of p and we simply denote it by νf . We say that f is
tangential to S provided

min{νf (h, S, p) : h ∈ IS,p} > νf .

In dynamics (see [2]) non-tangential mappings are easily studied, therefore, form this point of
view, one can look only at tangential mappings.

Let assume that f is tangential to S. In a local chart with coordinates {z1, . . . , zn} assume
that S is given by z1 = 0. Then consider the (local) foliation defined by

X̃f :=
n∑

j=1

zj ◦ f − zj

z
νf

1

∂

∂zj

.



4 FILIPPO BRACCI

This local foliation depends of course on the local coordinates chosen, but one can show ([2])
that once restricted to S one has a “canonical” section Xf : N

⊗νf

S → TS (if f is non-tangential
the image is just in TM |S). Nonetheless, using such local foliations one can define a holomor-
phic action similar to that in the previous examples, and then getting a residue theorem as the
previous one (see [2] for details and generalizations to higher codimensional and singular cases)

3. Variation. The holomorphic action, now known as “variation” was introduced in [16] and
later generalized in [19]. Let F be a holomorphic foliation, Q = O(TM)/F be the quotient
sheaf called the “normal sheaf” to F . Let S be a leaf of F . Outside the singularities of F ⊗OS

one has a natural action of F on Q defined similarly to that of the first example.

The principle underlying the previous examples has been generalized in [7]. Referring the
reader to such a paper for details, we briefly sketch the idea.

Let M be a complex n-dimensional manifold, S ⊂ M a subvariety, F an involutive, coherent
subsheaf of O(TS) which is a foliation on the nonsingular part of S. Let E be a coherent OS-
submodule of O(TS) (involutiveness is not required). It is possible to define a OM -morphism

χ : E ⊗OM
IS/I2

S → O(TM)⊗OM
IS/I2

S

Such a morphism is injective if S is locally complete intersection.
Now let v ∈ O(TM). We say that v is tangentially vanishing at the first order with respect to

E if the image of v into O(TM)⊗OS is zero and if w ∈ O(TM)⊗ IS is the unique preimage
of v then π(w) ∈ χ(E ⊗OM

IS/I2
S), where π : O(TM)⊗ IS → O(TM)⊗ IS/I2

S .
Let {Uα} be an open covering of M and assume that for all α is defined an involutiveOM |Uα-

module Gα. We say that {Uα,Gα} is a first order tangency extension of F with respect to E if
(1) Gα ⊗OS = F|Uα .
(2) Let p ∈ S. For any fα ∈ Gα,p and fβ ∈ Gβ,p such that fα|S = fβ|S then fα − fβ is

tangentially vanishing at the first order with respect to E .

Theorem 3.1. Let M be a complex manifold, S ⊂ M a submanifold. Let F be a nonsingular
foliation on S and let F ⊂ TS be the associated bundle. Let L ⊂ TS be a (possibly non-
involutive) subbundle such that [L, F ] ⊆ L. If F admits a first order tangency extension with
respect to O(L) then there is a holomorphic action of F on TM |S/L.

Notice that if L = TS then one has the “Camacho-Sad action” of the first two examples,
while if L = F one has variation.

4. DROPPING TANGENCY

As one can see, there are two main hypotheses in the previous theorem for holomorphic
actions. The first one is about injectivity of F . the second one is about tangency of F to S.

These two hypotheses are of very different nature. To drop the first hypothesis one can try
to consider the “minimum involutive” extension of F (in case it is not involutive), but this
generates bigger singularities, not easy to control. We do not know whether it is possible to get
“genuine” holomorphic action in this case.
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As for the hypothesis on “tangency”, one can start with F ⊂ O(TM) ⊗ OS , instead of
F ⊂ O(TS). In some case, depending on the geometric embedding of (the nonsingular part of)
S into M , it is still possible to have a holomorphic action.

The condition we have is known as “comfortably embedded” submanifold and it was intro-
duced in [2]. Such a condition generalizes the ones introduced in [12] and [13]. In [3] we
develop and give details of what follows.

A subvariety is said to be comfortably embedded whenever its nonsingular part is so (as usual,
on singularities one patches by means of the Čech-de Rham or compact supported cohomology
theory). Thus we only look at nonsingular submanifold S of M .

First of all we need a way to project to the tangent bundle of S, TS. The first condition is
thus that S being splitting into M . This means that the exact sequence of OS-modules:

0 → IS/IS2 → ΩM,S → ΩS → 0

splits (here ΩM,S = ΩM ⊗ OS and ΩM is the sheaf of holomorphic differentials on M ). This
condition is equivalent to the following ones:

(1) The Grothendieck-Atiyah map δ : H0(S, Hom(NS, NS)) → H1(S, Hom(NS, TS)) is
such that δ(id) = 0.

(2) There exists an atlas {Uα, (z1
α, . . . , zn

α} such that S ∩ Uα = {z1
α = . . . = zm

α = 0} and
∂zp

β

∂zr
α
∈ IS for p = m + 1, . . . , n and r = 1, . . . , m.

(3) There exists ρ : OS → OM/I2
S which lifts the natural map OM/I2

S → OS .
(4) There is a first order infinitesimal retraction from the first infinitesimal neighborhood

S(1) of S to S.
(5) The sequence of sheaves of rings

0 → IS/I2
S → OM/I2

S → OS → 0

splits (and this allows to give a structure of OS-module to OM/I2
S).

(6) The first infinitesimal neighborhood S(1) of S in M is isomorphic to the first infinitesi-
mal neighborhood SN(1) of S in NS .

Let σ : TM |S → TS be a splitting morphism. Assume that F be a one-dimensional foliation
in M . Consider Fσ := σ(F ⊗OM

OS). In the most cases Fσ is faithful, that is Sing(Fσ) 6= S.
If Fσ has a first order extension with respect to TS then we say that S is comfortably embed-

ded into M . If S is splitting into M , the condition of being comfortably embedded is equivalent
to the following:

(1) There exists an atlas {Uα, (z1
α, . . . , zn

α} such that S ∩ Uα = {z1
α = . . . = zm

α = 0} and
∂2zr

α

∂zs
β∂zt

β
∈ IS for r, s, t = 1, . . . , m.

(2) In an atlas as before, let hαβ := 1
2

∑ ∂zu
β

∂zu
α

∂2zr
α

∂zs
β∂zt

β
|S∂β,r ⊗ ωs

β ⊗ ωt
β . Then {hαβ} defines a

class [h] ∈ H1(S,NS ⊗N∗
S ⊗N∗

S) and [h] = 0.
(3) The sequence of sheaves of rings

0 → I2
S/I3

S → IS/I3
S → IS/I2

S → 0,
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splits.
(4) The second infinitesimal neighborhood of S in NS , SN(2) is isomorphic to the analytic

space (S,OM/I2
S ⊕ I2

S/I3
S).

Typical examples of comfortably embedded submanifolds are zero sections of vector bundles
and blow ups along comfortably embedded submanifolds (for instance Stein submanifolds of
some space, or a point).

We have the following result (which can be generalized to several (co)-dimensions):

Theorem 4.1. Let S be a compact complex (possibly singular) curve into a two dimensional
manifold M . Let F be a foliation in M . Assume that S is comfortably embedded in M (this is
always the case if S has a singularity) and let σ : M → S be the splitting. If Fσ is σ-faithful
and Σ := Sing(Fσ) ∪ Sing(S) then

S · S =
∑
p∈Σ

Res(σ,F , p).

Moreover, if (U, (w1, w2)) is a chart around p ∈ Σ so that U ∩ S = {l = 0}, dl ∧ dw2 6= 0,
F = a ∂

∂l
+ b ∂

∂w2
on S ∩ U \ {p} then

Res(σ,F , p) =
1

2π
√−1

∫

Γ

1

b

∂a

∂l
dw2,

where Γ is the link of the singularity p in S.
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