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LOCAL DYNAMICS OF HOLOMORPHIC DIFFEOMORPHISMS

FILIPPO BRACC

ABSTRACT. This is a survey about local holomorphic dynamics, from Po@isdames to
nowadays. Some new ideas on how to relate discrete dynamics to continuous dynamics are also
introduced. It is the text of the talk given by the author at the XVII UMI Congress at Milano.

SUNTO. Queste un sunto dello stato dell'arte della dinamica olomorfa complessa dai tempi
di Poincagé ai giorni nostri. Sono inoltre indicate alcune nuove idee per mettere in relazione la
dinamica discreta con la dinamica contindail testo della conferenza tenuta dall’autore nel
XVII Convegno dell’'lUMI a Milano.

PROLOGUE

Let M be a complex manifold anfi: M — M a holomorphic map. The study of the behav-
ior of the sequence of iterates ¢f { f°¢1, is what is nowadays calleldolomorphic (discrete)
dynamics This subject has been studied since the time ob8ehfor local dynamics and Fatou
and Julia in case of rational mappings of the complex projective line. Much of this theory has
been used and improved later by people interested icdhénuous dynamicsf holomorphic
foliations, relating dynamics of vector fields@t with the dynamics of holomorphic mappings
by means of the Poincatime one map.

The study of holomorphic dynamics can be done both form the global and the local point
of view. From the global point of view one is interested in finding invariant sets for the map
and studying their properties. A simple type of (forward) invariant set is given by a fixed point
of the map. The forward orbit of such a point is the point itself, but the backward orbit might
be very complicated. Trying to simplified the situation one can consider only the behavior of
points nearby the fixed point. This type of study is known as local dynamics.

Local dynamics thus uses a magnifying glass to understand what is going on near the fixed
point. Therefore, instead of considering maps of a manifold we can just study germs of diffeo-
morphisms at the fixed point (the ambient will usually®@& but one can also study singular
ambient spaces). This has the value that, contrarily to the global situation, one can often explic-
itly write down examples on which figure out the theory.

The best situation one can hope to havkrisarizationof the germ. This means that suitably
changing coordinates the map becomes a linear transformation. If the change of coordinates
used to linearize the germ is holomorphic than the linear transformation obtained is the differ-
ential of the germ at the fixed point (up to conjugation). However if the change of coordinates
involved is only continuous then the linear transformation might not be the differential. Holo-

morphic linearization is the dream of people that study local holomorphic dynamics, for one
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can really think of the map as a linear transformation. Even topological linearization is useful
(for instance it provides trajectories and behavior of orbits) and sometimes it may be useful also
to have just formal linearization. Anyhow, the differential is the map which first approximates
the dynamics of the map, and thus it is natural to classify and study dynamics according to the
spectrum of the differential itself.

As we will see, a generic germ of holomorphic diffeomorphism is holomorphically lineariz-
able. Unfortunately, the non-generic situation comes out often in celestial mechanics and phys-
ical problems. Thus one is forced to understand non-linearizable dynamical systems. These
are not completely understood, even if from the pioneeristic work of Fatou, Dulac and Roincar
much has been done.

The aim of these notes is to provide a survey on the state of art about local holomorphic
dynamics, trying to face on the several ideas appeared on the subject.

The notes are based on the talk | gave at the XVII Congress of UMI in Milano. | wish to
thank the organizers for having invited me and for the opportunity of writing these notes.

1. LOCAL DYNAMICS IN DIMENSION ONE

Let f be a germ of holomorphic diffeomorphism at the origin(®fixing 0. Thus we can
expandf asf(¢) = A\ + ... wherex € C\ {0}.
As one can expect the numbediscriminates the local dynamics.

1.1. Hyperbolic case: |A\| # 0,1. The main result is due to &higs in 1884 (seee.g. [22])
who solved the so-called Sdider equation

(1.1) oo f=M\o,

in case|A| < 1 (if |[\] > 1 one can solve a similar functional equation for'). This means
that there exists a unique holomorphic diffeomorphissuch that(0) = 0,0'(0) = 1 which
conjugatesf to the function¢ — A(. Therefore the dynamics gf can be read in this new
coordinates, and one sees that for any pgjmtear to0 then f°*(¢,) — 0 ask — oo following

a spiralizing or a linear path according to whethas complex or pure real.

It should be mention another interpretation of (1.1). Supposeftigiholomorphic on all the
unit discA = {¢ € C : || < 1}. Let H?(§) be thep-Hardy space od\. One can define a
linear operato’'y : H?(A) — HP(A) asCy(h) = ho f (see,e.g, [48]). By the Littlewood’s
subordination lemma one can show thatis actually continuous. Such an operator is called a
composition operatorThen (1.1) is equivalent t6';(c) = Ao. Namelyo is an eigenvalue of
Cy. The dynamics off is strictly related to the functional analysis propertie€pf We invite
the interested reader to read [48] for more on this subject.

¢, From the point of view of holomorphic dynamics, havingaomorphic linearizatioras a
solution of (1.1), is the best one can hope. In particular it is not difficult to see that# A,
then f1({) = M¢ + ... and f2(¢) = X2( + ... are not holomorphic conjugated each other,
and thus their dynamics is different from a holomorphic point of view. In particular the space
of holomorphic parameters for hyperbolic germgJi§ [{0} U 0A]. From the point of view
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of topology however the situation is different. one can always find a topological conjugation
between any two hyperbolic germs with both derivativesatmodulo less tham (respectively,

both with modulo greater thar). Therefore the space of topological parameters is reduced to
only two points.

1.2. Parabolic case: |\| = 1, \* = 1 for somek € N. This case can be considered as the
“resonant case”, as it will be clear later. Indeed, one first tries to linearize the gernfosing
series and then hope to make them converging. However, the faci\tiat= \ prevents the
possibility to kill (even formally) all the terms. Indeed it is not difficult to show that

Proposition 1.1. The mapf is holomorphically conjugated t — A( if and only if f*(() = ¢
for somen € N.

Thus, linearizable parabolic germs are not many. However the dynamics can be still well
understood, thanks to the work of Leau and Fatou (@gg[22]). First we remark that*(¢) =
¢ + O(¢?). Thus essentially one can recover the casé 1 from the case\ = 1. In this case
the Leau-Fatou theorem states that it is possible to find invariant simple connected domains
containing0 on the boundary such that on each domain the map is conjugated to a parabolic
automorphism of the domain itself and each point of such a domain is attractedTioese
domains are callegetalsand their existence is predicted by theau-Fatou Flower Theorem
To give a simple statement of such a result, we note thatd§ = ¢ + a,.¢" + O(¢") with
r > 1 anda, # 0, it is possible to perform a holomorphic change of variables in such a way
that f becomes conjugated {o— ¢ +¢" + O(¢"*!). The number is theorderof f at0. With
these preliminary considerations at hand we have

Theorem 1.2(Leau-Fatou Flower Theorembet f({) = ¢ + ¢" + O(¢"™) withr > 1. Then
there exist(r — 1) domains called petalsP;, symmetric with respect to the— 1 directions
arg( = 2mq/(r —1),q=10,...,r — 2 such that?; N P, = 0 for j # k, 0 € OP;, eachP; is
biholomorphic to the right-half plané, and for all¢ € P; it follows f°*(¢) — 0 ask — ooc.
Moreover for allj, the mapf|p, is holomorphically conjugated to the parabolic automorphism
(—(¢+i0nH.

Now, f~1(¢) = (—¢"+O0(¢"1). Thus, applying Theorem 1.2 ! one gets —1 attracting
petals@; for f~' symmetric with respect to the— 1 directionsarg { = (2¢ + 1)mq/(r — 1),

g =0,...,7 — 2. Notice that these directions are exactly the bisectrices of the angles between
two consecutive attracting directions fér It is clear that the);’s are repelling petals fof,
intersecting the”'s andJ; P; U @; U {0} is an open neighborhood 0fin C. Therefore now

the dynamics off can be read easily.

If A # 1 (and)\* = 1) then f acts as a permutation on the petalsf6f which are thus a
multiple of k. It should be notice however thatf{() = A\ + a,.¢" + ... with a,. # 0, then the
number of petals might be different from Indeed it may happen thét has order> r at0.

We saw that there is no hope to obtain a holomorphic linearization for parabolic germs.
However one may ask what happens from the topological point of view, and more generally
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which are the classes of holomorphic conjugacy. Both questions have been answered. The
topological classification is in fact pretty simple (even if not easy to obtain) , and it is due to
C. Camacho [18] and, independently, by Shcherbakov [49].

Theorem 1.3(Camacho, Shcherbakowvet f(¢) = A\ + O(¢?) be holomorphic\" = 1 for
somen € N and, ifn > 1 assume\™ # 1 for 1 < m < n. Then

(i) either f"(¢) = ¢,
(ii) orthere existd: € N such thatf is topological conjugate tqg — A((1 + (™).

Remarkl.4. If f(¢) = ¢ + a,¢" + O(¢"™) with a, # 0 then f is topological conjugate to
C— ¢+

The proof of the theorem shows actually that one can topologically conjyg@ten auto-
morphism of a suitable Riemann surface. Camacho’s original proof is itself very beautiful and
provides some more hints on the dynamics of the map. Therefore we provide some details of
the proof, at least for the cage= 1.

Sketch of the proof of Theorem 1.3 for= 1. Let f({) # ¢ be given byf(¢() = ¢ + ¢™ +
O(¢™*%). By Theorem 1.2 the union of petd\l;% P; U @, is an open set arourtd and on each
petal the gerny is conjugated to an automorphism of such a petal.

The idea is now to consider each petal as a chart of a suitable Riemann surface in such a
way that the conjugations on each chart glue together to give a global conjugatfoto @
automorphism of the Riemann surface. More preciselySlebe the Riemann surface of the
function¢ — ¢~™. The surfaceS,, can be defined aS,, = {(z,w) € C* x C* : w = 27™}.
LetC: = {¢ € C* : (| < r} forasmallr > 0. LetS", = 7, }(C}), wherem,(z,w) = z.
Then we can well define a holomorphic injective mép S”, — S,, asF = w; ' o f o .
Now notice thatr, : S,, — C*, wherem,(z, w) = w, is am-th covering. In particular is a
biholomorphism onr; ' (P;) N S,, (andn; ' (Q;) N S,,,), whose inverse, which with some abuse
of notation we denote by2‘1|ﬂ;1(Pj), is given by (the appropriate branch af)— z~/™. If we

use(ma|—1(p,), 7 ' (P;)NS,,) as alocal chart 08,,, and take into account that by Theorem 1.2
the domainp; is f-invariant, we get
ol ari(py © Fomy | oipy(2) =m0 f(z/™) = [f(z7/™)] ™" =z —=m 4 cz7Vm 4,
where the branch of /™ is chosen so that'/™ € P;. We define an injective holomorphic
mapG : S’ — S,, in the following way. If(z, w) € 7, (P;) N S,, then
G(z,w) = 7T2_1|7rf1(Pj)(772(2,w) —m).
Similarly if (2, w) € 77 (Q;) N S,,. One can easily check thatis a well defined holomorphic
map which can be extended to all&f, as an automorphism.
The upshot is to show thét is topologically conjugated t6& on S;,,, which will imply that f

is topologically conjugated tg := m,0Gon; ! onC:. Since als@ — ((1+(™) is topologically
conjugated tgy this will prove the theorem.
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To this aim we define & diffeomorphismK : S — S,, by gluing togethei” andG in
such a way thalk = F outside some large compact subsetSpfand K = G on a open set
contained in such compact subset. Notice that this is possibl&fer =) — G(z, z~™)| goes
to zero agz| — oo. Itis now enough to show thdt is topologically conjugated t6&'.

The idea is to define a conjugatidih on a setF, called exaggerated fundamental domain
such that for anyp € S, there existsa € Z such thatG*(p) € E, and then extend the
conjugation by means of the relatidho G o H~! = K. The setF can be defined taking the
setB of points where/'’ = G union2m semi-strips fromB to infinity delimited on each chart
Ty (m(P})) NS by Ly = 7y ({Re¢ = 0}) andG(L;). ThenH can be defined o by
means offl |z = id, H|., = id, H|q,) = K(L;) and glue together as@> diffeomorphism
on each semi-strip. One can then check thas absorbing iterates a and thusH can be
extended as wanted. O

The above proof shows that, ff!(¢) # ¢, then actuallyf is C*°-conjugated to\((1 + ¢*")
outside0. One might suspect that with some more refinement it would be possible to extend the
conjugation in (at least) @*-way to0. However this is not the case, as shown by Martinet and
Ramis [36]. In such a paper they provide a differentiable classification of parabolic germs. In
particular they prove

Theorem 1.5(Martinet-Ramis) Let f and g be two parabolic germs 4t

(1) If f andg are formally conjugated then they are topologically conjugated.
(2) If f andg are C'-conjugated then they are holomorphically conjugated.

The first statement is not surprising after Theorem 1.3 and the formal classification due to
Voronin [54]. However the second result is very impressive!

Theorem 1.5 is actually a corollary of the holomorphic classification of parabolic germs
which is also provided in [36]. This latter is also due to Voronin [54] &udlle [25], see also
I'yashenko [32]. Such a classification is quite complicated. A parabolic geisrassociated
to anorbits spaceF;. SuchF; is a complex Riemann surface given by the amalgamated sum
of 2m Riemann spheres. Each sphere represents a petalaraf the sum is defined by means
of the behavior off on the intersection of two consecutive petals (one attractive and the other
repelling). The orbit spaces; provide the searched holomorphic invariants. See [36] for
details.

1.3. Elliptic case: |A\| = 1, A = ¢ for somef € R\ Q. This case can be considered as a
big world by itself, formed by several interesting problems—some still open—knowma#
divisors problemsrelated to physics and celestial mechanics. We only provide some small
survey on the basic results.

Firstly, from a formal point of view one can kill all the terms after the linear one, so that
f(¢) = X + O(¢?) is alwaysformally conjugated t@ — A(.

As for the holomorphic and topological linearization we have
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Theorem 1.6. Let f be an elliptic germ. Therf is holomorphically conjugated t¢ — A( if
and only if the sequendgf°*} is uniformly bounded ned. In particular f is holomorphically
linearizable if and only if it is topologically linearizable.

Proof. One direction is clear. Conversely, assume ffyat} is uniformly bounded nedb. Let
o,(C) = 1/n Z}:& A7 f°I(¢). Theno, o f = Ao,y1 + O(1/n) and{c,} is a normal family
near0. Therefore, up to subsequences,converges to a holomorphic map conjugatjntp its
differential. Finally, it is obvious that if is topologically linearizable thefif°*} is uniformly
bounded neab and thusf is also holomorphically linearizable. O

The question is whether all elliptic germs are holomorphic linearizable. The answer is known
to be negative, and first examples where produced by Cremer. Indeed we have

Theorem 1.7(Cremer) Letd € R\ Q. If limsup,, . [{nf}|7"/" = co (Where{z} = 2 — [z]
with [z] denoting the integral part of) then there exists an elliptic gerfi(¢) = ¢ + O(¢?)
which is not linearizable.

A numberf satisfying the condition of Theorem 1.7 is calledCaemer numberCremer’s
number form a dense subset®fof zero Lebesgue measure. If an elliptic gefims non-
linearizable ab, we say that is a Cremer poinfor f.

On the other hand, sufficient arithmetic conditiong/dar f(¢) = ¢ +. . . to be linearizable
were first given by Siegel. Thus we say thas a Siegel poinfor f providedf is linearizable
at0. However Siegel’s original conditions were not sharp. Later Bryuno gave a better sufficient
condition ond for f to be linearizable, and Yoccoz showed the necessity of such a condition.
We suggest the interested reader to reagl, the notes [35]. Here we content ourselves to state
the result as follows:

Theorem 1.8(Bryuno-Yoccoz) Letd € R\ Q. Let{p,/q.} be the sequence of rational
approximation tof given by its continued fraction expansion. Tlieis a Siegel point for all
f(¢) = €eC + 0(¢?) if and only if

i 10g Gn 11 < o0

n=1 In

Notice that the numbers for which the condition stated in Theorem 1.8 is satisfied form a
full Lebesgue measure subsetiof

For what dynamics concerns, Siegel points are easily understood. Instead Cremer points
are still quite mysterious, despite the remarkable work of R. Perez-Marco (see [40] and [41]).
To state some of his results, we recall thatraall cyclefor f is a finite orbit of f, i.e.,, a set
{p1,-..,pn} C C* such thap; # p, and f(p;) = p;+1 modulon. We say that a gernf has
the small cycles propertif for any open neighborhood of 0 there exists a small cycle fgf
contained inUJ. If f has the small cycles property then small cycles accumuldie Hbtice
that an elliptic germ with the small cycles property is necessarily non-linearizable.
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Theorem 1.9(Perez-Marca) There exist elliptic germs with the small cycles property. Not all
non-linearizable elliptic germs have the small cycle property.

Actually Perez-Marco provides a precise arithmetic conditiofi mnorder to decide whether
the non-linearizable germ has the small cycles property. See [40] for details.

As far as we know, there is no topological nor holomorphic classification available for elliptic
germs at Cremer points.

2. LOCAL DYNAMICS IN HIGHER DIMENSION

In higher dimension the situation is much more complicated than in dimension one. Let
F : C" — C" be a germ of holomorphic diffeomorphism at the origlriixing O. Even in sev-
eral variables the spectrum @f, gives a first picture of the dynamics. However, several new
phenomena may occur. Firgtkl, may not be diagonalizable. This is mainly a technical prob-
lem which for simplicity we do not discuss here, so from now on we asslipes diagonal
with eigenvalues\,, ..., \,,. Secondly the eigenvalues, . .., \, might haveresonances

Definition 2.1. We say that the eigenvalue with s € {1,...,n} is resonanif there exist
mq,...,m, € Nsuchthatn; +...+m, > 2and

As = A" A,
The vector(m,, ..., m,) is said theorderof resonance.

Notice that for the same eigenvalue there might be several order of resonances. Roughly
speaking the eigenvalue is resonant if the dynamics along the other directions enter to disturb
the dynamics along the eigendirection relative\fo

As we saw in the previous section, in dimension one the only resonant case is the parabolic
case and it is the only case where there is no formal linearization. So we start to study lineariza-
tion and resonances.

2.1. Resonances and Ii‘neari'zationWe begin with a definition. Writé" = (F},. .., F},), with
series expansiofi; = P} + Pj +...with P} homogeneous polynomial in, . . ., 2, of degree
k. We denote by, the monomiak/" - - . 2= in P} L .- AssumedFp has eigenvalues
ALy ooy A

Definition 2.2. If )\, is a resonant eigenvalue with order of resonafe, ..., m,) we call
Py ... aresonant monomial

..... m

With these definition we have

Theorem 2.3(Poincaé-Dulac Normal Form)Let £’ be a germ of holomorphic diffeomorphism
of C™ fixing O. Assume thaf I, is diagonal. Thert' is formally conjugatedo a formal series
F =dFy+ P, + ..., where ther’s are polynomial made only of resonant monomialg’'oin
particular if dF, has no resonances thénis formally linearizable.
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We note that the formal series provided by Theorem 2.3 is not unique in general. Such a
series is called &rmal normal fornof F.

Proof of Theorem 2.3First we try to kill the terms inP, using a transformation of typg(z) =
z 4+ H(z) with H a polynomial of degree. Thus

ToFoT Yz)=dFo(z)+ Py(2) + HodFp(2) —dFp o H(z) + O(||z||*).
To kill P, one has to solve the so-calledmological functional equatian H given by
dFooH—HOdFO:PQ.

This can be always solved provided there are no resonances oRoi@énerwise the resonant
terms might survive. Keeping on solving homological equation of increasing degree one has
the statement. O

The question is then when the formal change of variables provided by Theorem 2.3 is actually
convergent. The answer is provided by Poidaimself.

Definition 2.4. We say that’ belongs to thé?oincaé domairat0 if all the eigenvalues of ',
have modulus strictly less thdror they all have modulus strictly greater thanOtherwise we
say thatl” belongs to theSiegel domairat O.

Thus we have (see.g, [7] for a proof):

Theorem 2.5(Poincaé-Dulac) If F' belongs to the Poinc&rdomain atD then F' is holomor-
phically conjugated to a polynomial normal form. In particularfifhas no resonances &l
then it is holomorphically linearizable.

Using this result, Reich [44], [45] gave the holomorphic classification of germs in the P@incar
domain atO.

If F" belongs to the Siegel domain one may also ask for linearization or convergence of the
formal change of variables in Theorem 2.3. The first result in this direction (and the reason for
naming Siegel in this context) is due to Siegel (s&g,[7]). We state it here as follows:

Theorem 2.6(Siegel) Let F' be a germ of holomorphic diffeomorphism fixiog Let denote
by {\1,...,\.} the eigenvalues aiFy,. If there existC' > 0 andr € N such that for all
s=1,...,nandmy,...,m, € Nsuchthaty m; > 2and|\; — A\]" --- \"*| # 0 it holds
¢

(X mg)”

thenF’ is holomorphically conjugated to a normal form. In particulaffifsatisfieq2.1)and F’

is formally linearizable (for instance if" has no resonances &t) then £ is holomorphically
linearizable.

(2.1) [As = A AT >

It is worth noticing that the condition in Theorem 2.6 is full Lebesgue measure $oiffi-
ciently big. Thus, collecting all the previous results, roughly speaking, we can say that almost
all germs of holomorphic diffeomorphism fixin@ are holomorphically linearizable.
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It should also be remarked that Bryuno [16] gave an improvement of Siegel’s condition of
Theorem 2.6.

In several variables it makes also sense to asétial linearizationor linearization along
some submanifold. Namely, the full germmight not be linearizable, but it may exist a com-
plex submanifold\/ passing througlv such that'(M) C M andF|,, is linearizable. Again,
partial linearization depends on small divisors.

Theorem 2.7(Podschel) Let F' be a germ of holomorphic diffeomorphism fixifdg Let denote
by{A1,..., \,} the eigenvalues afF;, with eigenspaceg( ;). Letk < n. If there exisC > 0
andv € Nsuchthatforalls =1,...,nandm,,...,m; € Nsuch thaty m; > 2it holds

¢

(5= my)”

then there exists af-invariant complex submanifol?t/ C C" such thatlpx, M = Z?Zl E()\))
and F'|,, is holomorphically linearizable.

(2.2) Ag — AT AT >

Again, condition (2.2) can be improved, see [43].

2.2. Stable/unstable center manifolds.Assume that is linearizable by means of the conju-
gationy, i.e, ¢ o F o o' = dFy. If E is an eigenspace affy, of dimensionk thenp(FE) is a
complex submanifold of dimensionof C" containingO and which isF-invariant. Moreover
the action off” on E is essentially determined by the eigenvalue—sayassociated t@&. With
obvious meaning, the manifold( £) is calledstablef |\| < 1, unstablaf |\| > 1 andcentral
if [\ =1.

Now, linearizable germs are dense in the space of germs (with any decent topology, for in-
stance the compact-open topology). Thus one might hope to recover stable/unstable and central
manifolds even in the non-linearizable case. This is however only partially true. To fix nota-
tions, letE be the sum of eigenspacesddfy associated to eigenvalues of modulus strictly less
thanl. Let F, be the sum of eigenspacesdf, associated to eigenvalues of modulus strictly
larger thanl. Finally let £. be the sum of eigenspaces of modulus'hen the stable/unstable
center manifold is the following:

Theorem 2.8(Stable/Unstable Center Manifoldd)et ' be a germ of holomorphic diffeomor-
phism atO fixing O.
(1) There exists a unique-invariant complex submanifold’, C C" of dimension dimE
such thatO € W,, ToW, = E,, andF**(p) — O ask — oo for all p € W,.
(2) There exists a unique-invariant complex submanifold’, ¢ C™ of dimension dimE,,
such thatO e W,, ToW, = E,, andF°~*(p) — O ask — oo forall p € W,,.
(3) There exists a (not uniqué)-invariantC'>° submanifoldV, C C" of dimension dimFE.
such thatD € W, andTpW, = E..

Notice thatF
Theorem 2.5.

w. and F'|y, are holomorphically conjugated to a polynomial normal form by
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Theorem 2.8 is not the most general statement one can get. For instance, one can prove
the existence of complex stable/unstable manifolds related to any eigenspace associated to an
eigenvalue of modulus strictly smaller/larger tHaMoreover one can give several useful char-
acterization oiV,, W,,, W.. For these and for proofs, we refer the interested reader to [31] or [3],
where also the non-invertible and non-local cases are considered. The theorem is originally due
to Pesin, Hadamard and Wu [56] for the complex category.

It is important to note that in general the non-uniquened$/pprevents this latter to have a
complex structure.

2.3. Hyperbolic case. We say thaO is a hyperbolic poinfor F if dF, does not have eigen-
values of modulug. In this case Theorem 2.8 gives a clear picture of the dynamicshdar
no center manifolds appear.

If F'is in the Poinca& domain aO (that is all the eigenvalues have modulus either strictly
smaller thanl or strictly greater than) Theorem 2.8 assures that all points in an open neigh-
borhood ofO are attracted t® by F or by F—*.

If F"has some eigenvalues of modulud and some of modulus 1 then Theorem 2.8 gives
two F-invariant complex submanifold/y, W,, where the dynamics is attractive/repulsive. Any
other point in a neighborhood @? escapes frond) both iterating forward and iterating back-
ward, exactly as i” were linearizable. Indeed hyperbolic germs are topologically linearizable:

Theorem 2.9(Grobman-Hartman)If £ is a germ of hyperbolic holomorphic diffeomorphism
at O fixing O then F' is topologically linearizable a©.

Aside the original references, see [3] for a proof.

2.4. Parabolic cases.A germ of diffeomorphism#” at O fixing O is parabolicif at least one

of the eigenvalues af Fy, is a root of unity. This terminology is not standard since the study
of holomorphic dynamics in several dimension is only at the beginning. Also, some results are
true for dimension two, while they are false or unknown for dimension greateRthan

2.4.1. Semi-attractive caseWe say that a parabolic germis semi-attractivef 1 is an eigen-
value of dF, and all the other eigenvalues have modulus strictly less th@hall the other
eigenvalues have modulus strictly greater thame argue on/"~!). There are essentially two
cases to be distinguished heréhas or not a submanifold of fixed points. In cdséas a sub-
manifold of fixed points (of the right dimension) we have a result due to Nishimura [38] which
roughly speaking says that, in absence of resonartesconjugated along to its actionL

on the normal bundlé/s to S in C". The precise result is:

Theorem 2.10(Nishimura) Let F' be a parabolic germ aD and assume there exists a sub-
manifoldS C C™ such thatO € S and F'|s = id. Let{1, \;(p), ..., An(p)} be the eigenvalues
of dF, atp € S. Assume that for any € S, 7),S is the eigenspace related 19 |\;(p)| < 1 for

j =1,...,m and there are no resonances amoxdp), . . ., A,(p). Then there exists an open
neighborhood’ of S and a unique biholomorphic map: Ng¢ — U such thatt'op = po L.
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Other results of more global nature (obtained from the local situation by means of blow-ups)
are contained in [6], we come back on these later when talking about germs tangent to identity.
In caseF’ has no curves of fixed points there are results of Ueda [52], [53], Hakim [29] and
Rivi [46] which generalize older results of Fatou [27]. Such results essentially state that, under
suitable generic hypotheses, there exist “fatty petals” (cgk@bolic manifold®r basins of

attractiorwhen they have dimensior) for /' atO. To be more precise,

Definition 2.11. A parabolic manifold\l for F' atO is an F’-invariant complex submanifold of
C" containingO on the boundary such that for apye M the sequence of iteratgg™*(p)}
converges t@).

Roughly speaking, the number of parabolic manifolds is related to the “ordéfafl along
the parabolic direction ab while their dimension is given by the number of non-unimodular
eigenvalues ofl F,. Here we content ourselves to state the following result:

Theorem 2.12(Hakim). Let F' be a semi-attractive parabolic germ @, with 1 as eigenvalue
of dFy, of (algebraic) multiplicityl. If O is an isolated fixed point df then there exist disjoint
basins of attraction fo" at O, wherek + 1 > 2 is the “order” of F — id at O.

It is worth noticing that ifF” is an automorphism df? then each basin of attraction provided
by Theorem 2.12 is biholomorphic @ (the existence of proper subsets@f biholomorphic
to C" for n > 1 is known as thé~atou-Bierbach phenomenjon

Ueda, whose works hold ifi?, provided precise information on the shape of the basin of
attraction (in case the order 6f—id is exactly2) and showed thak’ is conjugated tdz, w) —

(z + 1,w) on such a basin of attraction.

Rivi generalizes Theorem 2.12 under the hypothesisitiats algebraic multiplicity greater
thanl, proving thatgenericallithere exist parabolic manifolds fératO (here the word “gener-
ically” refers to the existence of “non-degenerate characteristic directions” which we will dis-
cuss later for germs tangent to the identity).

As for the topological classification of semi-attractive germs, we have the following result in
C? due to Canille-Martins [20].

Theorem 2.13(Canille-Martins) Let F' be a semi-attractive germ @ fixing O. Then there
existsk € N such thatf” is topologically conjugated to the mdp, w) — (z + 2*,1/2w).

Sketch of the ProofBy Theorem 2.8 there exists a real differentiable two dimensiéniai-
variant manifold)M passing througl®) and tangent to the eigenspacelcht O. SuchM is
not unique. However by the theory of normal hyperbolic system of Palis and Takens [39] the
dynamics from a topological point of view df nearO depends only on the dynamics bf
on M. If it happens that\/ is complex thenF|,, is topologically conjugated te — z + z*
by Theorem 1.3. IfM/ does not have a complex structure then the result is still true using the
theory of real diffeomorphisms of [24]. O
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It is clear that if I is a parabolic germ such that* is semi-attractive for some € N then
the previous results apply #©°* and from this one recovers information on the dynamicg of
We left details to the reader.

2.4.2. Non-attractive caseWe say that a parabolic germm®n-attractivef all eigenvalues of
dFo have modulug.

Let write the spectrum of F, asR U I, whereR contains the roots of unity andthe other
unimodular eigenvalues. The dynamics along the eigenspaces relaiearéodescribed by
Theorem 2.7 in absence of small divisors.

The present section deals with dynamics along the directions related to the eigenvadlues in
and thus, up to replacing’ with some higher iterate, along the eigenspace relativie td/e
start with the following lemma

Lemma 2.14(Hakim, Abate, Bracci-Molina) Let /" be a parabolic non-attractive germ &f
fixing O. If

F(z,w) = (z+ 28 + O(ZF, 2Fw), dw — 6251w + O (272, 2Fw))

with Re (0)\) < 0, then there exist — 1 parabolic curves (1.e. parabolic manifolds of complex
dimensiont) for £ at O tangent to[1 : 0].

Here we say that a parabolic curyeis tangent tda, b] whether the complex span of the
tangent cone oP atO is generated bya, b).

The previous result is due (in more than two variables) to Hakim [30] and Abate [2] for
A = 1, and to Molino and the author [11] for £ 1 (and|\| = 1).

Very rough sketch of the Proof of Lemma 2.14he second component @f has no pure terms

in z then the curvgw = 0} is F-invariant and the result follows from Theorem 1.2. In general,
since the pure terms inin the second component have sufficiently high order, one can infer
that parabolic curves—if any—should not be too far (in an appropriate topology) from the
petals we would have in case the second componeht were divisible byw, i.e. the petals

of z — Fi(z,0). Thus we may try to find the parabolic curves among those of the form

¢ — (¢, C*u(¢)) for ¢ belonging to a petal of(z,0) and|u|,, < oo. These curves form

a Banach space (with norm given by th& norm of u). Starting fromF’ one can define an
operator on such a Banach space whose fixed points are exactly the searched parabolic curves.
Then one shows that such an operator is a contraction and the fixed point theorem provides then
the existence of a fixed point. O

In principle Lemma 2.14 is a powerful tool. Given a parabolic non-attractive geohC?,
if it is possible to change coordinates in such a way thdtas the wanted form thefA has
a certain number of parabolic curves@tangent to the eigenspace f Moreover, one can
allow also “meromorphic changes of variables”.

To be more precise, let: C2 — C? be theblow-up(also called quadratic transformation) at
O. Then it is possible to define a germ of holomorphic diffeomorphidmear the exceptional
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divisor D := 77(0) such thatr o F' = F o w and F| p([v]) = dFo([v]), for all [v] € D ~ CP!
(see,e.g, [1]). Itis clear that if P is a parabolic curve foF at a pointfv] € D thenz(P) is a
parabolic curve fof" atO tangent to the direction.

Then, if after changes of coordinates and/or blow-ups one findsttiat its blow-up) has
the form required by Lemma 2.14 it follows thathas parabolic curves.

In practice however it is almost impossible to explicitly perform holomorphic changes of
coordinates or blow-ups in order to obtain that the germ has the form required in Lemma 2.14.
Nonetheless, what one does in practice is to find some invariant, easily to be computed, attached
to F which tells whethelr has the wanted form after changes of variables or blow-ups.

In [11] two (holomorphic and formal) invariants are defined for the case1. To describe
them the authors introduced a generalization of the Pagabarlac normal forms, calledltra-
resonant normal formd hese latter are somewhat better than the usual P@#izalac normal
forms because the existence of a convergent ultra-resonant normal form is related to the exis-
tence of a curve of fixed points fdr. However, for what the definition of invariants concern,
we can also use PoinéDulac normal forms. So, lét be a Poinca-Dulac normal form for
F. Without loss of generality we can assume that

F(z,w) = (z—i— Z pjx? W Aw + Z qj,kzjwk> .

J+k>2 j+k>2
We let
v(F):=min{j € N:p;o# 0}, p(F,w):=min{j € N:g¢;; # 0}.
If v(F) < oo, we letO(F) := v(F) — pu(F,w) — 1 (with the convention tha®(F') = —oo if
u(F,w) = o0). We say that is dynamically separating v(F') < oo andO(F') < 0.

One should prove that(F") and being dynamically separating are definitions well-posed,
since as already remarked, Poire®@ulac normal forms are by no means unique. This can be
done as in [11]. Let us only note that/") can be viewed as the “order” df on the formal
curve of its fixed points. Indeed, the formal Poires@ulac normal form has no pure terms in
z in the second component, and tHus = 0} is a “curve of fixed points” forF.

We said before that invariants should be quite easy to be computed, while, finding a @oincar
Dulac normal form might not be so easy. Actually, to defirié’) and see whetheF is dy-
namically separating one needs only to solve some homological equations as in the proof of
Theorem 2.3 until the first non-zero pure termziin the second component éf has degree
equal or greater than the first non-zero pure termimthe first component of’. For instance,
if

F(z,w) = (z + az® + O(2%, 2w, w?), \w + O(2?, 2w, w?))
for somea # 0 thenv(F) = 2 and F' is dynamically separating. For dynamically separat-
ing maps one can perform changes of coordinates and blow-ups to obtain the form needed in
Lemma 2.14. Thus we have:
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Theorem 2.15(Bracci-Molino). Let ' be a parabolic germ of2? at O such thatdF, has
eigenvalueq1, \} with |A\| = 1 and\ # 1. If F'is dynamically separating &P then there exist
v(F') — 1 parabolic curves for#” at O tangent to the eigenspace bf

It is likely that a result similar to Theorem 2.15 holds(fi for n > 1.

We turn now our attention to the case of non-attractive germs tangent to the idestisych
thatdFp = id. These are, up to now, the most studied for some unexpected beautiful geometry
that can be found inside.

In the preliminary work [55], Weickert constructs a family of automorphism&ofangent
to the identity atD with a basin of attraction ab, biholomorphic taC? on which the automor-
phisms are conjugated to the mapw) — (z + 1, w).

In his huge work [25] (see also [26]Ecalle gives a (partial) formal classification of germs
tangent to the identity, proving as an intermediate step that “generically” a germ tangent to the
identity has a certain number of parabolic curves. His proof is based on the theory of resurgence,
a very elaborate tool. Recently, Hakim [30] gave a complete analytic proof of such a result. To
better describe her approach we need some definitions. To avoid triviality, we always suppose
F +# id, even if not explicitly stated.

Definition 2.16. Let F' be a germ ofC" fixing O and tangent to the identity &. Let F/(X) =
X + Py(X)+...,h > 2 be the expansion df in homogeneous polynomialg),(X) # 0. The
polynomial P,(X) is called theHakim polynomiaknd the integeh the orderof F atO.

Letv € C" be a nonzero vector such th8t(v) = av for somea € C. Thenwv is called a
characteristic directiofor F'. If moreovera # 0 thenv is said anondegenerate characteristic
direction

It can be proved that iP is a parabolic curve fof" atO tangent ta thenv is a characteristic
direction. However there exist examples of germs tangent to the identity with a parabolic curve
not tangent to a single direction (that is with tangent cone spanning a vector space of dimension
greater than one). Hakim’s (arﬁtalle’s) result is the following:

Theorem 2.17(Ecalle, Hakim) Let F' be a germ of holomorphic diffeomorphism@f fixing
O and tangent to the identity & with orderh. If v is a nondegenerate characteristic direction
for I then there exist (at least) — 1 parabolic curves tangent to.

The proof is essentially the one given for Lemma 2.14: with a finite number of blow-ups
and changes of coordinates one obtain a “good form”HAofor its blow-up)—just like the
one written in Lemma 2.14—and then can argue similarly. However it should be notice that in
general (namely if one of the eigenvalues to be introduced in Theorem 2.18 is a natural number),
the transformations involved are much more complicated!

Actually Hakim’'s work provides the existence of basins of attraction or parabolic manifolds
according to other invariants related to any nondegenerate characteristic directianbd_at
nondegenerate characteristic direction foand let P, be the Hakim polynomial. We denote
by A(v) := d(P,)p) — id : T},jCP" ! — T},;CP"~'. Then we have
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Theorem 2.18(Hakim). Let ' be a germ of holomorphic diffeomorphism @f fixing O
and tangent to the identity ab. Letv be a nondegenerate characteristic direction. Let
B1,...,0n—1 € C be the eigenvalues of(v). Moreover assum&efy,...,Ref3,, > 0 and

Re Bni1,...,ReB,-1 < 0 for somem < n — 1 and letE be the sum of the eigenspaces as-
sociated to7, . . ., B,,. Then there exists a parabolic manifald of dimensionn + 1 tangent

to Cv @ E at O such that for allp € M the sequencé€F°*(p)} tends toO along a trajectory
tangent tov.

In particular if all the eigenvalues of(v) have positive real part then there exists a basin of
attraction forf” atO.

Hakim’s results, and the fact that there are examples of germs tangent to the identity with no
nondegenerate characteristic directions give rise to the question: is it tru/ thetms tangent
to the identity do have parabolic curves?

The answer is positive in dimension two and it was solved by Abate [2], while it is presently
unknown in dimension greater than two. We have:

Theorem 2.19(Abate) Let I’ be a germ of holomorphic diffeomorphism@f, havingO as
an isolated fixed point, and tangent to the identityatThen there exists at least one parabolic
curve forF at O.

The original proof of Abate—while correct—is quite mysterious. In [9] and [6] we gave a
different explanation, based on the better known theory of holomorphic foliations. Therefore,
in order to provide details we need to recall some basic facts on the local theory of holomorphic
foliations.

Interlude on holomorphic foliations

A local (one dimensional) holomorphic foliatidghin C™ atO is roughly speaking the data of
a germ of a holomorphic vector field & up to nonzero multiples. More precisely,is given
by a holomorphic line bundlé nearO and a morphism of vector bundle: L — TC". If 1is
a base frame of. nearO thenv = (1) is a vector field. Theingularitiesof F are defined to
be the points where is zero, or, equivalently the points where= 0. A leafof F is an integral
curve ofv, regardless of its parameterization. Namely, a (possibly singular) duive leaf of
F if the vector definingF belongs to the (Zariski) tangent spaceSoét all points ofS.

In caseO is not a singularity ofF then the well-known Cauchy-Kowaleskaya Theorem pro-
vides auniquenon-singular leaf fotF at O. Moreover, since singularities are closed, one can
choose local coordinatgs, . . ., 2, } in such a way thaf is generated bgﬁ—l (“linearization”
of the foliation).

The problem is wheW is a singularity ofF. We are mainly interested in the case whére
has an isolated singularity &t. The constant “curveO is clearly a “leaf” of 7. However it
is not unique in general. For instance/Afis generated b@?zl zja%_ then all complex lines
throughO are leaves fofF. The study of the leaves of a holomorphic foliation is the subject of
the holomorphic continuous dynamics
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There are strict relations between continuous and discrete dynamics. A first way is provided
by associating to a vector field its time one flow, which is a diffeomorphis@i’ofThe problem
with this is that the converse operation is not always (actually seldom) possible in the holomor-
phic category. That is to say, starting from a holomorphic vector field, the associated flow is
holomorphic, but conversely, starting from a holomorphic diffeomorphism there are in general
no holomorphic vector fields whose time one flow coincides with the given diffeomorphism.
This operation can be done (locally) only in the formal category, using the so called Campbell-
Hausdorff formula. Nonetheless this is the philosophical argument which provides a strict link
between continuous and discrete dynamics.

A second way to relate continuous and discrete dynamics is by means kb/threomyor
Poincaé return map In our case, in presence of an isolated singularity for a germ of vector
field of C™ at O and a nonsingular simple-connected Iéapassing througl®), the holonomy
is a germ of holomorphic diffeomorphism &*~! at O constructed as follows. Take a (germ
of a) complex ¢ — 1-dimensional) transversE to P at a pointp € P near toO. Let~ be a
generator of the ciclic group, (P \ {0};p) ~ Z. If ¢ € T, following the leaf of F starting from
q which projects toy we finish at some point'(¢) € T. The applicatiory — F'(q) is a germ of
holomorphic diffeomorphism df atp (fixing p), called thdocal holonomyof F (the holonomy
can be defined more generally for nonsingular foliations). The dynamical propertieseaid
the dynamics ofF. A custom result is that, in general, two foliations are the same from the
topological point of view if and only if their holonomies are topological conjugated. This is
particular useful for foliations of? for then the holonomy is a germ of diffeomorphism@f
It is known after Perez-Marco and Yoccoz [42] that any germ of holomorphic diffeomorphism
in C can be realized as the holonomy of a suitable germ of holomorphic foliatiGA.in

There is a third way, much more easy to handle in practice, to relate a holomorphic germ
of diffeomorphism to a (family of) holomorphic foliations, introduced in [9] by the author for
dimension two and generalized to higher dimension in [6]. This will be discussed later to solve
our problem about existence of parabolic curves.

Now, let 7 be a germ of holomorphic foliation with an isolated singularityCat We ask
for existence of curves through which are leaves ofF. when they exist they are called
separatricefor they “separate” the dynamics.

First we examine the casg is a germ of foliation inC? with an isolated singularity ab.

Using a process called “saturation” one can always assume that the subvariety of singularities
of a holomorphic foliation have codimensi@n thus in dimension two it is not restrictive to
impose tha is an isolated singularity.

LetX = (az+By+0(2?, 4% 1y)) 55+ (va+dy+0(z?, 42, my))a%y be a holomorphic vector
field representing-. One first looks at thénear partof X defined by the linear transformation

(@)= PX ) =) (2 7))

This is not well defined in general fof is not uniquely attached t6. However any other vector
field associated t&F is a (nonzero) multiple oX. Therefore, if\;, \, are the eigenvalues of
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J'X, both are zero if and only if they are zero for all the vectors associatéd tdoreover if
A2 # 0 then the ratio\; / )\, is independent of the vector field chosen to repregertherefore
we can well say

Definition 2.20. The singularityO of a holomorphic foliation inC? is reducedf

(x1) eithery # 0 and\; /X, & Q1 U {0},
(*2) or \s 7é 0andX; = 0.

In the reduced cases normal simple forms were known since PéiacarDulac (sees.g,
[37] or [17]). In particular from such normal forms we can infer

Theorem 2.21(Poincaé-Dulac) If O is a reduced«; ) singularity forF then there exist exactly
two complex separatrices fof, nonsingular atO, which intersect transversally &l.

If O is a(*2) reduced singularity forF then there exists one nonsingular separatrix foat
O. There is also a second formal separatrixtvhich may or may not converge.

Therefore in the “generic” case of a reduced singularity Theorem 2.21 provides a positive an-
swer to the question about the existence of other leaves. Somehow, this result can be considered
the analogous of Theorem 2.17 for germs of diffeomorphisms tangent to the identity.

If O is not a reduced singularity one can try to blow-up the origin and blow-up the foliation
F. Thus, letr : C2 — C? be the blow-up a©). One can define a foliatiot on C2 near the
exceptional divisolD = 7~1(0). A way to defineF is to consider a holomorphic one-form
w such thatv(X) = 0, and say thafF is defined by the saturated of the pull-backw) (in
local coordinates one obtains the saturated’df) by dividing the coefficients by a defining
equation ofD at the highest possible power in order to have such new form holomorphic and
with only isolated zeros).

If D is not a leaf of F then we say that the singularity is dicritical. It is clear that, by
the Cauchy-Kowaleskaya Theorem, for all but a finite number of point®,ahere exists a
nonsingular leaf fotF which projects down to a leaf of. Therefore ifO is dicritical there
exist infinitely many separatrices through

Now assume thad is not dicritical. ThenF has only finitely many singularities ob. The
idea is that if some of them is not reduced one can continue the process of blow-ups to hope to
reduce all the singularities. This is exactly the case

Theorem 2.22(Saidenberg)Let F be a germ of holomorphic foliation @? at O with an
isolated singularity at). After a finite number of blow-ups one obtains a holomorphic foliation
with only reduced singularities.

A proof of Saidenberg theorem can be found in [17]. Notice that the theorem applies also to
dicritical singularities, even if, from the point of view of existence of separatrices is not very
interesting.

Even with the Saidenberg resolution of singularities Theorem one cannot conclude that there
always exists a separatrix fof. Indeed it could happen that all the reduced singularities of
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type (x1) are corners of the exceptional divisor and singularities outside corners are all of type
(%2) with non-convergent formal separatrix. This is not the case, and the proof is based on
the celebrated Camacho-Sad index theorem. In [19] Camacho and Sad proved the following
theorem

Theorem 2.23(Camacho-Sad)Let F be a holomorphic foliation on a complex two dimen-
sional manifold and leb' C M be a nonsingular compact curve which is a leaff/af Then at
all singularities of 7 on S it is possible to associate a complex number(Bes’; p) such that

> RegF, Sip)=5-S
peSingr)

Residues are strictly related to dynamics, and decrease by one after blow-ups. Using those
properties, Camacho and Sad, with a complicated combinatorics, showed that after having re-
duced all singularities with Theorem 2.22 then there must be greduced singularity at a
nonsingular point of the exceptional divisor, and thus the second separatrix given by Theo-
rem 2.21 blows down to a (possibly singular) separatrix for the original foliation.

The combinatorics part in Camacho-Sad argument can be very much simplified, as done by
Toma, Sebastiani and Cano, seg, [17] or [21] for details. Theorem 2.23 itself gave rise to
lots of researches on “index theorems” and residues theory, especially by Lins Neto, Lehmann,
Camacho, Suwa, Seade, Brunella, Brasselet, Abate, Tovena and the author (see [50] for a good
account on residues theorems for foliations and, [6], [14], [13], [10] for residues theorems for
diffeomorphisms and generalizations).

For germs of holomorphic foliations i@i” with n > 2 the existence of separatrices is a much
more involved problem. Indeed there are examples without separatrices, due to Gomez-Mont
and Luengo [28].

We go back to the problem of finding parabolic curves for germs of holomorphic diffeomor-
phisms tangent to the identity ii>. There is a philosophical explanation on the reason why
there should always exist parabolic curves for holomorphic germs of diffeomorphisms. The
argument goes like this. One can consider the geras the time one flow of a vector field.
Unfortunately, such a vector field is not holomorphic in general, but it is only formal. Nonethe-
less, one should argue as in the Camacho-Sad paper [19] in order to obtain a “formal separatrix”
for X. Pieces of such separatrix should converge and give the searched parabolic curues for
Itis clear that there are several problems for making this argument precise, and also, even if one
makes it work in this situation, such technique does not seem to be handleable in more general
situation (like for instance germs on singular surfaces or with singular curves of fixed points).
However it serves as a guide for what kind of results one might expect.

In [9], [6], [12] we introduced another method to relate diffeomorphisms to foliations, which
seems to give interesting results. Let us roughly describe it.FLieé a germ of holomorphic
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diffeomorphism atD in C2. We consider a family of holomorphic foliations given by

0 0
j—";’w:{(zoF—z)ajL(woF—w)% | dzo N dwo # 0}.

Of course the foliatiorF " depends on, w. However it can be proved thatd is a singular-
ity for one of such foliation it is so for all the others. Moreover(ifis a singularity of7.",
the linear part ofF* is independent of, w up to a non-zero multiple. In particular @ is
a singularity for7.* one can defin® as a singularity of reduced or non-reduced typeHor
according to the kind of singularity of =" regardless of the, w chosen. In particular one can
define adicritical point of F' to be a point which is dicritical forF .. Also, Theorem 2.22,
provides a theorem of reduction of singularities fofalready proved by direct methods in [2]).
Therefore if we had a “residue theorem” like Theorem 2.23 for the blow-up off the excep-
tional divisor, with residues reading the dynamics, then we could argue as in [19] to prove the
existence of parabolic curves.

We give here a version of the residue theorem needed, as obtained in [6].

Let M be a complex manifold of dimension F : M — M be a holomorphic map having a
nonsingular compact hypersurfageas fixed points locus. It is possible to define a morphism,
called thecanonical sectigrof vector bundle

XF : N?VF —>TM‘5,

wherevr is the “order of vanishing” of” — id on S. For instance it/ = 1 then X is defined
by dF'|s — id, since this latter is a nonzero morphism fr@m/|s to 7'M |s which vanishes on
TS and thus passes to the quotiévy.

Definition 2.24. We say thatf' is tangentiato S if XF(NEVF) CcTS.
We define the set Sirig’) of singularities off’ to be the set of points &f whereXr is zero.

For a germF of diffeomorphism at) in C? tangent to the identity,) is dicritical if and only
if the blow-up F’ of F' is non-tangential on the exceptional divisor of the blow-uf®ftO.

It is worth noticing that being tangential is actually a local conditionYifs connected).
That is to say, ifp ¢ Sing F'), then F' is tangential toS if and only if there exists an open
neighborhood/ of p such thatXF,q(N?ng) cr,Sforallqg e U\ {p}.

For tangential germs we do have residues theorems:

Theorem 2.25(Abate, Bracci, Tovena)Let M be a complex manifold of dimension F :

M — M be a holomorphic map having a nonsingular compact hypersurfaas fixed points
locus. Assume thaft is tangential toS. Let Sing/’) = U,X, be the connected components
decomposition. Then there exist complex number§R&sX, ) such that

S ResFi%) = [ ()

The residues Ré$' S; X)) are computed in terms of Grothendieck’s residues in ¢3ses
a single point. Theorem 2.25 was proved first by Abate [2] in ease 2, then generalized
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to the case5 is singular in [14]. A proof in terms of foliations in the optic explained before
(and forn = 2) is in [9]. Finally in [6] the theorem has been proved for anyfor S of any
codimension and possibly singular, and also some other indices theorems are provided in case
Fis non-tangential (bu$' satisfies some suitable embeddability conditions).

The canonical section reads the dynamics outside singularities. Indeed we have

Theorem 2.26(Abate, Bracci, Tovena)Let M be a complex manifold of dimension F :
M — M be a holomorphic map having a nonsingular hypersurfacas fixed points locus.
Assume thap € S'is such thap ¢ Sing Xr). Then

(1) If F is tangential toS then there exists a open neighborhdddf p such that for all
q € U\ Sthere exists, = ko(q) such thatF**(q) ¢ U \ S for k > k.
(2) If Fis non-tangential t&5, Xy, (Ng»") & 1,5 = T,M andvp > 1 then there exists at

least one parabolic curve faf" at p tangent toX s,,(Ng,").
(3) If F is non-tangential ta5, Xp,(Ng»") & T,,S = T,M andvy = 1, then there exists
“almost always” an F-invariant curve throughp on whichF' is linearizable.

Notice that the hypothesi& ., (Ng,") & T,S = T,M for ' non-tangential t&5 is a generic

condition: if F' is non-tangential t® thenXFp(N®”F) C T,S only for a discrete set of points.

The “almost always” in part (3) of Theorem 2 26 refers to the actio’an the normal
bundle. This action is essentially a number, the only eigenvaldgphot 1 in this case, and
the condition is fulfilled if this number has modulys1 or > 1, or if it satisfies some Bryuno-
like condition, thus “almost always”.

Theorem 2.26 can be used to show that the poiig dicritical for a germF in C?—but ac-
tually in C™ for anyn, providing the natural definition of dicritical point—fixin@ and tangent
to the identity a0 if and only if for all but a finite number of directions there exists at least one
parabolic curve folF’ tangent to such a direction.

Now we have all the ingredients to give the proof of Theorem 2.19.

Sketch of the Proof of Theorem 2.19f O is dicritical, blowingC? up, the blow-up mag is
non-tangential on the exceptional divisbr A direct calculation shows that the actionigfon

the normal bundle ab in C2 is the identity and thus necessariy > 1. Thus Theorem 2.26.(2)
provides a Zariski open set of points in where there exists at least one parabolic curve for
F. Such curves project down to form parabolic curvesHorangent at almost all directions.
Thus we may assume théX (and all further singularities) is not dicritical. By the version of
Theorem 2.22 for diffeomorphisms discussed above, after a finite number of blow-ups all the
singularities of the blow-ug of F are reduced. Using Theorem 2.25 and combinatorics as
in [19] (or some other simplified combinatorics as in [9]) one comes up with areduced
singularity at a nonsingular point of the exceptional divisor. Buyka-reduced singularity

on a nonsingular curve of fixed points have (up to some changes of coordinates) a form as in
Lemma 2.14, and thus one gets parabolic curvegfand then forF. O
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The hidden part in the previous proof is tlide of the residues. We do not want to enter into
details here, however, the residues play the sdeeas in the theory of foliations. In particular,
Camacho-Sad or Cano’s argument implies tihat is tangential to a nonsingular cungeof
fixed pointsp € S is such that Rs", S;p) ¢ Qt U {0} then there exists a parabolic curve for
F atp. This argument has been pushed forward by the author [9] and F. degli Innocenti [23]
who obtained the following result:

Theorem 2.27(Bracci, degli Innocenti)Let £ be a germ of holomorphic diffeomorphism of
C? at O. Assume that the fixed points locusfofit O is a locally irreducible curvesS. If Fis
tangential toS and ReéF, S; O) € Q1 U {0} then there exists a parabolic curve férat O.

The previous result is due to the author in c&ss a cusp, while it was proved by degli In-
nocenti in full generality. The proof is quite involved for one has to follow the variation of the
residue according to the process of desingularizatios. of

It should also be remarked that Brochero-Martinez [15] made a very detailed study on dicrit-
ical points. In particular he proved

Theorem 2.28(Brochero-Martinez) Let ' be a germ of holomorphic diffeomorphism @t
fixing O, tangent to the identity a. Assume thab is dicritical for F, let F' be the blow-up of
F and letD be the exceptional divisor. Then there exist two openigetd/~ in C2 such that
U+ UU- is a neighborhood ob \ Sing F) and

(1) forall p € U™ the sequencé™*(p) converges to a point dp, ask — +oo,

(2) forall p € U~ the sequencé®*(p) converges to a point aP, ask — +oo.

In particular Theorem 2.28 gives information also on the existence of basins of attraction for
F (and F'~Y) in the dicritical case. Also, in the same paper [15] Brochero-Martinez gives a
(semi-)formal classification of dicritical germs.

In dimension greater than two is presently unknown whether all germs tangent to the iden-
tity have parabolic curves. Surprisingly enough, a similar construction to the one presented by
Gomez-Mont and Luengo [28] for giving an example of holomorphic foliatiofrwithout
separatrices, performed in [5] by Abate and Tovena, does not produce the expected counterex-
ample. Indeed, if one call®bustthe parabolic curves which survive blow-ups, the construction
made in [5] produces example of germs tangent to the identi?iwith no robust parabolic
curves. Nonetheless such examples do have (non-robust) parabolic curves.

We end up this survey by recalling a recent work by Suwa and the author [12] where it is
proved the existence of parabolic curves for germs of holomorphic diffeomorphisms tangent to
the identity at a singular point of a two dimensional subvariety (under some condition on the
type of singularity).
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