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CLASSIFICATION OF SEMIGROUPS OF LINEAR FRACTIONAL
MAPS IN THE UNIT BALL

FILIPPO BRACCI, MANUEL D. CONTRERAS†, AND SANTIAGO DÍAZ-MADRIGAL†

Abstract. We give a complete classification up to conjugation of continuous semigroups
of linear fractional self-maps of the unit ball.

Introduction

In a recent paper, Cowen and MacCluer [11] introduced a class of holomorphic self-
maps of the unit ball Bn, called linear fractional self-maps of Bn, which generalize the
automorphisms of Bn as well as the linear fractional maps in one variable. Linear fractional
self-maps in Bn for n > 1 present analogies and differences with respect to their relatives
for n = 1. They provide a family of holomorphic self-maps of Bn quite easy to handle
which possesses many interesting geometric and analytic properties.

Due to the importance of one-dimensional linear fractional maps in iteration and com-
position operator theory, linear fractional self-maps of Bn have deserved a quite deep
consideration, with the belief that they can play an important role also in similar prob-
lems in several variables. In [4] Bisi and the first author provide a classification of linear
fractional maps up to conjugation with automorphisms of Bn and study cyclicity proper-
ties of their associated composition operators. In [23], Richman provides a simple criterion
to say when a linear fractional map has range in the unit ball, while in [12] Cowen, Crosby,
Horine, Ortiz Albino, Richman, Yeow and Zerbe discuss another classification of linear
fractional maps based on the “characteristic domain” introduced by Cowen in [10] with
the purpose of linearizing holomorphic self-maps of the unit disc; in [15] Khatskevich,
Reich and Shoikhet deal with linear fractional solutions to functional equations in Hilbert
spaces. Linear fractional maps are also basic in [8], where the first named author and
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project BFM2003-07294-C02-02 and by La Consejeŕıa de Educación y Ciencia de la Junta de Andalućıa.
1



2 F. BRACCI, M.D. CONTRERAS, AND S. DÍAZ-MADRIGAL

Gentili solve the so-called Schröder equation for holomorphic self-maps of Bn with no
fixed points.

On the other hand, instead of considering just one map and its iterates (a “discrete
semigroup”) one can consider a continuous semigroup of holomorphic self-maps of Bn. In
case n = 1, Berkson and Porta (see [3] and also [1], [9]) proved that these objects are “holo-
morphically linearizable” and they can be considered essentially continuous semigroups
of linear fractional maps. In several complex variables, similar linearization properties
are known only in some special cases (see de Fabritiis [13]). Nonetheless, we believe that
complete understanding of semigroups of linear fractional self-maps of Bn can help in
dealing with the general case.

In this paper we deal with continuous semigroups of linear fractional maps of the unit
ball. We provide a complete classification of such analytic objects up to conjugation with
injective linear fractional maps (not necessarily with range in the unit ball), essentially
proving that semigroups of linear fractional self-maps of Bn are linearizable. The classi-
fication is constructed by selecting and normalizing suitable geometric invariants, in the
spirit of [5] and [4], but it should be noted that some of these linearization results are
new also in the case of a single linear fractional map. In particular we base our classifi-
cation on the presence or not of (common) fixed points in Bn. If there are common fixed
points—the elliptic case—the semigroup is essentially given by a matrix semigroup of the
type Z 7→ etMZ, with M being dissipative and asymptotically stable (see Theorem 3.2).
In case the semigroup has no common fixed points in Bn, then all the iterates share a
common fixed point on ∂Bn, the Denjoy-Wolff point. In this case, the semigroup is hy-
perbolic or parabolic according to the value of the “boundary dilatation coefficient” (see
Section 1 and the Appendix). For the hyperbolic and parabolic case we provide a general
form (Theorem 5.1 and Theorem 6.1) and several simpler forms according to geometrical
invariants the semigroup might have (see Sections 5 and 6).

The plan of the paper is the following. In the first section we recall some preliminary
geometric results and fix notations. In the second section we deal with fixed and invariant
slices for linear fractional maps and relate these geometric objects to algebraic properties
of linear fractional maps. In the third section we examine the case of elliptic semigroups
and prove the linearization theorem. In section four we provide a basic “model” for a
linear fractional map with no fixed points in Bn, which will be the base of subsequent
classifications. In section five we give the classification of hyperbolic semigroups of linear
fractional maps and discuss their properties according to normal forms that we obtain.
In section six we deal with the parabolic case. Finally, in the Appendix we give a short
proof of the basic (and partially new) classification in elliptic, hyperbolic and parabolic
types in the setting of strongly convex domains.

Part of this research has been carried out while the first quoted author was visiting the
home institution of the other two authors. The first quoted author thanks the Departa-
mento de Matemática Aplicada II in Seville for hospitality and support.
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1. Preliminary results

Let 〈·, ·〉 be the standard Hermitian product in Cn, ‖ · ‖ the associated norm and
Bn := {Z ∈ Cn : ‖Z‖ < 1} the unit ball. As a matter of notation, we usually write
Z ∈ Cn as a column vector and use the decomposition Z = (z, w) ∈ C× Cn−1.

In this section, we recall some general definitions and results about linear fractional
maps in the unit ball and semigroups with the aim of fixing notations which will be used
throughout the paper.

Following [11], we say that a map ϕ : Bn → Cn is a linear fractional map if there exist
a complex n × n matrix Γ ∈ Cn×n, two column vectors B and C in Cn, and a complex
number D ∈ C satisfying

(i) |D| > ‖C‖ ; (ii) DΓ 6= BC∗,

such that

(1.1) ϕ(Z) =
ΓZ + B

〈Z,C〉+ D
, Z ∈ Bn.

Condition (i) implies that 〈Z, C〉 + D 6= 0 for every z ∈ Bn and therefore, ϕ is actually
holomorphic in a neighborhood of the closed ball. In fact, ϕ ∈ Hol(rBn;Cn) for some
r > 1. On the other hand, condition (ii) just says that ϕ is not constant.

If the image ϕ(Bn) ⊂ Bn, then we say that ϕ is a linear fractional self-map of Bn and
write ϕ ∈ LFM(Bn,Bn).

If Ω ⊂ Cn is a domain and ψ : Ω → Ω is holomorphic, we call the couple (Ω, ψ) an
iteration couple. For instance, if ϕ ∈ LFM(Bn,Bn) then (Bn, ϕ) is an iteration couple.

Definition 1.1. Let (Ω, ψ) and (Ω′, ψ′) be two iteration couples. We say that the two
couples are conjugated if there exists a biholomorphic map σ : Ω → Ω′ such that ψ =
σ−1 ◦ ψ′ ◦ σ. The map σ is called an intertwining map.

From a dynamical point of view two conjugated iteration couples are undistinguishable.

The iteration couple (Bn, ϕ) for ϕ ∈ LFM(Bn,Bn) is quite simple, but nonetheless
it is often very useful to consider the conjugated iteration couple (Hn, ψ), where Hn :=
{(z, w) ∈ C×Cn−1 : Re z > ‖w‖2} is the Siegel half-plane and ψ = σC ◦ϕ◦σ−1

C : Hn → Hn,
where σC is the generalized Cayley transform. Those holomorphic maps ψ appearing in
this way will be called linear fractional self-maps of Hn and the set of all of them will be
denoted by LFM(Hn,Hn).

We recall that σC is the biholomorphic map from Bn onto Hn defined by

σC(z, w) :=

(
1 + z

1− z
,

w

1− z

)
, (z, w) ∈ C× Cn−1.

Note that σC extends (setting “σC(e1) = ∞”) to a bi-continuous map from Bn onto
cl∞(Hn), the one-point compactification of the closure of Hn.
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We comment some results about fixed points and linear fractional maps. The first one
is quite well-known (see, e.g., [4, Theorem 2.2]).

Theorem 1.2. Let ϕ ∈ LFM(Bn,Bn) with no fixed points in Bn. Then, there exists a
unique point τ ∈ ∂Bn such that ϕ(τ) = τ and 〈dϕτ (τ), τ〉 = α(ϕ) with 0 < α(ϕ) ≤ 1.

In the hypothesis of Theorem 1.2 we call τ the Denjoy-Wolff point of ϕ and α(ϕ) the
boundary dilatation coefficient of ϕ. We list here some basic properties of Denjoy-Wolff
points and boundary dilatation coefficients as needed for our aim (see [20] and [5, Theorem
3.6, Proposition 4.2 and Theorem 5.1]):

Proposition 1.3. Let ϕ ∈ LFM(Bn,Bn) with no fixed points in Bn, let τ ∈ ∂Bn be its
Denjoy-Wolff point and α(ϕ) the boundary dilatation coefficient. Then

(1) For all z ∈ Bn it follows that limm→∞ ϕm(z) = τ .
(2) If v ∈ Cn then 〈dϕτ (v), τ〉 = α(ϕ)〈v, τ〉.
(3) α(ϕ) is an eigenvalue of dϕτ .
(4) If v ∈ Cn is an eigenvector for dϕτ such that 〈v, τ〉 6= 0 then dϕτ (v) = α(ϕ)v.

Now we are ready to give a first definition which divides LFM(Bn,Bn) in three big
families.

Definition 1.4. Let ϕ ∈ LFM(Bn,Bn). If ϕ has some fixed point in Bn we call it elliptic.
If ϕ has no fixed points in Bn and α(ϕ) is the boundary dilatation coefficient of ϕ at its
Denjoy-Wolff point, we say that ϕ is hyperbolic if α(ϕ) < 1 while we say it is parabolic if
α(ϕ) = 1.

According to [4, Theorems 3.1 and 3.2] a non-elliptic linear fractional map has at most
two fixed points on ∂Bn and a parabolic linear fractional map has only one fixed point on
∂Bn (its Denjoy-Wolff point). A hyperbolic linear fractional map might have one or two
fixed points on ∂Bn.

The main contribution of this paper is to provide a “dynamical classification” of semi-
groups of linear fractional self-maps of the ball.

To begin with, we recall that for a domain Ω ⊂ Cn a continuous (one-parameter)
semigroup in Hol(Ω, Ω) is a continuous homomorphism

[0, +∞) 3 t 7→ ϕt ∈ Hol(Ω; Ω)

from the additive semigroup of non-negative real numbers into the composition semigroup
of all holomorphic self-maps of Ω (with the compact-open topology). Such a semigroup
extends to a continuous group action of R on Ω whenever it is possible to extend the
semigroup continuously to R.

Three basic properties of a semigroup (ϕt) of holomorphic self-maps of a domain Ω ⊂
Cn, which we will tacitely use throughout the paper, are:

(1) for all t ≥ 0 the map z 7→ ϕt(z) is injective.
(2) for all z ∈ Ω, the map (0, 1) 3 t 7→ ϕt(z) ∈ Ω is analytic.
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(3) If ϕt0 ∈ Aut(Ω) for some t0 > 0 then ϕt ∈ Aut(Ω) for all t ≥ 0.

For a proof of the previous assertions see, e.g., [1, Section 2.5.3].

We say that a continuous semigroup in Hol(Bn;Bn) is a semigroup of linear fractional
maps if ϕt ∈ LFM(Bn,Bn) for all t ≥ 0. Even in this case we can talk about elliptic,
hyperbolic and parabolic semigroups. For this we need to exploit the following theorem.

Theorem 1.5. Let (ϕt) be a continuous semigroup in Hol(Bn,Bn). Then, either all the
iterates have a common fixed point in Bn or all the iterates ϕt (t > 0) have no fixed points
in Bn and then they share the same Denjoy-Wolff point τ ∈ ∂Bn. In this case, there exists
0 < r ≤ 1 such that αt = rt, where αt := α(ϕt) denotes the boundary dilatation coefficient
of ϕt (for t > 0) at τ .

Such a theorem is due to M. Abate (see [1]) in the strongly convex domains case except
for the behavior of the boundary dilatation coefficient, while it is proved in the ball case
by L. Aizenberg and D. Shoikhet in [2]. In the appendix we give a complete short proof
of such a result in the context of strongly convex domains.

Corollary 1.6. Let (ϕt) be a continuous semigroup in LFM(Bn,Bn). If for some t0 > 0
the iterate ϕt0 is elliptic (respectively hyperbolic; respectively parabolic), then for all t > 0
the iterates ϕt are elliptic (respectively hyperbolic; respectively parabolic).

In particular we can safely give the following definition.

Definition 1.7. Let (ϕt) be a continuous semigroup in LFM(Bn,Bn). If ϕ1 has some
fixed point in Bn we call (ϕt) elliptic. If ϕ1 has no fixed points in Bn and τ ∈ ∂Bn is
its Denjoy-Wolff point, we say that (ϕt) is hyperbolic (respectively parabolic) if ϕ1 is
hyperbolic (respectively parabolic) and we call τ the Denjoy-Wolff point of (ϕt).

If (ϕt) is a semigroup of LFM(Bn,Bn) we say that a point z ∈ Bn is a fixed point for
the semigroup if ϕt(z) = z for all t ≥ 0.

2. Slices and complex geodesics

A slice S of Bn is a non-empty subset of Bn of the form S = Bn ∩ V, where V is a
one-dimensional affine subspace of Cn.

Slices can be nicely described by holomorphic functions. Namely, given a slice S of Bn,
there exists an injective proper map f ∈ Hol(D;Cn) from the unit disc D to Bn such that
f(D) = S. These maps are called complex geodesics (associated to S) because they are
isometries between the Poincaré metric on D and the Bergmann metric on Bn (see, e.g.,
[1] for details). Given a slice S and an associated complex geodesic f : D→ Bn, any other
complex geodesic associated to S is given by f ◦ θ with θ ∈ Aut(D).

The prototype of a slice is S0 := Bn ∩ Ce1, where e1 = (1, 0, . . . , 0) and the associated
complex geodesic is f0(ζ) = (ζ, 0, . . . , 0). Since the group of automorphisms Aut(Bn)
sends slices onto slices and acts transitively on P(TBn) (namely for any couple of points
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Z, W ∈ Bn and any couples of non zero directions v ∈ TZBn and v′ ∈ TWBn there exists
Φ ∈ Aut(Bn) such that Φ(Z) = W and dΦZ(v) = λv′ for some λ ∈ C\{0}), it follows that
for any slice S in Bn there exists an automorphism Φ ∈ Aut(Bn) such that S = Φ(S0) and
a complex geodesic associated to S is given by Φ ◦ f0 : D→ Bn.

Transferring, as we will often do, everything to Hn = {(z, w) : Re z > ‖w‖2} via the
Cayley transform σC , we see that a slice S ⊂ Bn such that e1 ∈ S corresponds to a slice
S ′ ⊂ Hn given by {(z, w) ∈ Hn : w = const}. The “prototype” slice S0 corresponds now
to the slice S ′0 := {(z, w) ∈ Hn : w = 0} in Hn and the complex geodesic f0 : D → Bn to
the complex geodesic f ′0 : D→ Hn defined as f ′0(ζ) = ((1 + ζ)(1− ζ)−1, 0, . . . , 0).

In [11] it is proven that if S is a slice in Bn and ϕ ∈ LFM(Bn,Bn) then there exists a
slice S ′ in Bn such that ϕ(S) ⊆ S ′. In case f(S) ⊆ S, if f : D→ Bn is a complex geodesic
associated to S, we can define

ϕf := f |−1
S ◦ ϕ ◦ f.

Such a map ϕf ∈ LFM(D,D) depends on f but, since any other complex geodesic f ′

associated to S is given by f ′ = f ◦θ for some θ ∈ Aut(D), it follows that ϕf is conjugated
to ϕf ′ . Therefore ϕf can be used to understand properties of ϕ invariant by conjugation.

We say that a slice S of Bn passes through some point Z ∈ Bn if Z ∈ S. Likewise, we
say that v ∈ Cn \ {0} is a director vector of S if

v ∈ VS := span{s− s′ : s, s′ ∈ S} = TZS for any Z ∈ S.

This one-dimensional vector space VS is called the director subspace of S. It is clear that
S = (Z + VS) ∩ Bn for any Z ∈ S. We say that a slice S passes through Z with direction
v ∈ Cn \ {0}, if S = (Z + Cv) ∩ Bn.

Proposition 2.1. Let ϕ ∈ LFM(Bn,Bn) be non-elliptic with Denjoy-Wolff point τ ∈ ∂Bn.
Let S be a slice in Bn passing through τ with director subspace VS. Then, for every
v ∈ VS \ {0} it follows that 〈dϕτ (v), τ〉 6= 0. In other words,

Ŝ := (τ + dϕτ (VS)) ∩ Bn

is a well-defined slice in Bn. Moreover, ϕ(S) ⊆ Ŝ.

Proof. Let α := α(τ) be the boundary dilatation coefficient of ϕ at τ . Let v ∈ VS \ {0}.
Since Cv ∩ Bn 6= ∅ then 〈v, τ〉 6= 0. By Proposition 1.3.(2) we have

〈dϕτ (v), τ〉 = α〈v, τ〉 6= 0.

In particular, since VS = Cv, it follows that dϕτ (VS) is a one-dimensional subspace of
Cn and the previous computation implies that S ′ := (dϕτ (VS) + τ) ∩ Bn 6= ∅ and thus it
is a slice in Bn.

We are left to show that ϕ(S) ⊆ S ′. We know that there exists a slice S̃ of Bn such
that ϕ(S) ⊆ S̃. Since ϕ(τ) = τ , it is enough to show that VS = VS̃. To see this, let v ∈
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VS̃ \ {0}. Up to change v with eiθv for some θ ∈ R, we can assume that there exists ε > 0
such that τ + λv ∈ Bn, whenever 0 < λ < ε. Then

1

λ
(ϕ(τ + λv)− ϕ(τ)) ∈ VS̃.

Letting λ goes to 0 we deduce that dϕτ (v) ∈ VS̃ and then VS = VS̃ as wanted. ¤
Remark 2.2. The proof of the above proposition can be adapted to certain elliptic situ-
ations. Namely, if ϕ ∈ LFM(Bn,Bn) has a fixed point b ∈ Bn, S is a slice in Bn passing
through b with director subspace VS and dϕb(VS) is one-dimensional, then

ϕ(S) = (b + dϕb(VS)) ∩ Bn.

Proposition 2.3. Let ϕ ∈ LFM(Bn,Bn) be non-elliptic with Denjoy-Wolff point τ ∈ ∂Bn

and boundary dilatation coefficient α(ϕ). Let S be a slice in Bn with director subspace VS.
The followings are equivalent:

(1) The slice S is invariant (as a set) for ϕ.
(2) The slice S passes through τ and dϕτ (VS) = VS.
(3) The slice S passes through τ and some—and hence any—v ∈ VS verifies dϕτ (v) =

α(ϕ)v.

Proof. The equivalence of (1) and (2) follows directly from Proposition 2.1 as soon as we
realize that all invariant slices must contain τ in their closure. Indeed, if S ⊂ Bn were
an invariant slice for ϕ not passing through τ , then limm→∞ ϕm(Z) 6= τ for all Z ∈ S,
contradicting Proposition 1.3.(1). If (2) holds, then any v ∈ VS is an eigenvector of dϕτ

and (3) follows from Proposition 1.3.(4). Conversely, if (3) holds then VS is dϕτ -invariant
and then (2) holds. ¤

A finite collection {S1, ..., Sp} of slices of Bn is said to be independent if the family of
the corresponding one-dimensional director subspaces {VS1 , ..., VSp} spans a p-dimensional
subspace of Cn.

If ϕ ∈ LFM(Bn,Bn) we let ]inv(ϕ) to be the dimension of the space spanned by the
director subspaces VS of all ϕ-invariant slices S ⊂ Bn. By Proposition 2.3 if ϕ has no
fixed points in Bn the number ]inv(ϕ) coincides with the dimension of the inner space

A(ϕ) := span{v ∈ Cn : dϕτ (v) = α(ϕ)v, 〈v, τ〉 6= 0}
introduced in [5] (see also [4, Theorem 2.4]).

We examine now invariant slices for semigroups.

Theorem 2.4. Let (ϕt) be a continuous non-elliptic semigroup in LFM(Bn,Bn) with
τ ∈ ∂Bn as the common Denjoy-Wolff point. Let αt denote the boundary dilatation
coefficient of ϕt at τ and consider the inner space of ϕt

At := span {w ∈ Cn : d(ϕt)τw = αtw, 〈w, τ〉 6= 0, } .

Also let A := ∩t≥0At. Then
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(1) If At0 = {0} for some t0 > 0 then At = {0} for all t > 0 and ϕt has no invariant
slices in Bn for all t > 0.

(2) If At0 6= {0} for some t0 > 0 then A 6= {0}.
Moreover, if p := dimA > 0 then (ϕt) has exactly p common independent invariant slices
in Bn.

Proof. If At = {0} for all t > 0 then, by Propositions 2.1 and 2.3, no ϕt has any invariant
slice.

So, assume that At0 6= {0} for some t0 > 0 and let d = dimAt0 . Notice that d ≤ n. First
of all, At0 = ker(d(ϕt0)τ −αt0I) because clearly At0 ⊆ ker(d(ϕt0)τ −αt0I) and, conversely,
if v ∈ ker(d(ϕt0)τ − αt0I) is such that 〈v, τ〉 = 0 then for any w ∈ At0 with 〈w, τ〉 6= 0
(and there must exist such a w because At0 6= {0}) it follows that 〈v−w, τ〉 6= 0 and since
v = w + (v − w) ∈ At0 then v ∈ At0 .

Now we claim that d(ϕt)τAt0 ⊆ At0 for every t ≥ 0. To see this, let w ∈ At0 and t ≥ 0.
Since

d(ϕt0)τd(ϕt)τw = d(ϕt0 ◦ ϕt)τw = d(ϕt)τd(ϕt0)τw = αt0d(ϕt)τw,

then d(ϕt)τw ∈ ker(d(ϕt0)τ − αt0I) = At0 .
Now, let K := Bn ∩ (At0 + τ). Since At0 is d(ϕt)τ -invariant for all t ≥ 0 then by

Proposition 2.1 it follows that ϕt(K) ⊆ K for all t ≥ 0. The set K is clearly rigidly
equivalent to a ball of dimension d (to see this from an algebraic point of view conjugate
with rotations in such a way that τ = e1 and At0 is spanned by {e1, . . . , ed}, cfr [4, Lemma
4.1]). Let θ : K → Bd be the rigid transformation mapping K to the ball of dimension d
in Cd. Then we have a well defined semigroup t 7−→ ηt := θ◦ϕt|K ◦θ−1 of linear fractional
maps of Bd. It is clear that (ηt) is non-elliptic, its Denjoy-Wolff point is x := θ(τ) ∈ ∂Bd

and the boundary dilatation coefficient of ηt at x is still αt. Moreover, by construction,
d(ηt0)τ = αt0I.

The statement (2) of the theorem will follow as soon as we show that there exists v ∈ Cd

such that 〈v, x〉 6= 0 and d(ηv)tv = αtv for all t ≥ 0, because then dθ−1
x (v) ∈ At for all

t ≥ 0.
To this aim, we examine the continuous application t 7−→ d(ηt)x. This is clearly a

continuous semigroup of matrices and therefore there exists a matrix M ∈ Cd×d such
that d(ηt)x = exp(tM). Write M = P−1JP with J a Jordan blocks matrix. Then
exp(tM) = P−1 exp(tJ)P . Since d(ηt0)τ = αt0I then exp(t0J) = αt0I which means that
J is diagonal, with diagonal entries aj, j = 1, . . . , d. Since P is invertible, there exists
j ∈ {1, . . . , d} such that the vector v = P−1ej satisfies 〈v, x〉 6= 0. Now

d(ηt)x(v) = exp(tM)(P−1ej) = P−1 exp(tJ)ej = exp(taj)P
−1ej = exp(taj)v.

Therefore by Proposition 1.3.(4) it follows that exp(taj) = αt and we are done.
The last assertion follows easily from the very definition of A. ¤
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Remark 2.5. The argument in the proof of Theorem 2.4 shows that if t0 > 0 is such that
At0 = A, then, for all t ≥ 0, At0 is ϕt-invariant, d(ϕt)τ -invariant and the restriction of
d(ϕt)τ (viewed as a linear map) to At0 is diagonalizable.

3. Classification of elliptic semigroups

In this section we deal with elliptic semigroups of linear fractional self-maps of Bn.
Recall that by Hervé’s theorem (see, e.g., [1] or [24]), if ϕ ∈ LFM(Bn,Bn) has a non-
empty fixed points set in Bn then such a set is a p-dimensional slice of Bn. Namely, it is
the non-empty intersection between Bn and a p-dimensional affine space of Cn with p ≥ 0.
We classify an elliptic semigroup according to the dimension of its common fixed points
set and to the action of the differentials on its tangent space.

As a matter of notation whenever ϕ ∈ Hol(Bn,Bn) and Z0 ∈ Bn is a fixed point of ϕ,
we define the unitary space of ϕ at the point Z0 as

LU(ϕ,Z0) :=
⊕

|λ|=1

ker(dϕZ0
− λI)n.

In other words, LU(ϕ,Z0) is the (direct) sum of all generalized eigenspaces of dϕZ0
asso-

ciated to the different eigenvalues of modulus 1. The dimension of LU(ϕ,Z0) is called the
unitary index of ϕ at Z0 and it is usually denoted by u(ϕ,Z0).

We begin with showing that the above index can be consistently defined in the context
of semigroups.

Lemma 3.1. Let (ϕt) be an elliptic semigroup of LFM(Bn,Bn). Then there exists a non-
negative integer p such that u(ϕt, Z0) = p, for every common fixed point Z0 ∈ Bn of the
semigroup and for every t > 0.

Proof. Let us first suppose that (ϕt) has only one common fixed point Z0 ∈ Bn. Up to
conjugation, we may assume that Z0 = O. Therefore,

ϕt(Z) =
AtZ

〈Z, Ct〉+ 1
,

for some At ∈ Cn×n and Ct ∈ Cn. Now [0, +∞) 3 t 7→ d(ϕt)O = At ∈ Cn×n is a continuous
matrix semigroup, so there exists M ∈ Cn×n such that At = etM . Note that by Schwarz’s
Lemma ‖At‖ ≤ 1, for all t ≥ 0. This implies (see for instance [21, p. 428]) that the real
part of each eigenvalue of M is non-positive and those eigenvalues of M whose real part
is zero have the same algebraic and geometric multiplicity. In particular, we can deduce
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that

M = P




λ1i
. . .

λpi
Jp+1(λp+1)

. . .
Jp+q(λp+q)




P−1

where 1 ≤ p + q ≤ n, P is an invertible matrix of order n, every λk (k = 1, ..., p) is a real
number and Jp+k(λp+k) denotes a Jordan block associated to λp+k ∈ C with Re (λp+k) < 0,
for every k = 1, ..., q. Therefore

eMt = P




eλ1ti

. . .

eλpti

exp(Jp+1(λp+1)t)
. . .

exp(Jp+q(λp+q)t)




P−1.

Since all the diagonal entries of the upper triangular matrix exp(Jp+k(λp+k)t), for k =
1, ..., q, are equal to eλp+kt then these blocks have eigenvalues with modules strictly less
than one; hence the dimension of the sum of generalized eigenspaces of eMt associated to
eigenvalues of modulus one is exactly p. In other words, u(ϕt, O) = p, for all t ≥ 0.

Now, suppose that the semigroup (ϕt) has at least two common fixed points. By Herve’s
theorem any slice joining two different fixed points is fixed for all ϕt’s and therefore there
exists an affine s-dimensional slice of common fixed points for (ϕt) for some s ≥ 1.
A simple argument (see [4, proof of Theorems 3.1, 3.2]) allows to assume that, up to
conjugation, the common fixed points set for (ϕt) is given by C{e1, . . . , es}∩Bn. Therefore
for each t ≥ 0,

ϕt(z1, . . . , zs, z
(s)) =

(
z1, . . . , zs, Atz

(s)
)

where At is a matrix of order n − s and z(s) ∈ Cn−s. Then ϕ
(s)
t : (t, z(s)) 7→ Atz

(s) is an

elliptic semigroup of linear fractional maps in B(s) and, if p′ is the unitary index of ϕ
(s)
t at

O then clearly the unitary index of ϕt at (z1, . . . , zs, O) is p′ + s for all (z1, . . . , zs) ∈ Bs,
concluding the proof. ¤

We call u(ϕt) the unitary index of the semigroup (ϕt), which, thanks to Lemma 3.1,
can be safely defined as u(ϕt) := u(ϕ1, Z0) for some Z0 ∈ Bn such that ϕ1(Z0) = Z0.

By Theorem 1.5, if Fix(ϕt0) = {Z ∈ Bn : ϕt0(Z) = Z} is non-empty for some t0 > 0
then Fix(ϕt) is a non-empty affine subset of Bn for all t ≥ 0 and therefore the set F :=
∩t≥0Fix(ϕt) is a non-empty p-dimensional slice of Bn with p ≥ 0.
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Before stating the next result we need to recall some concepts from matrix theory. A
matrix M ∈ Cn×n is said to be dissipative, whenever Re w∗Mw ≤ 0 for all w ∈ Cn; it is
said to be asymptotically stable if all of its eigenvalues have negative real part. Recall
that M is asymptotically stable if and only if etM → O ∈ Cn as t goes to +∞ (see, e.g.,
[21, Theorem 9.57]).

Theorem 3.2. Let (ϕt) be an elliptic semigroup of linear fractional self-maps of Bn, let
F := ∩t≥0Fix(ϕt) be the corresponding p-dimensional slice of common fixed points of (ϕt)
in Bn and let u(ϕt) be the unitary index of the semigroup.

(1) If either p ≥ 1 or p = 0 and u(ϕt) > 0, then (Bn, ϕt) is conjugated to (Bn, ψt) with

ψt(z
′, z′′, z′′′) = (z′, eitΘz′′, etMz′′′)

where (z′, z′′, z′′′) ∈ Cp ×Cq ×Cn−p−q ∩Bn, p + q = u(ϕt), Θ is a diagonal matrix
of order q with real entries and M is a dissipative asymptotically stable matrix of
order n− p− q.

(2) If p = u(ϕt) = 0 then there exist a dissipative and asymptotically stable matrix M
and a complex ellipsoid Ω ⊂ Cn such that (Bn, ϕt) is conjugated to (Ω, etM).

Conversely, any iteration couple as in (1) and (2) can be realized as an elliptic semigroup
of linear fractional self-maps of Bn.

Proof. (1) First of all, we consider the case p = 0 and q := u(ϕt) > 0. Then, F = {Z0} for
some Z0 ∈ Bn. Up to conjugations with automorphisms of the unit ball, we can clearly
assume that Z0 = O. Therefore,

ϕt(Z) =
AtZ

〈Z,Ct〉+ 1

for some At ∈ Cn×n and Ct ∈ Cn. By hypothesis, the unitary space LU(ϕt, O) is q-
dimensional and therefore (see the proof of Lemma 3.1) there exists a linear independent
subset Γ1 := {u1, ..., uq} of Cn such that:

(i) For all t > 0, LU(ϕt, O) = L := span(Γ1).
(ii) For all t > 0 and for all k = 1, ..., q, it follows that d(ϕt)O(uk) = λkuk for some

λk ∈ C.

Let us consider the q-dimensional slice SL := L ∩ Bn. By Remark 2.2 and (ii) it follows
that for all t > 0, ϕt(SL ∩ Cuk) ⊆ SL ∩ Cuk for all k = 1, . . . , q and by Schwarz’s
lemma ϕt|SL∩Cuk

is an automorphism. Therefore ϕt maps bijectively SL onto SL. Since
SL is a ball of dimension q this means that ϕt|SL∩Cuk

is a semigroup of unitary matrices
whose differentials at O are simultaneously diagonalizable. Therefore we can find an
orthonormal basis Γ2 := {w1, ..., wq} of L such that d(ϕt)O(wk) = eitdkwk for k = 1, ..., q
and t > 0. Up to rotations, we can then assume that wj = ej, j = 1, . . . , q, that
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SL = spanC{e1, . . . , eq} ∩ Bn and that

ϕt(Z) =
(U ′

tz
′ + A′

tz
′′, A′′

t z
′′)

〈z′′, c′′t 〉+ 1
,

where Z = (z′, z′′) ∈ Cq × Cn−q ∩ Bn, U ′
t is a diagonal unitary q × q matrix with entries

eitdk , dk ∈ R, k = 1, . . . , q, A′
t ∈ Cq×(n−q), A′′

t ∈ C(n−q)×(n−q) and c′′t ∈ Cn−q with ‖c′′t ‖ < 1.
We claim that also A′

t = O and c′′t = O. To see this, we first notice that for all
x = (x′, O) ∈ SL ∩ ∂Bn we have

d(ϕt)x =

(
U ′

t A′
t − U ′

tx
′ · (c′′t )∗

O A′′
t

)
.

As a consequence of Rudin’s version of the Julia-Wolff-Carathéodory theorem (see [24]
or [1]) it follows that 〈d(ϕt)x(v), ϕt(x)〉 = 0 for all v ∈ TCx ∂Bn. In particular, if we take
x = ±ej with j = 1, . . . , q and v = ek with k = q+1, . . . , n and since ϕt(±ej) = ±eitdjej, it
follows that 〈d(ϕt)±ej

(ek), ej〉 = 0, for all j = 1, . . . , q and k = q + 1, . . . , n. In particular,
A′

t − U ′
tx
′ · (c′′t )∗ = O for x′ = ±(ej)

′, j = 1, . . . , q. Thus, A′
t = O and c′′t = O as wanted.

Since (d(ϕt)O) is a continuous matrix semigroup then A′′
t = etM for some matrix M of

order n − q. To conclude we just note that, by Schwarz’s Lemma, ‖etM‖ ≤ 1 for all t,
thus, by Phillips-Lumer’s theorem (see, e.g., [27, p. 250]), this condition is equivalent to
Re w∗Mw ≤ 0 for all w ∈ Cn−q. That is, M is dissipative. In particular, every eigenvalue
of M has non-negative real part. By construction all unitary eigenvalues of d(ϕt)O are
contained in L and hence all eigenvalues of M has strictly negative real part, as wanted.

Suppose now that p ≥ 1. Up to conjugation with automorphisms, we can assume that
F = Bn∩spanC{e1, . . . , ep}. A direct computation (or see [4, proof of Theorem 3.2]) shows
then that ϕt(Z) = (z′, Atz

′′) for (z′, z′′) ∈ Cp×Cn−p and some (n−p)× (n−p) matrix At

with ‖At‖ ≤ 1. Since (t, z′′) 7→ Atz
′′ is an elliptic semigroup of linear fractional self-maps

of Bn−p with only one common fixed point at O, the result follows arguing as before.
(2) First of all, up to conjugation with automorphisms of Bn we can assume that Z0 = O.

Therefore

ϕt(Z) =
AtZ

〈Z,Ct〉+ 1

for some At ∈ Cn×n and Ct ∈ Cn. Since ϕt+s = ϕt ◦ ϕs we have

(3.1) 〈Z,Ct+s〉 − 〈esNZ, Ct〉 − 〈Z,Cs〉 ≡ 0

and At = etN for some matrix N of order n. We claim that N is invertible for otherwise
there would be a non-zero vector w ∈ Cn such that Nw = O and thus, for all t > 0,
etNw = w, implying that u(ϕt) ≥ 1, against our hypothesis.

Deriving (3.1) with respect to s and setting s = 0, we obtain 〈Z, d
dt

Ct〉 − 〈NZ, Ct〉 −
〈Z, V0〉 ≡ 0, where V0 = d

dt
Ct|t=0. Taking into account that C0 = O, we have thus the
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following system of differential equations
{

d
dt

Ct = N∗Ct + V0,

C0 = O.

Since N is invertible, the solution of the above differential system is given by Ct =
(etN∗ − I)V where V ∈ Cn is such that N∗V = V0. Since ϕt(Bn) ⊆ Bn it follows
that ‖(etN∗ − I)V ‖ < 1. Since the unitary index of the semigroup is zero, Cartan-
Carathéodory’s theorem (see, e.g. [1]) implies that etN = d(ϕt)O → O as t goes to +∞.
Hence, etN∗ → O as t → ∞ and then δ := ‖V ‖ ≤ 1. Therefore there exists a unitary
matrix U such that U∗V = δe1. Conjugating ϕt with the automorphism Z 7→ UZ, we
obtain the semigroup

ϕ̂t(Z) =
etMZ

δ〈Z, (etM∗ − I)e1〉+ 1
, Z ∈ Bn

where M = U∗NU . As in part (1), a joint application of Schwarz’s Lemma and Phillips-
Lumer theorem shows that M is dissipative and asymptotically stable, since u(ϕ̂t) =
u(ϕt) = 0.

Let us now define

(3.2) σ(Z) :=
Z

−δz1 + 1
, Z = (z1, z

′) ∈ C× Cn−1 ∩ Bn.

The linear fractional map σ is clearly holomorphic and injective in Bn, since δ ≤ 1. A
direct computation shows that

σ ◦ ϕ̂t(Z) = etMσ(Z)

for all t ≥ 0 and Z ∈ Bn. Thus, setting Ω := σ(Bn) we have the result.
Finally, from the very construction it follows that every iteration couple as in (1) and

(2) can be realized as an elliptic semigroup of linear fractional self-maps of Bn. ¤
¿From the previous proof we can better specify the shape of the complex ellipsoid in

part (2):

Corollary 3.3. Let (ϕt) be an elliptic semigroup of linear fractional self-maps of Bn.
Suppose that ∩t≥0Fix(ϕt) = {Z0} and u(ϕt) = 0.

• If (ϕt) extends analytically beyond the unit ball, i.e., if there exists ρ > 1 such that
all the iterates of the semigroup are well-defined on ρBn, then there exist r ≥ 1
and a dissipative and asymptotically stable matrix M ∈ Cn×n such that (Bn, ϕt)
is conjugated to the iteration couple (∆1, e

tM), where ∆1 is the complex ellipsoid
given by

∆1 =

{
(z, w) ∈ C× Cn−1 :

1

r2
|z −

√
r2 − 1|2 + ‖w‖2 < r2

}
.
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• If the semigroup is not analytical beyond the unit ball then there exists a dissipative
and asymptotically stable matrix M ∈ Cn×n such that (Bn, ϕt) is conjugated to the
iteration couple (∆2, e

tM), where

∆2 =
{
(z, w) ∈ C× Cn−1 : Re (2z) > ‖w‖2 − 1

}
.

Proof. By Theorem 3.2 the couple (Bn, ϕt) is conjugated to (Ω, etM), where Ω = σ(Bn)
and σ is defined in (3.2). Therefore

Ω = σ(Bn) = { Z
−δz1+1

: Z = (z1, z
′) ∈ C× Cn−1 ∩ Bn}

= {W = (w1, w
′) ∈ C× Cn−1 : |1 + δw1|2 > ‖W‖2}.

If δ < 1, we see that every iterate ϕt is holomorphic either on the ball (centered at the
origin) of radius 1

δ
> 1 if δ 6= 0 or in the whole Cn if δ = 0. In both cases, the semigroup

extends analytical beyond the unit ball. Then, if we set r = (1 − δ2)−1/2, we find that
Ω = ∆1.

If δ = 1, from the proof of Theorem 3.2 it follows that all the iterates of the semigroup
have the same singularity at the boundary. In this case, direct computations show that
Ω = ∆2. ¤

Remark 3.4. In [11] Cowen and MacCluer prove that if ϕ ∈ LFM(Bn,Bn) fixes O and the
spectrum of dϕO does not contain eigenvalues of modulus 1 then there exists an injective
linear fractional map σ : Bn → Cn such that σ ◦ ϕ = dϕO ◦ σ. Their argument (which is
indeed a simplified version—and the inspiration—of the proof of (2) above) allows only
to state that if dϕO contains eigenvalues of modulus 1 then such an intertwining map σ is
defined only on a neighborhood of O (not in all Bn). In the proof of Theorem 3.2, which
clearly works also for just one elliptic linear fractional map, we showed that actually one
can always linearize ϕ in all of Bn, regardless the presence of eigenvalues of modulus 1.

4. Non-elliptic linear fractional maps

Our first result is somewhat technical and it says that, in the non-elliptic case, we can
always obtained a simpler iteration couple transferring the corresponding linear fractional
map from Bn toHn. We also show how this model can be used to detect simply independent
invariant slices.

Recall that if H ∈ Cn×n is a hermitian matrix, by the spectral theorem, there exists a
unitary n× n matrix U and a diagonal matrix D such that H = U∗DU . If D has entries
d1, . . . , dn ∈ R on the principal diagonal, let D+ be the diagonal matrix whose entry of
position (j, j) is 0 if dj = 0 or d−1

j if dj 6= 0. Then the pseudo-inverse (or generalized
inverse) H+ of H is defined as H+ := U∗D+U (see, e.g., [21]).

Lemma 4.1. Let ϕ ∈ LFM(Bn,Bn) be non-elliptic with Denjoy-Wolff point τ ∈ ∂Bn and
boundary dilatation coefficient α = α(ϕ). Then, the iteration couple (Bn, ϕ) is conjugated
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to the iteration couple (Hn, ϕ̃) where

(4.1) ϕ̃(z, w) =
1

α
(z + 〈w, b〉+ c, Aw + d), (z, w) ∈ Hn,

with c ∈ C, b, d ∈ Cn−1, A ∈ C(n−1)×(n−1) satisfying

(i) Q := αI − A∗A is a hermitian positive semi-definite matrix,
(ii) αRe (c) − ‖d‖2 ≥ 〈

Q+(A∗d− 1
2
αb), A∗d− 1

2
αb

〉
where Q+ is the pseudo-inverse

of Q,
(iii) A∗d− 1

2
αb belongs to the space spanned by the columns of Q.

Proof. Up to conjugation with a rotation we can suppose that τ = e1. By Proposition
1.3.(2) it follows that

(4.2) dϕe1
=

(
α 0
d A

)

for some d ∈ Cn−1 and A ∈ C(n−1)×(n−1). Conjugating ϕ with the Cayley transform σ :
Bn → Hn which maps e1 to O, namely σ(z, w) := (1−z, w)(1+z)−1 for (z, w) ∈ C×Cn−1,
we obtain ϕ′ := σ ◦ ϕ ◦ σ−1 ∈ LFM(Hn,Hn) such that O is its Denjoy-Wolff point and
α is boundary dilatation coefficient at O. Moreover, since TCO∂Hn = TCe1

∂Bn and, taking
into account the form of ϕ (see (1.1)) and (4.2), a straightforward computation gives us

ϕ′(z, w) =
(αz,Aw + zd)

cz + 〈w, b〉+ 1
, Re z > ‖w‖2,

for some c ∈ C, b ∈ C(n−1). Now let

G : Hn −→ Hn, G(z, w) :=

(
1

z
,
w

z

)
.

Then G ∈ Aut(Hn) and G ◦ σ = σC , the generalized Cayley transform.
Let ϕ̃ := G ◦ ϕ′ ◦G−1. A direct computation shows that

ϕ̃(z, w) =
1

α
(z + 〈w, b〉+ c, Aw + d) , Re z > ‖w‖2.

We prove now that conditions (i), (ii) and (iii) hold.
The matrix Q is obviously hermitian. So, in order to prove (i), let w ∈ Cn−1 with

‖w‖ = 1. Since (r2, rw) ∈ ∂Hn for all r > 0, then ϕ̃(r2, rw) ∈ Hn for every r > 0. Writing
ϕ̃(Z) = (ϕz(Z), ϕw(Z)) ∈ C×Cn−1, we have thus Re ϕ̃z(r

2, rw) ≥ ‖ϕ̃w(r2, rw)‖2, namely

α +
1

r
Re 〈w,αb〉+

1

r2
αRe c ≥

∥∥∥∥Aw +
1

r
d

∥∥∥∥
2

.

Letting r tend to infinite, we see that α ≥ ‖Aw‖2. Since w was arbitrary, we get α ≥ ‖A‖2 .
It follows immediately that all the (necessarily real) eigenvalues of Q are non-negative and
therefore Q is semi-definite positive.
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As for the other two conditions, since ϕ̃(Hn) ⊆ Hn and ϕ̃ is continuous on Hn, we have
that ϕ̃(∂Hn) ⊂ Hn. If we parameterize ∂Hn as

R× Cn−1 3 (r, w) 7→ (‖w‖2 + ir, w) ∈ ∂Hn,

then for every w ∈ Cn−1 it holds

α ‖w‖2 + αRe 〈w, b〉+ αRe c ≥ ‖Aw + d‖2 .

Denoting Q := αI − A∗A, γ1 := −1
2
(αb − 2A∗d) and γ2 = 1

2
(αRe c − ‖d‖2), the above

inequality is equivalent to

(4.3) F (w) :=
1

2
w∗Qw − Re 〈w, γ1〉+ γ2 ≥ 0.

Notice that γ2 ∈ R and, since Q is hermitian, also w∗Qw ∈ R. Thus, we have a function
F : Cn−1 → R such that F (w) ≥ 0, for every w ∈ Cn−1. We claim that F ≥ 0 if and only
if

F (Q+γ1) ≥ 0 and γ1 ∈ spanC{Qe1, . . . , Qen−1}.
Since Q+QQ+ = Q+, we see that F (Q+γ1) = γ2− 1

2
γ∗1Q

+γ1 and thus (ii) and (iii) follow.
Thus we are left to prove the claim. The matrix Q is a hermitian positive semi-definite

matrix with, say, rank k ≤ n− 1.
By the spectral decomposition theorem, there exists an unitary matrix U of order n−1

such that Q = UΣU∗, where Σ is a diagonal matrix whose entries are

σ1 ≥ σ2 ≥ · · · ≥ σk > σk+1 = · · · = σn−1 = 0.

Let
F̂ (w) := F (Uw), w = (w1, ..., wn−1) ∈ Cn−1.

Clearly F ≥ 0 if and only if F̂ ≥ 0. Let

ν = (ν1, . . . , νn−1) := U∗γ1, δ := γ2 −
1

2

k∑
j=1

|νj|2
σj

.

Thus

F̂ (w) =
1

2

k∑
j=1

∣∣∣∣
√

σjwj − νj√
σj

∣∣∣∣
2

+ δ −
n−1∑

j=k+1

Re (wjνj).

Clearly, if F̂ ≥ 0 then νk+1 = . . . = νn−1 = 0, namely, γ1 ∈ spanC{Qe1, . . . , Qen−1}.
Under this condition, F̂ assumes its minimum value at the point x = ( ν1

σ1
, . . . , νk

σk
, 0, . . . , 0).

And thus it is non negative if and only if F̂ (x) ≥ 0, namely F (Q+γ1) ≥ 0. ¤
Notice that the intertwining map between the two iteration couples (Bn, ϕ) and (Hn, ϕ̃)

in Lemma 4.1 is simply given by a rotation followed by the Cayley transform σC . Also,
notice that setting w = 0 in (4.3) we obtain

αRe c− ‖d‖2 ≥ 0,
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which implies Re c ≥ 0 because α > 0.
As a corollary of the proof of Lemma 4.1 we have the following result.

Proposition 4.2. Let ϕ ∈ LFM(Hn,Hn) be non-elliptic with Denjoy-Wolff point ∞ and
boundary dilatation coefficient α = α(ϕ). Then

(4.4) ϕ(z, w) =
1

α
(z + 〈w, b〉+ c, Aw + d), (z, w) ∈ Hn,

where c ∈ C, b, d ∈ Cn−1, A ∈ C(n−1)×(n−1) satisfy (i), (ii) and (iii) in Lemma 4.1.
Conversely, for any α,A, b, c, d as before that satisfy (i), (ii) and (iii) in Lemma 4.1

the linear fractional map ϕ defined by (4.4) is in LFM(Hn,Hn).

Proof. One direction follows from the proof of Lemma 4.1. Conversely, note that if
α, A, b, c, d satisfy (i), (ii) and (iii) then (4.3) is satisfied and then the linear fractional
map ϕ defined by (4.4) is such that ϕ(Hn) ⊆ Hn. ¤

The argument in the proof of Lemma 4.1 also allows us to detect automorphisms of
Hn with Denjoy-Wolff point at ∞ among linear fractional self-maps of Hn. In some sense,
this extends [11, Theorem 2.90].

Proposition 4.3. Let ϕ ∈ LFM(Hn,Hn) be without fixed points in Hn, with Denjoy-
Wolff point ∞ and boundary dilatation coefficient α := α(ϕ). Then ϕ ∈ Aut(Hn) if and
only if it is the composition of a rotation in the last (n− 1)-coordinates and a generalized
α-Heisenberg translation. That is,

ϕ(z, w) = φα(z, Uw), (z, w) ∈ Hn,

where U ∈ C(n−1)×(n−1) is a unitary matrix and

(4.5) φα(z, w) :=
1

α
(z + 2

1√
α
〈w, d〉+ c,

√
αw + d), (z, w) ∈ Hn

with Re c = ‖d‖2.

Proof. According to Proposition 4.2 the map ϕ has the form

ϕ(z, w) =
1

α
(z + 〈w, b〉+ c, Aw + d), Re z > ‖w‖2.

By Alexander’s theorem (see, e.g., [24], or [4, Theorem 2.3]) ϕ ∈ Aut(Hn) if and only if
ϕ(∂Hn) ⊆ ∂Hn. From this the statement follows easily. ¤

As we promised, we apply the above result to estimate ]inv(ϕ).

Proposition 4.4. Let ϕ ∈ LFM(Bn,Bn) be non-elliptic with Denjoy-Wolff point τ ∈ ∂Bn

and boundary dilatation coefficient α = α(ϕ). Let (Hn, ϕ̃) with

ϕ̃(z, w) =
1

α
(z + 〈w, b〉+ c, Aw + d), (z, w) ∈ Hn
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be the iteration couple prescribed in Lemma 4.1, conjugated to the iteration couple (Bn, ϕ).
Then:

(1) The boundary dilatation coefficient α is not an eigenvalue of A if and only if
]inv(ϕ) = 1.

(2) If α is an eigenvalue of A, then either ]inv(ϕ) = 0 or ]inv(ϕ) = 1+dim ker(αI−A).

Moreover, if ]inv(ϕ) ≥ 1 then we can assume that d = 0 and Aej = αej for j =
1, . . . , ]inv(ϕ)− 1.

Proof. Since ϕ and ϕ̃ are conjugated, then ]inv(ϕ) = ]inv(ϕ̃). Moreover, by Proposition
2.3 all invariant slices S ′ ∈ Hn for ϕ̃ are of the form {(z, w) ∈ C × Cn−1 : w = const}.
Hence, to determine ]inv(ϕ̃), we just need to solve the linear system

(A− αI)w = d.

Now, assertion (1) follows from the fact that this system has a unique solution if and
only if the matrix (A− αI) is invertible.

Otherwise, if (A− αI) is not invertible then the system has either no solutions or the
set of all solutions contains 1 + dim Ker(αI −A) independent solutions, which proves (2).

Now, assume ]inv(ϕ̃) ≥ 1 and let S ′ = {(z, w) ∈ Hn : w = w0} be an invariant slice. We
can use a parabolic automorphism Φ of the form (4.5) (with boundary dilatation coefficient
1) to map w = O to w0. Then Φ−1 ◦ ϕ̃ ◦ Φ has the slice S ′0 := {(z, w) ∈ Hn : w = 0}
as invariant and therefore the w-component of Φ−1 ◦ ϕ̃ ◦ Φ is of the form Aw/α (there is
no d term). Up to this conjugation we can then assume that ϕ̃ is a linear fractional map
with d = 0. Now, if we conjugate ϕ̃ with a rotation (z, w) 7→ (z, Uw) with U unitary, we
see that the w-component of ϕ̃ becomes U∗AUw/α. It is clear (cfr. [4, Lemma 4.1]) that
we can choose U in such a way that the eigenvectors of A related to the eigenvalue α are
e1, . . . , el with l = dim Ker(αI − A), ending the proof. ¤

5. Classification of hyperbolic semigroups of linear fractional maps

We begin with the following result which completely classifies hyperbolic semigroups of
linear fractional maps.

Theorem 5.1. Let (ϕt) be a hyperbolic continuous semigroup in LFM(Bn,Bn). Then, the
iteration couple (Bn, (ϕt)) is conjugated to the iteration couple (Hn, (ϕ̃t)) where

ϕ̃t(z, w) = eλt(z + (1− e−λt)c, etMw + e−λt

(∫ t

0

e(λI+M)sds

)
d), (z, w) ∈ Hn

with λ > 0, c ≥ 0 d ∈ Cn−1, M ∈ C(n−1)×(n−1) and such that

(i) Qt := e−λtI − exp (tM∗) exp (tM) is a positive semi-definite hermitian matrix for
every t ≥ 0,

(ii) e−λt(1 − e−λt)c − ‖dt‖2 ≥ 〈
Q+

t exp (tM∗dt), exp (tM∗)dt

〉
, for every t ≥ 0, where

Q+
t is the pseudo-inverse of Qt and dt = e−λt

(∫ t

0
e(λI+M)sds

)
d,
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(iii) exp (M∗t)dt belongs to the space spanned by the columns of Qt, for every t ≥ 0.

Moreover, given λ, c, d, M as above, there exists a hyperbolic semigroup (ϕt) of linear
fractional self-maps of Bn such that (Bn, (ϕt)) is conjugated to (Hn, (ϕ̃t)).

Proof. According to Theorem 1.5, the boundary dilatation coefficient α(ϕt) at the common
Denjoy-Wolff point of the semigroup is e−λt, for some λ > 0. By conjugating ϕt via the
Cayley transform στ : Bn → Hn which maps τ to ∞ (see Lemma 4.1), the semigroup
(Bn, (ϕt)) is conjugated to the semigroup (Hn, (ϕ1

t )) with

(5.1) ϕ1
t (z, w) = eλt(z + 〈w, bt〉+ ct, Atw + dt), (z, w) ∈ Hn,

where ct ∈ C, bt, dt ∈ Cn−1 and At ∈ C(n−1)×(n−1) satisfy (i), (ii) and (iii) in Lemma 4.1.

In particular (i) implies ‖At‖ ≤
√

e−λt < 1, for all t > 0.
Applying the algebraic semigroup conditions, we come up with the following four equa-

tions for the above coefficients:

(5.2)





1) ct+s = e−λsct + cs + 〈ds, bt〉
2) dt+s = Atds + e−λsdt

3) At+s = AtAs

4) bt+s = bs + A∗
sbt

t, s ≥ 0.

Moreover, since ϕ1
0 is the identity on Hn, we obtain c0 = 0, b0 = O, d0 = O and A0 = I.

In what follows, recall that t 7→ ϕ1
t is real analytic and therefore we can freely differentiate

ct, bt, dt and At with respect to t.
¿From equation 3) we see that there exists a matrix M ∈ C(n−1)×(n−1) such that At =

exp(tM).
Next, we look at equation 4). Differentiating with respect to s and setting s = 0, we

obtain the following system of linear differential equations
{

d

dt
bt = M∗bt + v,

b0 = O,

for some vector v ∈ Cn−1. Since ‖At‖ < 1, then M∗ is invertible. Therefore, we have
bt = (exp (tM∗)− I)b for some vector b ∈ Cn−1 such that M∗b = −v.

Now, consider the following Heisenberg translation

η(z, w) = (z + 2 〈w, k2〉+ k1, w + k2), (z, w) ∈ Hn

with (k1, k2) ∈ ∂Hn, namely Re k1 = ‖k2‖2. By Proposition 4.3 it follows that η ∈ Aut(Hn).
Let

ϕ2
t = η−1 ◦ ϕ1

t ◦ η.

Straightforward computations show that

ϕ2
t (z, w) = eλt(z + 〈w, bt + 2k2 − 2A∗

t k2〉+ c̃t, Atw + d̃t), (z, w) ∈ Hn



20 F. BRACCI, M.D. CONTRERAS, AND S. DÍAZ-MADRIGAL

for some c̃t ∈ C and d̃t ∈ Cn−1 still satisfying the same algebraic semigroup conditions of
ct and dt.

We focus our attention to the linear system

(5.3) (A∗
t − I)k2 =

1

2
bt.

Substituting the expressions of At and bt as found before, we see that such a system is
solved for k2 = 1

2
b. Therefore, if we choose (k1, k2) = (‖1

2
b‖2, 1

2
b), we have

ϕ2
t (z, w) = eλt(z + c̃t, e

tMw + d̃t), (z, w) ∈ Hn,

with {
1) c̃t+s = e−λsc̃t + c̃s, c̃0 = 0,

2) d̃t+s = etM d̃s + e−λsd̃t, d̃0 = 0.

Arguing as before, passing from algebraic equations to differential equations, we obtain{
c̃t = (1− e−λt)c, for some c ∈ C
d̃t = e−λt

(∫ t

0
e(λI+M)sds

)
d, for some d ∈ Cn−1.

We prove now that we can conjugate once more in order to take c ∈ R. Assume that
c = c1 + ic2 with c1, c2 ∈ R. Let ν(z, w) = (z − ic2, w) for (z, w) ∈ Hn. Then, ν is an
automorphism of Hn. A straightforward computation shows that

ν−1 ◦ ϕ2
t ◦ ν(z, w) = eλt(z + (1− e−λt)c1, e

tMw + e−λt

(∫ t

0

e(λI+M)sds

)
d).

The remaining assertions follow now applying Lemma 4.1. ¤
Remark 5.2. Condition (i) in the above Theorem 5.1 means (in the terminology of dy-
namical systems) that the matrix M is λ

2
-uniformly dissipative. That is, (i) is equivalent

to

(i′) Re w∗Mw ≤ −λ

2
‖w‖2 , for all w ∈ Cn−1.

Indeed, Qt is positive semi-definite for all t ≥ 0 if and only if
∥∥e(λI+M+M∗)t

∥∥ ≤ 1, for
all t ≥ 0, which, by Phillips-Lumer’s theorem (see, e.g., [27, p. 250]), it is equivalent to
Re w∗(λI + M + M∗)w ≤ 0, for all w ∈ Cn−1, which in turns is equivalent to (i′).

A quite interesting consequence of this classification is the link between the conjugation
of hyperbolic semigroups in LFM(Bn,Bn) and the classical open question of the classifica-
tion of automorphisms in Cn, provided by the next corollary whose proof is straightforward
from Theorem 5.1.

Corollary 5.3. Let (ϕt) a continuous hyperbolic semigroup in LFM(Bn,Bn). Then, there
exist a biholomorphic map σ from Bn onto Hn and a continuous group (φt) in Aut(Cn,Cn)
such that, for every t ≥ 0, the restriction of φt to Hn is exactly σ ◦ ϕt ◦ σ−1.
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As one might suspect, the existence of invariant slices also allows to simplify the model
given in Theorem 5.1. We recall that by Theorem 2.4 and assuming that (ϕt) is a semi-
group of non-elliptic linear fractional self-maps of Bn (or of Hn), if ϕt0 has some invariant
slices for some t0 > 0 then (ϕt) has at least one common invariant slice.

Before examining the case of existence of invariant slices, we comment some examples.

Example 5.4. Let
ϕt(z, w) = (eλtz + (eλt − 1)c, w + t),

for (z, w) ∈ H2, where λ > 0 and c ≥ λ2. According to Theorem 5.1 the semigroup (ϕt)
is a hyperbolic semigroup of LFM(H2,H2) and clearly there are no invariant slices for
t > 0. Moreover, each hyperbolic semigroup of LFM(H2,H2) with no invariant slice can
be conjugated to a semigroup as above for a certain c ≥ 0.

Example 5.5. Let λ > 0 and let

ϕt(z, w) = (eλtz, e2πik1tw1, . . . , e
2πikn−1twn−1),

for (z, w1, ...wn−1) ∈ Hn, with kp = 2−p, p = 1, ..., n − 1. Notice that ϕt is a hyperbolic
semigroup of LFM(Hn,Hn) with only one common invariant slice {(z, w) ∈ Bn : w = 0}.
However, as t varies in (0,∞) the dimension of the inner space At varies between 1 and n
(all values are attained) and thus there exist iterates ϕt which have up to n independent
invariant slices.

The two previous examples are somewhat degenerate as the following remark explains.

Remark 5.6. Let (Bn, (ϕt)) be a hyperbolic semigroup of LFM(Bn,Bn) with common
Denjoy-Wolff point τ ∈ ∂Bn. Let (Hn, (ϕ̃t)) be the conjugated semigroup of LFM(Hn,Hn)
given by Theorem 5.1. Then, to study the number of common independent invariant slices
(in Hn), we write down the family of equations

(et(λI+M) − I)w = (

∫ t

0

e(λI+M)sds)d, t ≥ 0.

Let us see that (Bn, (ϕt)) has a unique invariant slice if and only if λI + M is invertible.

Firstly, the invertibility of this matrix implies that
∫ t

0
e(λI+M)sds = (et(λI+M) − I)(λI +

M)−1. Moreover, since et(λI+M) tends to I as t goes to 0, there must be some t > 0
such that et(λI+M) is invertible. Therefore, the only possible common solution to the
above family of equations is w = (λI + M)−1d, hence (Bn, (ϕt)) has a unique invariant
slice. On the other hand, if there exists a unique invariant slice and (λI + M) were not
invertible, taking any non-zero vector w in the kernel of (λI + M) it would follow that
(e(λI+M)t − I)w = O for all t ≥ 0, namely e−λt would be an eigenvalue of etM for all t,
contradicting Proposition 4.4.

The condition that λM + I is invertible can be easily translated into an algebraic
condition for (ϕt) as follows. A direct computation shows that the eigenvalues of d(ϕt)τ

are exactly e−tλ and the eigenvalues e−tλ1 , . . . , e−tλm of etM (here Re λj > 0 since ‖etM‖2 ≤
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e−λt < 1). Therefore, λM + I is invertible if and only if the algebraic multiplicity of the
boundary dilatation coefficient e−tλ as eigenvalue of d(ϕt)τ is 1 for some (and hence any)
t > 0.

In case of existence of a common invariant slice for (ϕt) we can choose a different
conjugation.

Proposition 5.7. Let (ϕt) be a hyperbolic continuous semigroup in LFM(Bn,Bn). As-
sume that ϕt has an invariant slice, for some t > 0. Then, the iteration couple (Bn, (ϕt))
is conjugated to the iteration couple (Hn, (ϕ̃t)) where

ϕ̃t(z, w) = eλt(z + (1− e−λt)c + 〈w, (eM∗t − I)b〉, eMtw), (z, w) ∈ Hn

with λ > 0, c ∈ C, b ∈ Cn−1 and M ∈ C(n−1)×(n−1) a λ
2
-uniformly dissipative matrix.

Proof. By Theorem 5.1 the semigroup (Bn, (ϕt)) is conjugated to (Hn, (ϕ1
t )) where

ϕ1
t (z, w) = eλt(z + (1− e−λt)c, eMtw + dt)

with dt, c and M satisfying certain restrictions. By Theorem 2.4 there exists a common
invariant slice, say {(z, w) ∈ Hn : w = w0}. Consider the linear fractional map

η(z, w) = (z − 2〈w,w0〉+ ‖w0‖2, w − w0), (z, w) ∈ Hn.

Then η ∈ Aut(Hn) and η sends the slice {(z, w) ∈ Hn : w = w0} onto the slice {(z, w) ∈
Hn : w = O}. Thus ϕ2

t := η−1 ◦ ϕ1
t ◦ η is of the form

ϕ2
t (z, w) = eλt(z + ct + 〈w, bt〉, etMw),

with ct, bt satisfying (5.2). Thus bt = (etM∗ − I)b and ct = (1 − e−λt)c. Finally, Lemma
4.1 and Remark 5.2 give the desired estimate. ¤

Notice that the compatibility condition in Proposition 5.7 is not enough to guarantee
that the semigroup (ϕt) maps Hn into Hn. Indeed, conditions (ii), (iii) in Lemma 4.1 must
also be satisfied.

Remark 5.8. If the semigroup (ϕt) given at the above proposition has p + 1 (p ≥ 1)
common independent invariant slices, it is possible to simplify a little more the model,
taking into account the final assertions given at Proposition 4.4. Indeed, up to a suitable
rotation, the matrix eMt in (ϕ̃t), can be replaced by the blocks matrix

[
e−λtIp Bt

O Dt

]

where Dt = eNt for some N ∈ Cq×q and Bt = B
∫ t

0
eNsds for some B ∈ Cp×q.

In case ϕ ∈ LFM(Bn,Bn) has exactly two fixed points on ∂Bn, the situation is much
simpler.



CLASSIFICATION OF SEMIGROUPS 23

Theorem 5.9. Let (ϕt) be a semigroup in LFM(Bn,Bn). If for some t0 > 0 the iterate
ϕt0 has exactly two (distinct) fixed points then (ϕt) is a hyperbolic semigroup with two
common fixed points.

Moreover, the iteration couple (Bn, (ϕt)) is conjugated to the iteration couple (Hn, (ϕ̃t))
where

ϕ̃t(z, w) = eλt(z, eMtw), (z, w) ∈ Hn

with λ > 0 and M ∈ C(n−1)×(n−1) a λ
2
-uniformly dissipative matrix.

Conversely, for all λ,M as above, there exists a hyperbolic semigroup (ϕt) of LFM(Bn,Bn)
with two common fixed points such that the iteration couple (Bn, (ϕt)) is conjugated to
(Hn, (ϕ̃t)).

Proof. By [4, Theorem 3.2] the map ϕt0 is necessarily hyperbolic and both fixed points
belong to ∂Bn. Thus, all ϕt must be hyperbolic by Theorem 1.5. According to Theorem 5.1
the iteration couple (Bn, ϕ) is conjugated to the iteration couple (Hn, ϕ̃) with

ϕ̃(z, w) = eλt(z + ct, e
tMw + dt), (z, w) ∈ Hn

satisfying (i), (ii) and (iii).
Since ϕt0 has another boundary fixed point different from its Denjoy-Wolff point, so

does ϕ̃t0 . Let (ẑ, ŵ) ∈ ∂Hn be such a fixed point. Hence, Re ẑ = ‖ŵ‖2 and

ẑ + ct0 = e−λt0 ẑ, et0M ŵ + dt0 = e−λt0ŵ.

Since ct0 = (1− e−λt0)c, the first equation implies ẑ = −c but since c ≥ 0 then ẑ = c = 0.
Imposing the condition ϕ̃t(O) ∈ Hn we find dt ≡ O as wanted. Finally, Theorem 5.1 and
Remark 5.2 give the remaining assertions. ¤

As a corollary we have the following characterization of groups of hyperbolic automor-
phisms of Bn.

Corollary 5.10. Let (ϕt) be a hyperbolic group in Aut(Bn). Then, the iteration couple
(Bn, (ϕt)) is conjugated to the iteration couple (Hn, (ϕ̃t)) where

ϕ̃t(z, w) = eλt(z, e−
λ
2
teitΘw), (z, w) ∈ Hn,

with λ > 0 and Θ a diagonal (n− 1)× (n− 1) matrix with real entries.

Proof. Combining Theorem 5.9 and Proposition 4.3 we see that the iteration couple
(Bn, (ϕt)) is conjugated to the iteration couple (Hn, (ϕ1

t )) where

ϕ1
t (z, w) = eλt(z,

√
e−λtUtw), (z, w) ∈ Hn.

for some unitary matrix Ut = etH ∈ C(n−1)×(n−1). Thus H + H∗ = O. By the spectral
theorem there exists another unitary matrix V of order n − 1 such that V ∗HV = iΘ,
with Θ a diagonal real matrix of order n− 1. Thus, the statement follows as soon as we
conjugate ϕ1

t with the map η ∈ Aut(Hn) defined as η(z, w) = (z, V w). ¤
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In our last result of this section we provide a simple model in case the differential at
the common Wolff point of an iterate of a hyperbolic semigroup of linear fractional maps
(ϕt) is normal:

Proposition 5.11. Let (ϕt) be a hyperbolic semigroup in LFM(Bn;Bn) and let τ ∈ ∂Bn

be the common Wolff point. If d(ϕt)τ acts normally on TCτ ∂Bn for some (and hence any)
t > 0 then, the iteration couple (Bn, (ϕt)) is conjugated to the iteration couple (Hn, (ϕ̃t))
with

ϕ̃t(Z) = (eλtz1 + (eλt − 1)c, z′ + td′, et∆z′′ + (e∆t − I)d′′, e
λ
2
teiΘtz′′′),

where Z = (z1, z
′, z′′, z′′′) ∈ C × Cp × Cq × Cr ∩ Hn, c ≥ 0, d′ ∈ Cp, d′′ ∈ Cq, ∆ is a

diagonal invertible matrix of order q all of whose entries have real part strictly less than
λ
2
, Θ is a diagonal matrix of order r with real entries and p + q + r = n− 1 (p, q, r ≥ 0).

Proof. Up to conjugation we can assume that (ϕt) is given as in Theorem 5.1. Then the
action of the differential of (ϕt) on the complex tangent space at the common Wolff point
is represented by etM , and it is normal at t > 0 if and only if M is normal. The result
follows then from an application of the spectral theorem bearing in mind conditions (i)
and (iii) appearing in Theorem 5.1. ¤

6. The parabolic case

In this section we examine parabolic semigroups of linear fractional maps.

Theorem 6.1. Let (ϕt) be a parabolic semigroup in LFM(Bn,Bn). Then, the iteration
couple (Bn, (ϕt)) is conjugated to the iteration couple (Hn, (ϕ̃t)) where

ϕ̃t(z, w) = (z + 〈w, bt〉+ ct, e
Mtw + dt), (z, w) ∈ Hn

and

ct := ct +

∫ t

0

〈
eMsd, b

〉
(t− s)ds, dt :=

(∫ t

0

eMsds

)
d, bt :=

(∫ t

0

eM∗sds

)
b,

with c ∈ C, b, d ∈ Cn−1, M ∈ C(n−1)×(n−1) and such that

(i) Qt := I − eM∗teMt is a positive semidefinite hermitian matrix, for every t ≥ 0,
(ii) Re(ct)− ‖dt‖2 ≥ 〈

Q+
t (eM∗tdt − 1

2
bt), (e

M∗tdt − 1
2
bt)

〉
, for every t ≥ 0, where Q+

t is
the pseudo-inverse of Qt,

(iii) eM∗tdt − 1
2
bt belongs to the space spanned by the columns of Qt, for every t ≥ 0.

Moreover, given c, b, d and M as above, there exists a parabolic semigroup (ϕt) of lin-
ear fractional self-maps of Bn such that the iteration couple (Bn, (ϕt)) is conjugated to
(Hn, (ϕ̃t)).

Proof. According to Theorem 1.5, the boundary dilatation coefficient α(ϕt) at the common
Denjoy-Wolff point of the semigroup is exactly 1. Then, by conjugating ϕt via the Cayley
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transform στ : Bn → Hn which maps τ to ∞ (see Lemma 4.1), the semigroup (Bn, (ϕt))
is conjugated to the semigroup (Hn, (ϕ1

t )) with

(6.1) ϕ1
t (z, w) = (z + 〈w, bt〉+ ct, Atw + dt), (z, w) ∈ Hn,

where ct ∈ C, bt, dt ∈ Cn−1 and At ∈ C(n−1)×(n−1) satisfy (i), (ii) and (iii) in Lemma 4.1.
Applying the algebraic semigroup conditions, we come up with the following four equa-

tions for the above coefficients:

(6.2)





1) ct+s = ct + cs + 〈ds, bt〉
2) dt+s = Atds + dt

3) At+s = AtAs

4) bt+s = bs + A∗
sbt

t, s ≥ 0.

Moreover, we have that c0 = 0, b0 = O, d0 = O, and A0 = I.
As in the hyperbolic case, from equation 3) we deduce that there exists a matrix

M ∈ C(n−1)×(n−1) such that At = exp(tM). We point out that M is not necessarily
invertible now.

Next, arguing as in the hyperbolic case, we solve 2) and 4) to get




bt =
(∫ t

0
eM∗sds

)
b,

dt =
(∫ t

0
eMsds

)
d,

for some vectors b, d ∈ Cn−1.
Finally, to compute ct we differentiate with respect to t and setting t = 0, we obtain

that {
d
ds

cs = v + 〈ds,
d
dt

bt|t=0〉
c0 = 0,

for some v ∈ Cn−1. Therefore

〈ds,
d

dt
bt|t=0〉 = 〈

(∫ s

0

eM∗tdt

)
d, b〉.

Integrating with respect to s and applying Fubini’s theorem, we obtain the wanted ex-
pression for ct. The remaining assertions follow by Lemma 4.1. ¤

Remark 6.2. Condition (i) in the above theorem means exactly that the matrix M is
dissipative. Indeed, Qt is positive semidefinite for all t ≥ 0 if and only if

∥∥eMt
∥∥ ≤ 1, for

all t ≥ 0 and the claim follows from Phillips-Lumer’s theorem.

In a similar way as in the hyperbolic case, Theorem 6.1 implies that the classification of
parabolic semigroups in LFM(Bn,Bn) can be seen as a part of the classification problem
of parabolic groups of automorphisms of Cn.

Once more, the existence of common invariant slices simplifies the model.
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Example 6.3. Let
ϕt(z, w) = (z + 2tw + ct + t2, w + t),

where (z, w) ∈ H2 and Re c = 0. Then, (ϕt) is a parabolic semigroup with no invariant
slices. In fact, it is possible to show that each parabolic semigroup of LFM(H2,H2) with no
invariant slices can be conjugated to a semigroup as above for a certain c ≥ 0. Moreover,
one—and hence any—of the iterates ϕt (t > 0) is an automorphism if and only if c = 0.

Remark 6.4. Let (Bn, (ϕt)) be a parabolic semigroup of LFM(Bn,Bn) with common
Denjoy-Wolff point τ ∈ ∂Bn and let (Hn, (ϕ̃t)) be the conjugated semigroup of LFM(Hn,Hn)
given by Theorem 6.1. Following the lines of Remark 5.6, we find that (Bn, (ϕt)) has a
unique invariant slice if and only if M is invertible.

Arguing as in Theorem 5.7 we obtain:

Theorem 6.5. Let (ϕt) be a parabolic semigroup in LFM(Bn,Bn) with, at least, one
common invariant slice. Then, the iteration couple (Bn, (ϕt)) is conjugated to the iteration
couple (Hn, (ϕ̃t)) where

ϕ̃t(z, w) = (z + 〈
(∫ t

0

eMsds

)
w, b〉+ ct, eMtw) (z, w) ∈ Hn

with c ∈ C, b ∈ Cn−1 and M is a dissipative matrix of order (n− 1).

It is worth pointing out that the matrix M in the above theorem might be non-invertible,
so that in general it is not possible to remove the integral symbol. As in the hyperbolic
case if the semigroup has p > 1 common independent invariant slices, it is possible to
simplify a little more the model, following the ideas given in Remark 5.8. We leave details
for the general case to the interested reader and concentrate on the case of a unique
common invariant slice, where the situation resembles the hyperbolic case:

Proposition 6.6. Let (ϕt) be a parabolic semigroup in LFM(Bn,Bn) with a unique com-
mon invariant slice. Then, the iteration couple (Bn, (ϕt)) is conjugated to the iteration
couple (Hn, (ϕ̂t)) where

ϕ̂t(z, w) = (z + ct, eMtw + (eMt − I)d), (z, w) ∈ Hn

with c ∈ C, d ∈ Cn−1 and M is a dissipative matrix of order n− 1.

Proof. First we apply Theorem 6.1 in order to conjugate the semigroup (ϕt) to the semi-
group

ϕ̂t(z, w) = (z + 〈w, bt〉+ ct, e
Mtw + dt)

with bt dt, ct and M satisfying the corresponding restrictions. In particular, we have that

bt :=

(∫ t

0

eM∗sds

)
b,

for some b ∈ Cn−1.
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Arguing as in the proof of Theorem 5.1 we come up with equations similar to (5.3),
namely

(eM∗t − I)k2 =
1

2

(∫ t

0

eM∗sds

)
b.

Since M is invertible by Remark 6.4, we can solve these equations setting k2 := 1
2
(M∗)−1b.

Therefore, if we consider the Heisenberg translation

η(z, w) = (z + 2 〈w, k2〉+ k1, w + k2), (z, w) ∈ Hn

with (k1, k2) ∈ ∂Hn and k2 := 1
2
(M∗)−1b and conjugate the semigroup (ϕ̂t) with η, then

the new semigroup is given by

ϕ2
t = (z + c2

t , e
Mtw + d2

t ), (z, w) ∈ Hn,

for some c2
t , d

2
t satisfying (6.2). The remaining assertions follow from Theorem 6.1. ¤

We end up this section with a classification of parabolic groups of automorphisms of
Bn which naturally follows from our procedure (see also [5] and [14]):

Theorem 6.7. Let (ϕt) be a parabolic group in Aut(Bn).

(i) If the group has no invariant slice, then it can be conjugated to an iteration couple
(Hn, (ϕ̃t)) where

ϕ̃t(z, w) = (z + 2t 〈w, d〉+ ct + t2, eitΘw + td), (z, w) ∈ Hn,

with Re c = 0, d is a vector of Cn−1 of norm one and Θ is a diagonal matrix of
order n− 1 with real entries.

(ii) If the group has p + 1 common independent invariant slices (p ≥ 0), then it can
be conjugated to an iteration couple (Hn, (ϕ̃t)) where

ϕ̃t(z, w
′, w′′) = (z + ct, w′, eitΘw′′), (z, w′, w′′) ∈ C× Cp × Cn−1−p ∩Hn,

with Re c = 0 and Θ is a diagonal matrix of order n− 1− p with real entries.

Proof. According to Theorem 6.1, we see that the iteration couple (Bn, (ϕt)) is conjugated
to the iteration couple (Hn, (ϕ1

t )) where

ϕ1
t (z, w) = (z + 〈w, bt〉+ ct, e

Mt + dt) (z, w) ∈ Hn,

for some ct, bt = (
∫ t

0
eM∗sds)b, dt = (

∫ t

0
eMsds)d (b, d ∈ Cn−1) and M satisfying the

restrictions mentioned in that theorem. Since each iterate is an automorphism, from
Alexander’s theorem it follows that for every t ≥ 0:





1) eMt is unitary;
2) Re (ct) = ‖dt‖2;
3) bt = 2eM∗tdt.
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By condition 1) and Stone’s theorem, we see that eMt = eitH for some Hermitian matrix
H of order n− 1. This, together with condition 3), implies that, for all t,

eiHt

(∫ t

0

e−iHsds

)
b =

(∫ t

0

eiHsds

)
b = 2

(∫ t

0

eiHsds

)
d,

and, therefore, b = 2d. Moreover, by the spectral theorem there exists a unitary matrix
V of order n − 1 such that V ∗HV = Θ, with Θ a real diagonal matrix of order n − 1.
Without lose of generality, we may assume that

Θ =

[
O O
O Λ

]

with Λ a diagonal matrix of order n − 1 − q with non-zero elements in the diagonal
(0 ≤ q ≤ n−1). Now, conjugating (Hn, (ϕ1

t )) by (z, w) 7→ (z, V w) we obtain a conjugated
iteration couple (Hn, (ϕ2

t )) given by

ϕ2
t (z, w) = (z + 2〈(

∫ t

0

eiΘsds)w, d〉+ ct, e
iΘtw + (

∫ t

0

eiΘsds)d), (z, w) ∈ Hn,

for some ct and d (maybe different from above). Note that
∫ t

0

eiΘsds =

[
tIq O
O (eiΛt − I)(−iΛ−1)

]
.

Hence

ϕ2
t (z, w) = (z + 2t〈w′, d′〉+ 2〈(eiΛt − I)w′′,−d′′〉+ ct, w

′ + td′, eiΛtw′′ + (eiΛt − I)d′′)

with (z, w) = (z, w′, w′′) ∈ C× Cq × Cn−1−q ∩Hn and (d′, d′′) ∈ Cq × Cn−1−q.
Conjugating now with the Heisenberg transformation

η2(z, w
′, w′′) = (z + 2 〈w′′, k2〉+ k1, w

′, w′′ + k2)

where (z, w′, w′′) ∈ C×Cq×Cn−1−q∩Hn with (k1, O, k2) ∈ ∂Hn and k2 := −d′′, k1 = ‖k2‖2,
we obtain a new iteration couple (Hn, (ϕ3

t )) where

ϕ3
t (z, w

′, w′′) = (z + 2t〈w′, d′〉+ ct, w
′ + td′, eiΛtw′′)

for some ct (again, maybe different from above) satisfying equations (6.2). Thus, arguing
as in Theorem 6.1 we obtain that

ct = ct + ‖d′‖2t2.

for some c ∈ C with Re c = 0. By Proposition 4.4 the semigroup has no common invariant
slices if and only if d′ 6= O. If d′ = 0, again by Proposition 4.4, it follows that p ≤ q and
we are done.

If d′ 6= O, we conjugate once more with

η3(z, w) = (‖d′‖2z, ‖d′‖w) (z, w) ∈ Hn.
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The new iterates are given by

ϕ4
t (z, w

′, w′′) = (z + 2t〈w′, d′〉+ ct + t2, w′ + td′, eiΛtw′′)

where c ∈ C with Re c = 0 and d′ has norm one, as wanted. ¤

Appendix A

The aim of this appendix is to give a short proof of Theorem 1.5. Actually we will
prove a more general (and partially new) result for semigroups of holomorphic self-maps
of a strongly convex domain.

Let D ⊂ Cn be a strongly convex domain with C3 boundary. Let f ∈ Hol(D, D) be a
holomorphic self-map of D and denote by

Fix(f) := {z ∈ D : f(z) = z}.
Recall (see, e.g., [1]) that either Fix(f) 6= ∅ or there exists a unique point τ(f) ∈ ∂D
such that the sequence of iterates {fk} converges uniformly on compacta to the constant
function D 3 z 7→ τ(f). Such a point τ(f) is called the Denjoy-Wolff point of f .

Moreover, fix z0 ∈ D and assume f ∈ Hol(D, D) has no fixed points in D and let τ(f)
be its Wolff point. If kD is the Kobayashi distance in D (for its definition and properties
see, e.g., [16]) we define the boundary dilatation coefficient α(f) of f at τ(f) to be

1

2
log α(f) := lim inf

w→τ(f)
[kD(z0, w)− kD(z0, f(w))].

Notice that if D = D the unit disc in C, then by the Julia-Wolff-Carathéodory theorem
α(f) = f ′(τ(f)), the multiplier of f at τ(f). While for D = Bn the number α(f) coincides
with the usual boundary dilatation coefficient (for instance if f ∈ LFM(Bn,Bn) then α(f)
coincides with the number bearing the same name in Theorem 1.2).

Theorem A.1. Let D ⊂ Cn be a bounded strongly convex domain with C3 boundary. Let
(Ft) be a continuous one-parameter semigroup of holomorphic self-maps of D. Then

• either
⋂

t≥0 Fix(Ft) 6= ∅,
• or Fix(Ft) = ∅ for all t > 0, there exists a unique τ ∈ ∂D such that τ is the

Denjoy-Wolff point of Ft for all t > 0 and there exists 0 < r ≤ 1 such that
α(Ft) = rt.

This theorem has been proved for D = BN the unit ball by Aizenberg and Shoikhet
in [2]. While in [1], Abate gave a proof of this dichotomy for strongly convex domains
except for the boundary dilatation coefficients estimates.

It should be remarked (see [6]) that this result would be false for a (discrete) family of
commuting mappings.

To prove Theorem A.1 we need first the following lemma:
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Lemma A.2. Let ϕν ∈ Hol(D, D) be a family of commuting holomorphic self-maps of
D with ν ∈ A for some indices set A. If

⋂
ν∈A Fix(ϕν) = ∅ then there exist m ∈ N and

s1, . . . , sm ∈ A such that
⋂m

j=1 Fix(ϕsj
) = ∅.

Proof. Recall that by [25] the set Fix(ϕν) is a holomorphic retract of D and in particular
it is an open connected submanifold of D. Let dν := dim Fix(ϕν) (here we agree to let
dν = −1 if Fix(ϕν) = ∅). We set d0 = min dν . If d0 < 0 then there exists ν0 such that
Fix(ϕν0

) = ∅ and the result is proved. Assume that d0 ≥ 0. Actually d0 > 0 for if d0 = 0
then Fix(ϕν0

) is a single point and since it is clearly invariant for all ϕν (for the family
commutes) then it follows that Fix(ϕν0

) is fixed for all ϕν against our hypothesis.
Thus d0 > 0. Let ϕν0

be such that dν0 = d0. Now consider the sets A1
ν := Fix(ϕν) ∩

Fix(ϕν0
) varying ν ∈ A. Every A1

ν is an open connected submanifold of D for A1
ν :=

πν ◦ πν0(D) where πj : D → Fix(ϕj) is the holomorphic retraction. Let d1 := min dim A1
ν .

Then d1 < d0. Indeed if d1 = d0 then Fix(ϕν0
) would be contained in Fix(ϕν) for all ν ∈ A,

against the hypothesis. If d1 < 0 we are done. Otherwise it is easy to see that d1 > 0. Let
A1

ν1
be such that dν1 = d1. This set is invariant for all ϕν . Define A2

ν := A1
ν1
∩ Fix(ϕν).

Again A2
ν is an open connected submanifold of D. Let d2 := min dim A2

ν . Arguing as
before one finds that d2 < d1. Continuing this way we find a strictly decreasing sequence
and thus after (at most) n− 1 steps we are done. ¤
Proof of Theorem A.1. Assume that Fix(Ft0) 6= ∅ for some t0 > 0. Let C := {t ∈ (0,∞) :
Fix(Ft) 6= ∅}. Let

D :=
⋂
t∈C

Fix(Ft).

If D = ∅, by Lemma A.2 we can find s0, . . . , sm ∈ C such that
⋂m

j=1 Fix(Fsj
) = ∅. With

no loss of generality we can suppose that M :=
⋂m−1

j=1 Fix(Fsj
) 6= ∅. By [25] there exists a

holomorphic retraction πM : D → M such that M = πM(D) (the holomorphic retraction
πM is the composition of the holomorphic retractions of Fix(Fsj

), j = 1, . . . ,m− 1). Now
we can consider f := Fsm ◦ πM . We have f(D) = Fsm(πM(D)) = Fsm(M) ⊂ M and
fk = F k

sm
◦ πM . But then Fix(f) = ∅ and by Abate’s theory [1] fk(z) → ∂D for k → ∞

and z ∈ D. This contradicts the fact that {F k
sm

(z)} stays bounded in D for all z ∈ D
since Fix(Fsm) 6= ∅. Therefore D 6= ∅ and it is clearly an open connected submanifold of
D, for it is actually given as the intersection of finitely many holomorphic retracts of D
and therefore it is itself a holomorphic retract of D, D = πD(D).

We want to show that C = (0,∞). Assume not. It is easy to see that D is invariant
for Ft for all t. Thus we can consider the continuous one parameter semigroup φt of
holomorphic self-maps of D defined by

φt := Ft|D.

Notice that φt(z) ≡ z for all t ∈ C. Let t0 > 0 be such t0 ∈ C. Therefore for all t ≥ 0

φt+t0 = φt ◦ φt0 = φt.
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In particular φk
t = φtk = φtk mod (0,t0). Assume t 6∈ C ∪ {0}. Then F k

t (z) = φk(z) → ∂D
for k → ∞ and z ∈ D. Let kν be a subsequence such that tkν → t1 mod [0, t0]. Then
φkν

t (z) → φt1(z) 6∈ ∂D, against φkν
t (z) → ∂D. Thus C = (0,∞) and we are done.

Assume now that Fix(Ft0) = ∅ for some t0 > 0. Let τ := τ(Ft0) ∈ ∂D be the Denjoy-
Wolff point of Ft0 . Clearly τ(Fnt0) = τ(F n

t0
) = τ for all n ∈ N and thus τ(Fqt0) = τ for

all q ∈ Q+. Since we already proved that Fix(Ft) = ∅ for all t > 0, by Joseph-Kwack
Theorem (see [17] and also [7, Theorem 3.10.(2)]) it follows that τ(Ft) = τ for all t > 0.

Now we are left to show that if Fix(Ft) = ∅ for all t > 0 then there exists 0 < r ≤ 1
such that α(Ft) = rt. Let α(t) := α(Ft). If we prove that

(1) α : [0,∞) → (0, 1] is measurable
(2) α(0) = 1,
(3) α(t + s) = α(t)α(s) for all t, s ≥ 0,

then the result will follow from standard arguments. The first property follows from the
fact that α : Hol(D, D) → (0, 1] is lower semicontinuous (when endow Hol(D,D) with the
compact-open topology), see [7]. The second property is obvious. As for the third, one
needs to use a Julia-Wolff-Carathéodory-type theorem for strongly convex domains, due
to Abate [1]. For the reader’s convenience, we recall here how it works.

Let z0 ∈ D. By Lempert’s work (see [18] and [1]) given any point z ∈ D there exists
a unique complex geodesic ϕ : D→ D, i.e., a holomorphic isometry between kD and kD,
such that ϕ extends smoothly past the boundary, ϕ(0) = z0 and ϕ(t) = z, with t ∈ (0, 1)
if z ∈ D and t = 1 if z ∈ ∂D. Moreover for any such a complex geodesic there exists
a holomorphic retraction p : D → ϕ(D), i.e. p is a holomorphic self-map of D such
that p ◦ p = p and p(z) = z for any z ∈ ϕ(D). We call such a p the Lempert projection
associated to ϕ. Furthermore we let p̃ := ϕ−1 ◦ p and call it the left inverse of ϕ, for
p̃ ◦ ϕ = IdD. The triple (ϕ, p, p̃) is the so-called Lempert projection device.

Let (ϕ, p, p̃) be the Lempert projection device associated to the complex geodesic such
that ϕ(1) = τ . Consider the following function T : D → C,

Tt(z) :=
1− p̃ ◦ Ft(z)

1− p̃(z)
.

By Abate’s theorem (see Theorem 2.7.14 in [1]) it follows that if γ : [0, 1) → D is a
continuous curve such that limu→1 γ(u) = τ , limu→1 kD(γ(u), p(γ(u))) = 0, and p(γ(u))
tends to τ non-tangentially (a curve with such properties is said to be τ -special and
restricted), then

lim
u→1

Tt(γ(u)) = α(t).

By Proposition 3.4 in [6] it follows that [0, 1) 3 u 7→ Ft(ϕ(u)) is τ -special and restricted.
Then we have

Tt+s(ϕ(u)) =
1− p̃ ◦ Ft(Fs(ϕ(u)))

1− p̃(Fs(ϕ(u)))
· 1− p̃ ◦ Fs(ϕ(u))

1− p̃(ϕ(u))
,
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and taking the limit for u → 1 it follows that α(t+s) = α(t)α(s) concluding the proof. ¤
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[8] F. Bracci and G. Gentili, Solving the Schröder equation at the boundary in several veriables, to appear
in Michigan Math. J.

[9] M. D. Contreras, S. Dı́az-Madrigal, Analytic flows in the unit disk: angular derivatives and boundary
fixed points, to appear in Pacific J. Math.

[10] C. C. Cowen Iteration and the solution of functional equations for functions analytic in the unit disk,
Trans. Amer. Math. Soc. 265 (1981), 69-95.

[11] C. C. Cowen and B. D. MacCluer, Linear fractional maps of the ball and their composition operators,
Acta Sci. Math (Szeged) 66 (2000), 351–376.

[12] C.C. Cowen, D.E. Crosby, T.L. Horine, R.M. Ortiz-Albino, A.E. Richman, Y.C. Yeow, and B.S.
Zerbe, Geometric properties of linear fractional maps, preprint, 2004.

[13] C. de Fabritiis, On the linearization of a class of semigroups on the unit ball of Cn, Ann. Mat. Pura
Appl. (IV) 166 (1994), 363-379.

[14] C. de Fabritiis and A. Iannuzzi, Quotients of the unit ball of Cn for a free action of Z, J. Analyse
Math. 85 (2001), 213–224. V.

[15] V. Khatskevich, S. Reich and D. Shoikhet, Abel-Schröder equations for linear fractional mappings
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cuela Superior de Ingenieros, Universidad de Sevilla, 41092, Sevilla, Spain.

E-mail address: madrigal@us.es


