LA FORMA DI JORDAN DI UN ENDOMORFISMO

FILIPPO BRACCI

1. POLINOMIO MINIMO E POLINOMIO CARATTERISTICO

Sia V uno spazio vettoriale di dimensione finita $N \ge 1$ su \mathbb{K} con $\mathbb{K} = \mathbb{R}, \mathbb{C}$. Indichiamo con $\operatorname{End}(V)$ lo spazio delle applicazioni lineari da V in V. Sia $T \in \operatorname{End}(V)$. Osserviamo che per un polinomio $p(x) \in \mathbb{K}[x]$ è ben definito p(T) nel modo seguente: se $p(x) = a_0 + a_1x + \dots a_nx^n$ allora

$$p(T) = a_0 \operatorname{Id} + a_1 T + \ldots + a_n T^n \in \operatorname{End}(V),$$

dove $T^j = T \circ \ldots \circ T$ j-volte. Possiamo allora definire

$$I_T = \{ p \in \mathbb{K}[x] : p(T) = 0 \},$$

dove 0 è ovviamente l'operatore nullo che associa ad ogni $v \in V$ l'elemento neutro 0. Si prova subito che I_T è un ideale di $\mathbb{K}[x]$.

Lemma 1.1. $I_T \neq \mathbb{K}[x] \ e \ I_T \neq \{0\}.$

Dimostrazione. È chiaro che $I_T \neq \mathbb{K}[x]$. Inoltre $\operatorname{End}(V)$ ha dimensione N^2 . Dato che Id, T, \ldots, T^{N^2} sono $N^2 + 1$ vettori di $\operatorname{End}(V)$ devono essere necessariamente linearmente indipendenti e dunque esistono $a_0, \ldots, a_{N^2} \in \mathbb{K}$ tali che

$$a_0 \text{Id} + \ldots + a_{N^2} T^{N^2} = 0,$$

e pertanto il polinomio $a_0 + \ldots + a_{N^2} x^{N^2} \in I_T$ che dunque non è ridotto al solo 0.

Dato che \mathbb{K} è un campo ne segue che $\mathbb{K}[x]$ è un anello euclideo e pertanto è a ideali principali (PID). In particolare esiste un (unico) polinomio monico $\mu_T(x) \in \mathbb{K}[x]$ tale che

$$I_T = \langle \mu_T(x) \rangle$$
.

Definizione 1.2. Il polinomio $\mu_T(x)$ si dice il polinomio minimo di T.

- Nota 1.3. (1) Sia R un automorfismo di V. Dato che $(RTR^{-1})^m=RT^mR^{-1}$, ne segue che $p(RTR^{-1})=Rp(T)R^{-1}$. In particolare endomorfismi simili hanno lo stesso polinomio minimo.
 - (2) Il polinomio minimo è caratterizzato dall'essere quel polinomio monico p di grado minimo tale che p(T) = 0.
 - (3) $\operatorname{End}(V)$ è un $\mathbb{K}[x]$ -modulo tramite la mappa $\mathbb{K}[x] \ni p \mapsto p(T) \in \operatorname{End}(V)$.

Fissiamo una base di V e associamo a T in tal base la $(N \times N)$ -matrice A. In base all'osservazione 1.3.1 è possibile parlare di polinomio minimo della matrice A.

Definizione 1.4. Il polinomio caratteristico di un $T \in \text{End}(V)$ è definito tramite

$$p_T(\lambda) = \det(\lambda \operatorname{Id} - T).$$

Le radici di $p_T(\lambda)$ si dicono gli autovalori di T.

Si dice che un vettore $v \in V \setminus \{0\}$ è un autovettore di T se $Tv = \lambda v$ per qualche $\lambda \in \mathbb{K}$.

Si noti che $v \in V \setminus \{0\}$ è un autovettore di T se e solo se $(T - \lambda \operatorname{Id})v = 0$ per qualche $\lambda \in \mathbb{K}$. In particolare $v \in V \setminus \{0\}$ è un autovettore di T se e solo se l'operatore $\lambda \operatorname{Id} - T$ non è invertibile, ovvero se e solo se $\det(\lambda \operatorname{Id} - T) = 0$. Pertanto λ è un autovalore di T se e solo se esiste un autovettore (non nullo) v di T tale che $Tv = \lambda v$. Si definisce

$$V_{\lambda} = \{ v \in V : Tv = 0 \}.$$

È facile verificare che $V_{\lambda} = \{0\}$ se e solo se λ non è un autovalore di T. Se $\lambda \in \mathbb{K}$ è un autovalore di T allora V_{λ} si chiamo l'autospazio di T relativo all'autovalore λ . Il nome "autospazio" suggerisce che effettivamente V_{λ} sia uno spazio vettoriale. In effetti vale

Teorema 1.5. Sia $\lambda \in \mathbb{K}$ un autovalore di T. Allora V_{λ} è un sottospazio vettoriale di V.

Dimostrazione. Occorre provare che V_{λ} è chiuso rispetto alla somma e al prodotto per uno scalare. Siano $v, w \in V_{\lambda}$. Allora

$$T(v+w) = T(v) + T(w) = \lambda v + \lambda w = \lambda(v+w)$$

e pertanto $v + w \in V_{\lambda}$. In modo simile si dimostra che V_{λ} è chiuso rispetto al prodotto per uno scalare.

Definizione 1.6. Sia $\lambda \in \mathbb{K}$ un autovalore di $T \in \operatorname{End}(V)$. La molteplicità algebrica $\operatorname{ma}(\lambda)$ è definita come la molteplicità della radice λ nel polinomio caratteristico $p_T(x)$. In altri termini $\operatorname{ma}(\lambda) = \alpha$ se $(x - \lambda)^{\alpha}$ divide $p_T(x)$ e $(x - \lambda)^{\alpha+1}$ non divide $p_T(x)$.

La molteplicità geometrica di λ è definita da $mg(\lambda) = dim V_{\lambda}$.

Lemma 1.7. Per un autovalore $\lambda \in \mathbb{K}$ di T vale $mg(\lambda) \leq ma(\lambda)$.

Dimostrazione. Poniamo $\beta = \text{mg}(\lambda)$. Allora esiste una base $\{v_1, \ldots, v_\beta, v_{\beta+1}, \ldots, v_N\}$ di V tale che $V_\lambda = \langle v_1, \ldots, v_\beta \rangle$. In tale base la matrice $A = (a_{ij})$ associata a T è tale che $a_{jj} = \lambda$ per $j = 1, \ldots, \beta$, $a_{ij} = 0$ per $1 \le i < j \le \beta$, $1 \le j < i \le \beta$. Pertanto un calcolo diretto mostra che $(x - \lambda)^\beta$ divide $p_T(x)$ e dunque $\beta \le \text{ma}(\lambda)$ come volevasi.

Proposizione 1.8. Siano $\alpha, \beta \in \mathbb{K}$ due autovalori di T. Se $\alpha \neq \beta$ allora $V_{\alpha} \cap V_{\beta} = \{0\}$. In particolare per ogni $v \in V_{\alpha} \setminus \{0\}$ e $w \in V_{\beta} \setminus \{0\}$ si ha che v e w sono linearmente indipendenti.

Dimostrazione. Se $v \in V_{\alpha} \cap V_{\beta}$ allora $\alpha v = T(v) = \beta v$ e dunque $(\alpha - \beta)v = 0$. Dato che $\alpha - \beta \neq 0$ ciò implica che v = 0.

Definizione 1.9. Sia $W \subset V$ un sottospazio vettoriale di V. Si dice che W è T-invariante se $Tw \in W$ per ogni $w \in W$.

Un sottospazio $W \subset V$ che sia T-invariante si dice T-irriducibile (o semplicemente ir-riducibile) se per ogni sottospazio $W' \subset W$ che sia T-invariante risulta W' = W oppure $W' = \{0\}$.

Se v è un autovettore di T allora $\langle v \rangle$ è T-invariante (e irriducibile). Viceversa se W è un sottospazio unidimensionale di V T-invariante, allora ogni $w \in W \setminus \{0\}$ è un autovettore di T. Più in generale V_{λ} è T-invariante (ma può essere o meno irriducibile).

Definizione 1.10. Un'applicazione lineare $T \in \operatorname{End}(V)$ si dice *triangolarizzabile* se esiste una base $\{v_1, \ldots, v_N\}$ di V tale che gli spazi $V_j = \langle v_1, \ldots, v_j \rangle$ siano T-invarianti per ogni $j = 1, \ldots, N$.

Osserviamo che se T è triangolarizzabile, e la base $\{v_1, \ldots, v_N\}$ realizza tale triangolarizzazione, allora v_1 è un autovettore per T. Più in generale la matrice associata a T nell base $\{v_1, \ldots, v_N\}$ è una matrice triangolare superiore (ovvero tale che $A = (a_{ij})$ con $a_{ij} = 0$ per $i > j, i, j = 1, \ldots, N$).

Teorema 1.11. Sono equivalenti:

- (1) *T* è triangolarizzabile
- (2) Il polinomio caratteristico $p_T(x)$ si scompone nel prodotto di fattori lineari.

La dimostrazione è omessa in questa versione.

In particolare si ha la prima differenza fondamentale tra spazi vettoriali reali e complessi:

Corollario 1.12. Se V è uno spazio vettoriale su $\mathbb C$ allora ogni $T \in End(V)$ è triangolarizzabile.

Dimostrazione. Sia $T \in \text{End}(V)$. Per il teorema 1.11 si ha che T è triangolarizzabile se e solo se

$$P_T(x) = (x - \lambda_1)^{\alpha_1} \cdots (x - \lambda_r)^{\alpha_r},$$

per qualche $r \in \mathbb{N}$, $\lambda_j \in \mathbb{C}$ e $\alpha_j \in \mathbb{N}$ tale che $\alpha_1 + \dots + \alpha_r = N$. Ma per il teorema fondamentale dell'algebra questo è sempre vero.

Si ha inoltre

Teorema 1.13 (Hamilton-Caley). $p_T(T) = 0$

La dimostrazione è omessa in questa versione.

Come conseguenza diretta si ha

Corollario 1.14. Il polinomio minimo $\mu_T(x)$ divide il polinomio caratteristico $p_T(x)$. In particolare $deg(\mu_T(x)) \leq N$.

Vediamo adesso le relazioni tra autovalori e polinomio minimo

Proposizione 1.15. Se λ è un autovalore di $T \in End(V)$ allora $(x - \lambda)$ divide il polinomio minimo $\mu_T(x)$.

Dimostrazione. Sia $v \in V \setminus \{0\}$ tale che $Tv = \lambda v$. Si consideri l'ideale di $\mathbb{K}[x]$ definito da

$$I_{T,v} := \{ q \in \mathbb{K}[x] : q(T)v = 0 \}.$$

Chiaramente $(x - \lambda) \in I_{T,v}$. Ma $\mathbb{K}[x]$ è un dominio di integrità ad ideali principali, ed essendo $(x - \lambda)$ il polinomio monico di grado minimo (le costanti non nulle non stanno in $I_{T,v}$) in $I_{T,v}$

ne segue che $(x - \lambda)$ è un generatore di $I_{T,v}$. Ora, per definizione, $\mu_T(T)v = 0$ e pertanto $\mu_T(x) \in I_{T,v}$ e dunque $(x - \lambda)$ divide $\mu_T(x)$.

Mettendo assieme il Corollario 1.14 e la Proposizione 1.15 si ottiene il seguente risultato:

Proposizione 1.16. Sia $T \in End(V)$ e supponiamo che il polinomio caratteristico di T sia dato da

$$p_T(x) = (x - \lambda_1)^{\alpha_1} \cdots (x - \lambda_r)^{\alpha_r}$$

dove $\lambda_j \in \mathbb{K}$, con $\lambda_j \neq \lambda_i$ se $i \neq j$, $r \leq N$, $1 \leq \alpha_j \in \mathbb{N}$ e $\alpha_1 + \ldots + \alpha_r = N$. Allora il polinomio minimo $\mu_T(x)$ è dato da

$$\mu_T(x) = (x - \lambda_1)^{\beta_1} \cdots (x - \lambda_r)^{\beta_r}$$

 $con 1 \leq \beta_j \leq \alpha_j$.

Esempio 1.17. Sia $T: \mathbb{C}^2 \to \mathbb{C}^2$ definito da $T(x,y) = A(x,y)^t$, dove A è definita dalla seguente matrice:

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Un calcolo diretto ci dà $p_T(\lambda)=(\lambda-1)^2$. Per il teorema 1.13 si ha che μ_T può essere $\lambda-1$ oppure $(\lambda-1)^2$. Si scarta subito la prima possibilità dato che $T-\operatorname{Id}\neq 0$. Dunque $\mu_T(\lambda)=(\lambda-1)^2$.

2. DIAGONALIZZAZIONE DI ENDOMORFISMI

Definizione 2.1. Un operatore $T \in \text{End}(V)$ si dice diagonalizzabile se esiste una base di V formata da autovettori di T.

Dunque T è diagonalizzabile se esistono v_1, \ldots, v_N vettori linearmente indipendenti tali che $Tv_j = \lambda_j v_j$ per qualche $\lambda_j \in \mathbb{K}$. Nella base $\{v_1, \ldots, v_N\}$ che diagonalizza T la matrice associata a T è la matrice diagonale A che ha come entrate λ_j , ovvero $A = (a_{ij})$ con $a_{ij} = 0$ per $i \neq j$ e $a_{jj} = \lambda_j$ per $i, j = 1, \ldots, N$.

Teorema 2.2. (1) Se T possiede N autovalori distinti allora T è diagonalizzabile.

(2) T è diagonalizzabile se e solo se esistono r autovalori distinti $\lambda_1, \ldots, \lambda_r \in \mathbb{K}$ tali che

$$\sum_{i=1}^{r} dim V_{\lambda_i} = N.$$

(3) T è diagonalizzabile se e solo se esistono r autovalori distinti $\lambda_1, \ldots, \lambda_r \in \mathbb{K}$ tali che

$$V = V_{\lambda_1} \oplus \ldots \oplus V_{\lambda_r}$$
.

(4) T è diagonalizzabile se e solo se il polinomio caratteristico $p_T(x)$ si spezza nel prodotto di fattori lineari e la molteplicità geometrica di ogni autovalore eguaglia la molteplicità algebrica.

Dimostrazione. 1. Siano $\lambda_1,\ldots,\lambda_N$ gli N autovalori distinti. Allora $\dim V_{\lambda_j}\geq 1$. Per $j=1,\ldots,N$, sia $v_j\in V_{\lambda_j}$ un autovettore (non nullo) di T. Occorre e basta provare che $\{v_1,\ldots,v_N\}$ sono linearmente indipendenti. Ma questo segue subito dalla Proposizione 1.8. Infatti, supponiamo per assurdo $v_j=\sum_{i\neq j}a_iv_i$. Allora $v_j\in V_{\lambda_j}$ e d'altra parte $v_j\in \oplus_{i\neq j}V_{\lambda_i}$. Ma $V_{\lambda_j}\cap \oplus_{i\neq j}V_{\lambda_i}=\{0\}$ e pertanto $v_j=0$, contraddizione.

- 2. Se T è diagonalizzabile è chiaro che la somma delle dimensioni degli autospazi è N. Viceversa per ogni j si sceglie una base di V_{λ_j} indicata da $\{v_1^j,\ldots,v_{\beta_j}^j\}$ (dove $\beta_j=\dim V_{\lambda_j}$). Nuovamente per la Proposizione 1.8 i vettori $\{v_1^1,\ldots,v_{\beta_1}^1,\ldots,v_{\beta_r}^r\}$ sono linearmente indipendenti, ma dato che sono N sono una base di V e quindi T è diagonalizzabile.
 - 3. Segue dal punto 2. precedente e dalla Proposizione 1.8.
- 4. Se il polinomio caratteristico si spezza nel prodotto di fattori lineari distinti significa che esistono $r \geq 1$ autovalori distinti $\lambda_1, \ldots, \lambda_r$ tali che $\operatorname{ma}(\lambda_1) + \ldots + \operatorname{ma}(\lambda_r) = N$. Se $\operatorname{mg}(\lambda_j) = \operatorname{ma}(\lambda_j)$ per ogni j allora (per definizione di molteplicità geometrica) risulta $\sum \dim V_{\lambda_j} = N$ e si applica il punto 2. Il viceversa è ovvio.

Un criterio più fine per la diagonalizzazione è il seguente, la cui dimostrazione richiede però il teorema di decomposizione primaria ed è posticipata alla sezione successiva:

Teorema 2.3. T è diagonalizzabile se e solo se il polinomio minimo $\mu_T(x)$ si spezza nel prodotto di fattori lineari distinti, vale a dire se esistono $\lambda_1, \ldots, \lambda_r \in \mathbb{K}$ tutti distinti tali che

$$\mu_T(x) = (x - \lambda_1) \cdots (x - \lambda_r).$$

3. Il teorema di decomposizione primaria nel caso di spezzamento lineare del polinomio caratteristico

In questa sezione supponiamo V uno spazio vettoriale di dimensione N su $\mathbb{K}=\mathbb{R},\mathbb{C}$ e $T\in \mathrm{End}(V)$. Se $p_T(x)$ è il polinomio caratteristico di T supponiamo che si spezzi in fattori lineari:

$$p_T(x) = (x - \lambda_1)^{\alpha_1} \cdots (x - \lambda_r)^{\alpha_r}$$

con r, α_j numeri naturali strettamente maggiori di zero tali che $\alpha_1 + \ldots + \alpha_r = N$ e $\lambda_j \in \mathbb{C}$ con $\lambda_j \neq \lambda_i$ se $i \neq j$. Per la Proposizione 1.16 il polinomio minimo $\mu_T(x)$ è allora dato da

$$\mu_T(x) = (x - \lambda_1)^{\beta_1} \cdots (x - \lambda_r)^{\beta_r}$$

con $1 \leq \beta_i \leq \alpha_i$.

Osserviamo che se $\mathbb{K}=\mathbb{C}$ allora per il teorema fondamentale dell'algebra il polinomio caratteristico si spezza sempre in fattori lineari.

Definizione 3.1. L'autospazio generalizzato E_{λ_i} relativo all'autovalore λ_i di T è definito tramite

$$E_{\lambda_j} = \operatorname{Ker}(\lambda_j \operatorname{Id} - T)^{\alpha_j}.$$

Enunciamo adesso le proprietà basilari di E_{λ_i} :

Teorema 3.2 (Decomposizione Primaria). *Se il polinomio caratteristico di T si spezza in fattori lineari valgono le seguenti:*

- (1) E_{λ_i} è un sottospazio T-invariante.
- (2) $V_{\lambda_i} \subseteq E_{\lambda_i}$.
- (3) $V = E_{\lambda_1} \oplus \ldots \oplus E_{\lambda_r}$.
- (4) Il polinomio caratteristico di $T|_{E_i}$ è dato da $(x \lambda_j)^{\alpha_j}$.
- (5) $dim E_{\lambda_i} = \alpha_j$.
- (6) Il polinomio minimo di $T|_{E_{\lambda_i}}$ è dato da $(x-\lambda_j)^{\beta_j}$.

Dimostrazione. 1. Notiamo che

$$(\lambda_i \operatorname{Id} - T) \circ T = T \circ (\lambda_i \operatorname{Id} - T).$$

Pertanto iterando questa relazione si ottiene $(\lambda_j \mathrm{Id} - T)^s \circ T = T \circ (\lambda_j \mathrm{Id} - T)^s$ per ogni $s \geq 1$. Dunque se $v \in E_{\lambda_j}$ allora $(\lambda_j \mathrm{Id} - T)^s v = 0$ per qualche $1 \leq s \leq \alpha_j$. Pertanto per l'osservazione precedente si ha

$$(\lambda_i \operatorname{Id} - T)^s T v = T(\lambda_i \operatorname{Id} - T)^s v = T0 = 0,$$

e allora $Tv \in E_{\lambda_i}$.

2. Dato che $V_{\lambda_j} = \operatorname{Ker}(\lambda_j \operatorname{Id} - T) \subseteq \operatorname{Ker}(\lambda_j \operatorname{Id} - T)^s$ per ogni $s \ge 1$, allora $V_{\lambda_j} \subseteq E_{\lambda_j}$.

3.Proviamo che $E_{\lambda_1} + \ldots + E_{\lambda_r} = V$. Siano $p_j(x) = \prod_{i \neq j} (x - \lambda_i)^{\alpha_i}$ per $j = 1, \ldots, r$. I polinomi $p_j(x)$ per $j = 1, \ldots, r$ non hanno fattori comuni di grado positivo in $\mathbb{C}[x]$, ne segue che esistono $h_1(x), \ldots, h_r(x) \in \mathbb{C}[x]$ tali che

$$p_1(x)h_1(x) + \ldots + p_r(x)h_r(x) = 1.$$

Poniamo $V_j = p_j(T)V$. Dalla relazione precedente segue che $V = V_1 + \ldots + V_r$, dato che ogni $v \in V$ si può scrivere come

$$v = p_1(T)u_1 + \ldots + p_r(T)u_r,$$

con $u_j=h_j(T)v$. Dato che $p_T(T)v=0$ per il Teorema 1.13, ne segue che $V_j\subset \mathrm{Ker}(\lambda_j\mathrm{Id}-T)^{\alpha_j}=E_{\lambda_j}$ e pertanto $E_{\lambda_1}+\ldots+E_{\lambda_r}=V$. Proviamo adesso che $E_{\lambda_j}\cap(\sum_{i\neq j}E_{\lambda_i})=\{0\}$. Diamo la dimostrazione per j=1. Sia $0\neq v\in E_{\lambda_1}$ e supponiamo $v=u_2+\ldots+u_r$ con $u_j\in E_{\lambda_j}$. Allora $p_1(T)u_k=0$ per $k=2,\ldots,r$ e pertanto deve essere $p_1(T)v=0$. Per quanto visto in precedenza risulta

$$v = p_1(T)v_1 + \ldots + p_r(T)v_r,$$

dove $v_j=h_j(T)v$. Essendo però $p_j(T)v=0$ per $j\neq 1$ (dato che $v\in E_{\lambda_1}$), ne segue che $p_l(T)v_l=0$ e dunque $v=p_1(T)h_1(T)v=h_1(T)p_1(T)v=0$ contro l'ipotesi su v.

4. Per semplificare le notazioni poniamo $T_j = T|_{E_{\lambda_j}}$. Per i punti 2. e 3. risulta che l'unico autovalore di T_j su E_{λ_j} è λ_j . Pertanto il polinomio caratteristico di T_j è dato da $p_{T_j}(x) = (x-\lambda_j)^{s_j}$ per qualche $s_j \geq 1$, e $s_j = \dim E_{\lambda_j}$. Vogliamo provare che $s_j = \alpha_j$. Per farlo scegliamo una base $\{v_1,\ldots,v_N\}$ di V in modo tale che i primi s_1 vettori siano una base di E_{λ_1} , i successivi s_2 vettori siano un base di E_{λ_2} e così via (è possibile farlo per il punto 4.). Inoltre utilizzando il Corollario 1.12 su ciascun T_j si può assumere che tale base triangolarizzi T. In tale base la matrice A associata a T è una matrice triangolare superiore tale che $a_{ii} = \lambda_1$ per

 $i = 1, \dots, s_1, a_{ii} = \lambda_2 \text{ per } i = s_1 + 1, \dots s_1 + s_2, \text{ etc., e si ha}$

$$p_T(x) = \prod_{i=1}^{N} (x - a_{ii}).$$

Pertanto $s_j = \alpha_j$ per ogni j.

- 5. Segue subito dal punto 5. e dalla definizione di polinomio caratteristico.
- 6. Sia $\mu_j(x)$ il polinomio minimo di $T_j = T|_{E_{\lambda_j}}$. Per il punto 5. e per il Corollario 1.14 risulta che $\mu_j(x) = (x \lambda_j)^{s_j}$ per qualche $1 \le s_j \le \alpha_j$. Dato che $\mu_T(T)v = 0$ per ogni $v \in V$, ne segue che $\mu_j(x)$ divide $\mu_T(x)$ per $j = 1, \ldots, r$ e dunque $s_j \le \beta_j$. D'altra parte, poniamo $p(x) = \mu_1(x) \cdots \mu_r(x)$. Poichè ogni $v \in V$ si scrive come somma di $u_1 + \ldots + u_r$ per qualche $u_j \in E_{\lambda_j}$ risulta che p(T)v = 0 e dunque $\mu_T(x)$ divide p(x) e pertanto $s_j \ge \beta_j$, da cui la tesi.

Possiamo adesso dimostrare il Teorema 2.3.

Dimostrazione del Teorema 2.3. Se T è diagonalizzabile la matrice A associata a T in una base che diagonalizza T è una matrice diagonale. Un calcolo diretto mostra allora che il polinomio minimo di T si spezza nel prodotto di fattori lineari distinti. Viceversa, supponiamo che $\mu_T(x)$ sia il prodotto di fattori lineari distinti. Per il teorema di decomposizione primaria possiamo scegliere una base $\{v_1,\ldots,v_N\}$ di V in modo che i primi α_1 vettori formino una base di E_{λ_1} , i successivi α_2 vettori formino una base di E_{λ_2} , etc.. Vogliamo (e basta) provare che ogni v_j è un autovettore di T. Ma il polinomio minimo di $T|_{E_{\lambda_j}}$ è $(x-\lambda_j)$ per il teorema di decomposizione primaria. Dunque per ogni $v \in E_{\lambda_j}$ vale $(T-\lambda_j \mathrm{Id})v = 0$. In particolare ogni v_j è un autovettore, come volevasi.

4. DECOMPOSIZIONE SECONDARIA

In questa sezione ci preoccuperemo di trovare una decomposizione T-invariante di E_{λ_j} per $j=1,\ldots,r$, nelle ipotesi del Teorema 3.2. Fissiamo dunque λ_j . Per semplificare le notazioni poniamo $\lambda=\lambda_j$, $\alpha=\alpha_j$ e $\beta=\beta_j$. Per il Teorema 3.2, si ha che il polinomio caratteristico di $T|_{E_\lambda}$ è $p_j(x)=(x-\lambda)^\alpha$ e il suo polinomio minimo è $\mu_j(x)=(x-\lambda)^\beta$.

Definizione 4.1. Un sottospazio $W \subset E_{\lambda}$ si dice un sottospazio ciclico se esiste $w_0 \in W$ tale che ogni altro $w \in W$ è della forma $p(T)w_0$ per qualche $p(x) \in \mathbb{K}[x]$. Il vettore w_0 si dice un generatore ciclico di W.

Vale il seguente risultato:

Teorema 4.2 (Teorema di decomposizione secondaria). Esiste una decomposizione T-invariante di E_{λ} data da

$$(4.1) E_{\lambda} = E_{1}^{\lambda} \oplus \ldots \oplus E_{ma(\lambda)}^{\lambda},$$

tale che ogni E_j^{λ} è un sottospazio ciclico. Inoltre se $n_j = \dim E_j^{\lambda}$, e si ordinano in modo che $1 \leq n_{ma(\lambda)} \leq \ldots \leq n_1$, risulta che

(1)
$$n_1 = \beta$$
.

- (2) $(x-\lambda)^{n_j}$ è il polinomio minimo di $T|_{E_i^{\lambda}}$.
- (3) Ogni altra decomposizione T-invariante di E_{λ} in sottospazi ciclici ha $ma(\lambda)$ componenti e su ogni componente la restrizione di T ha polinomio minimo $(x \lambda)^{n_j}$ per $j = 1, \ldots, ma(\lambda)$.

Prima di dare la dimostrazione del Teorema 4.2, premettiamo alcune considerazioni:

Definizione 4.3. I polinomi $(x - \lambda)^{n_1}, \dots, (x - \lambda)^{n_1}$ si dicono i divisori elementari di T su E_{λ} .

Più in generale, facendo variare λ_j si ottiene una collezione $\{(x-\lambda_1)^{n_1^1},\dots,(x-\lambda_r)^{n_1^r}$ di polinomi che sono detti i *divisori elementari* di T.

Il Teorema 3.2 e il Teorema 4.2 affermano che i divisori elementari di T sono univocamente determinati e determinano univocamente T a meno di coniugio con automorfismi di V. In altri termini

Proposizione 4.4. Siano T, T' due endomorfismi di V tali che il polinomio caratteristico $p_T(x)$ di T e il polinomio caratteristico $p_{T'}(x)$ di T' si spezzano in fattori lineari. T e T' hanno gli stessi divisori elementari se e solo se esiste un automorfismo S di V tale che $T' = S \circ T \circ S^{-1}$.

Dimostrazione. Se T e T' sono coniugati allora hanno ovviamente gli stessi divisori elementari. Viceversa, applicando dai Teoremi 3.2 e 4.2 si ottengono due decomposizioni di V per T e T'. L'isomorfismo S si realizza allora mandano ogni generatore ciclico della T-decomposizione nel corrispondente generatore ciclico della T'-decomposizione. I dettagli sono lasciati come esercizio.

Nota 4.5. Il Teorema 4.2 non afferma gli spazi E_j^{λ} sono univocamente determinati, visto che, come sarà chiaro dalla dimostrazione, dipendono dal generatore ciclico (che non è unico).

Procediamo adesso alla dimostrazione del Teorema 4.2. La dimostrazione è costruttiva e fornisce un metodo pratico per trovare la decomposizione secondaria e più in particolare sarà utilizzata per trovare la forma di Jordan di T.

Dimostrazione del Teorema 4.2. Se $\beta=1$ allora T è diagonalizzabile su E_{λ} per il Teorema 2.3 e non c'è niente da dimostrare (ogni E_{j}^{λ} è generato da un autovettore di T). Supponiamo $\beta>1$. Dato che $\mu_{j}(T)=(x-\lambda)^{\beta}$, esiste $v\neq 0$ tale che $(T-\lambda \mathrm{Id})^{\beta-1}(v)\neq 0$. Osserviamo che $(T-\lambda \mathrm{Id})^{\beta-1}(E_{\lambda})\subset V_{\lambda}$ poichè $(T-\lambda \mathrm{Id})^{\beta}(E_{\lambda})=\{0\}$. Dunque costruiamo la seguente catena di sottospazi:

$$\{0\} \subset \operatorname{Im}(T - \lambda \operatorname{Id})^{\beta - 1}(E_{\lambda}) \cap V_{\lambda} \subseteq \operatorname{Im}(T - \lambda \operatorname{Id})^{\beta - 2}(E_{\lambda}) \cap V_{\lambda} \subseteq \ldots \subseteq V_{\lambda}.$$

I. Posto $k_{\beta-1}=\dim \mathrm{Im}(T-\lambda \mathrm{Id})^{\beta-1}(E_\lambda)\cap V_\lambda$, prendiamo una base $u_{1,\beta-1}^{\beta-1},\dots,u_{k_{\beta-1},\beta-1}^{\beta-1}$ di $\mathrm{Im}(T-\lambda \mathrm{Id})^{\beta-1}(E_\lambda)\cap V_\lambda$. Poniamo $S=(T-\lambda \mathrm{Id})$. Dato che ogni $u_{l,\beta-1}^{\beta-1}$ è immagine di $(T-\lambda \mathrm{Id})^{\beta-1}v=S^{\beta-1}v$ per qualche $v\in E_\lambda$ (che non sarà unico dato che ogni altra combinazione del tipo v+u con $u\in V_\lambda$ risolve lo stesso sistema) si possono trovare $u_{1,\beta-1}^0,\dots,u_{\beta-1,\beta-1}^0\in E_\lambda$ tali che per $l=1,\dots,k_{\beta-1}$

$$u_{l,\beta-1}^{\beta-1} = S^{\beta-1}(u_{l,\beta-1}^0).$$

Poniamo $u^j_{l,\beta-1}=S^j(u^0_{l,\beta-1})$ per $l=1,\ldots,k_{\beta-1}$ e $j=1,\ldots,\beta-2$. Si pone allora

$$E_l^{\lambda} = \langle u_{l,\beta-1}^0, \dots, u_{l,\beta-1}^{\beta-1} \rangle$$

per $l = 1, ..., k_{\beta - 1}$.

 (A_I) Si dimostra che dim $E_l^{\lambda} = \beta$ per $l = 1, \dots, k_{\beta-1}$ e $E_i^{\lambda} \cap E_j^{\lambda} = \{0\}$ per $i \neq j$.

Posticipiamo la dimostrazione di (A_I) e procediamo nella costruzione degli spazi E_i^{λ} . Poniamo

 $k_i = \dim \mathrm{Im}(T-\lambda \mathrm{Id})^i(E_\lambda) \cap V_\lambda \text{ per } i = 0, \ldots, \beta-2.$ II. Se $k_{\beta-2} > k_{\beta-1}$ allora esistono dei vettori $u_{k_{\beta-1}+1,\beta-1}^{\beta-2}, \ldots, u_{k_{\beta-2},\beta-1}^{\beta-2}$ tutti non nulli, tali che $u_{1,\beta-1}^{\beta-1}, \ldots, u_{k_{\beta-1},\beta-1}^{\beta-1}, u_{k_{\beta-1}+1,\beta-1}^{\beta-2}, \ldots, u_{k_{\beta-2},\beta-1}^{\beta-2}$ sono una base di $\mathrm{Im}(T-\lambda \mathrm{Id})^{\beta-2}(E_\lambda) \cap V_\lambda$. Come prima si possono trovare dei vettori $u_{k_{\beta-1}+1,\beta-2}^0, \ldots, u_{k_{\beta-2},\beta-2}^0 \in E_\lambda$ tali che per l=1

 $k_{\beta-1}+1,\ldots,k_{\beta-2}$

$$u_{l,\beta-2}^{\beta-2} = S^{\beta-2}(u_{l,\beta-2}^0).$$

Poniamo $u_{l,\beta-2}^j=T^j(u_{l,\beta-2}^0)$ per $l=k_{\beta-1}+1,\ldots,k_{\beta-2}$ e $j=1,\ldots,\beta-2$. Si pone allora

$$E_l^{\lambda} = \langle u_{l,\beta-2}^0, \dots, u_{l,\beta-2}^{\beta-2} \rangle$$

per $l = k_{\beta-1} + 1, \dots, k_{\beta-2}$ e $j = 1, \dots, \beta - 2$.

 $(A_{II}) \text{ Si dimostra che } \dim E_l^\lambda = \beta - 2 \text{ per } l = k_{\beta-1}+1, \ldots, k_{\beta-2} \text{ e } E_i^\lambda \cap E_j^\lambda = \{0\} \text{ per } i \neq j.$ La dimostrazione di (A_{II}) è posticipata. Se $k_{\beta-1}=k_{\beta-2}$ si salta il punto II e si passa la punto III seguente:

III. Se $k_{\beta-3} > k_{\beta-2}$ si ragiona come nel punto II costruendo $k_{\beta-3} - k_{\beta-2}$ catene di vettori $u_{l,\beta-3}^{\jmath}$ per $j=0,\ldots,\beta-3$ e $l=k_{\beta-2}+1,\ldots,k_{\beta_3}$. Si definiscono poi gli spazi

$$E_l^{\lambda} = \langle u_{l,\beta-3}^0, \dots, u_{l,\beta-3}^{\beta-3} \rangle$$

per $l=k_{eta-2}+1,\ldots,k_{eta-3}$ e $j=1,\ldots,eta-3$. Si prova poi

 (A_{III}) Si dimostra che dim $E_l^{\lambda} = \beta - 3$ per $l = k_{\beta-2} + 1, \dots, k_{\beta-3}$ e $E_i^{\lambda} \cap E_j^{\lambda} = \{0\}$ per $i \neq j$.

Se $k_{\beta-3}=k_{\beta-2}$ si salta il punto III. Si passa poi al punto IV ripetendo il punto II se $k_{\beta-4}>$ $k_{\beta-3}$. Si prosegue in questo modo poi fino ad arrivare a confrontare $k_{\beta-(\beta-1)}$ e $k_0=\mathrm{ma}(\lambda)$.

Si nota che ogni $\dim(E_j^{\lambda} \cap V_{\lambda}) = 1$ e pertanto gli E_j^{λ} sono $\operatorname{ma}(\lambda)$. Inoltre se $v \in E_{\lambda}$ risulta $(T - \lambda \operatorname{Id})^{\beta - l}(v) = 0$ per qualche $l = 1, \ldots, \beta - 1$. Allora v appartiene allo spazio generato da $u_{\beta-1,1}^{\beta-l},\ldots,u_{\beta-1,k_{\beta-1}}^{\hat{\beta}-\hat{l}},u_{\beta-l,k_{\beta-l-1}}^{0},\ldots,u_{\beta-l,k_{\beta-l}}^{0}$ che è contenuto dunque nella somma degli E_{j}^{λ} .

Proviamo adesso (A_I) , ..., (A_x) . Per prima cosa, posto $u = u_{i,\beta-l}^0$ si vuole provare che $u, Su, \ldots, S^{\beta-l}u$ sono linearmente indipendenti (qui $l=1,\ldots,\beta$ e $j=k_{\beta-l-1},\ldots,k_{\beta-l}$). Infatti se $a_0u + \dots + a_{\beta-l}S^{\beta-l}u = 0$ allora applicando $S^{\beta-l}$ si ottiene $a_0S^{\beta-l}u = 0$ ed essendo $S^{\beta-l}u \neq 0$ per costruzione, risulta $a_0 = 0$. Si applica poi $S^{\beta-l+1}$ e si ottiene $a_1 = 0$ e cosi via fino a $a_{\beta-l}=0$. Questo dimostra che le dimensioni dei vari E_i^{λ} sono quelle volute. Proviamo poi che $E_i \cap E_j = \{0\}$ per $i \neq j$. Supponiamo che $E_i = \langle u, Su, \dots, S^{\beta-a-1}u \rangle$ e $E_j = \langle v, Sv, \dots, S^{\beta-b-1}v \rangle$ per certi $0 \leq a, b \leq \beta$, con $S^{\beta-a-1}u$ e $S^{\beta-b-1}v$ linearmente indipendenti. Possiamo anche suppore $a \leq b$. Si vede subito che $u, \ldots, S^{b-a-1}u$ non possono

appartenere a E_j poiché $S^{\beta-b}(S^ju)=0$ solo se $j\geq b-a$. Poniamo $w=S^{\beta-a}u$ e $E_i'=\langle w,\ldots,S^{\beta-b-1}w\rangle$. Basta allora dimostrare che $S^jw\not\in E_j$ per $j=0,\ldots,\beta-b-1$. Sia $S^jw=a_0v+\ldots+a_{\beta-b-1}S^{\beta-b-1}v$. Applicando $S^{\beta-b-1}$ a tale identità si ottiene $S^{j+\beta-b-1}w=a_0S^{\beta-b-1}v$, da cui $a_0=0$ se j>0 poichè $S^{j+\beta-b-1}w=0$ e se j=0 nuovamente $a_0=0$ poichè $S^{\beta-b-1}w=S^{\beta-a-1}u$ e $S^{\beta-b-1}v$ sono linearmente indipendenti. Si procede così applicando successivamente $S^{\beta-b-2},\ldots,S$, Id per ottenere $a_1=\ldots=a_{\beta-b-1}=0$.

Per terminare la dimostrazione del teorema occorre verificare (1), (2) e (3). Ma (1) e (2) sono immediati dalla definizione di E_i^{λ} . Per la (3), sia $E_{\lambda} = W_1 \oplus \ldots \oplus W_m$ una decomposizione T-invariante in sottospazi ciclici. Sia w_1 un generatore ciclico di W_1 . Allora esiste $1 \leq s \leq s$ β tale che $(T - \lambda \operatorname{Id})^s w_1 = 0$ ma $(T - \lambda \operatorname{Id})^{s-1} w_1 \neq 0$. Vogliamo dimostrare che $W_1 =$ $\langle w_1,\ldots,S^{s-1}w_1\rangle$. Sia $w\in W_1$. Allora $w=p(T)w_1$ per qualche $p(x)\in \mathbb{K}[x]$. È facile verificare che allora esiste $q(x) \in \mathbb{K}[x]$ tale che $w = q(S)w_1$. Infatti se $w = a_0Tw_1$ allora $w = a_0 S w_1 + \lambda w_1$. Per induzione supponiamo sia vero per tutti i polinomi fino al grado m-1. Allora dato che $S^m = (T - \lambda \operatorname{Id})^m = T^m + h(T)$ con degh(x) < m e dunque $T^m = S^m - h(T)$, se $w = p(T)w_1 = a_m T^m w_1 + \ldots + a_0 w_1$ si ha $w = a_m S^m w_1 + g(T)w_1$ con g(x) di grado minore di m, e per induzione si ha il risultato. Dunque w_1 è un generatore S-ciclico di W_1 . Dunque per ogni $w \in W_1$ esiste un polinomio q(x) di grado m tale che $w = q(S)w_1 = a_0w_1 + \ldots + a_mS^mw_1$. Ma poichè $S^j w_1 = 0$ per $j \geq s$ si ha $w = a_0 w_1 + \ldots + a_{s-1} S^{s-1} w_1$. Ragionando come in precedenza quando abbiamo trovato la dimensione degli E_i^{λ} , si vede che $w_1, Sw_1, \ldots, S^{s-1}w_1$ sono linearmente indipendenti. Si noti che il polinomio minimo di T ristretto a W_1 è $(x-\lambda)^s$ e dunque la dimensione di W_1 coincide con il grado del polinomio minimo di T ristretto a W_1 . Si ripete il ragionamento per tutti i W_i . Si nota che per ogni W_j risulta dim $(W_j \cap V_\lambda) = 1$ e quindi risulta $m = ma(\lambda)$. Ordiniamo in modo decrescente i W_i in base alla loro dimensione. Sia η_k il numero di spazi W_i di dimensione k. Occorre e basta provare che gli η_k sono univocamente determinati da S. Dalla base di W_i si vede subito che

$$\dim(W_j\cap S^l(E_\lambda))=0\ \ \text{se}\ l\geq \dim W_j,$$

mentre

$$\dim(W_j \cap S^l(E_\lambda)) = \dim W_j - l \ \text{ se } l < \dim W_j.$$

Pertanto ogni spazio di dimensione $\beta-k$ (con $k=0,\ldots,\beta$) contribuisce con $(\beta-k)-(\beta-j)=j-k$ vettori linearmente indipendenti ad una base di $\mathrm{Im}(S^{\beta-j})$ (dove 0< j< k). Pertanto si ha, per $0\leq j<\beta$

dim Im
$$S^{\beta-j} = j\eta_{\beta} + (j-1)\eta_{\beta-1} + \ldots + \eta_{j+1}$$
.

Da qui si vede subito che η_{β} è determinato solo da S, dunque anche $\eta_{\beta-1}$ è determinato solo da S e così via tutti gli altri.

5. La forma di Jordan

Definizione 5.1. Una matrice A quadrata $m \times m$ si dice un blocco di Jordan di dimensione m relativo a $\lambda \in \mathbb{C}$ se $a_{ii} = \lambda$, $a_{i+1,i} = 1$ per $i = 1, \ldots, m$, e tutte le altre entrate $a_{ij} = 0$ se $i \neq j, j+1$. Una matrice $N \times N$ J si dice matrice di Jordan se è una matrice a blocchi, in cui ogni blocco è di Jordan.

Definizione 5.2. Sia $T \in \text{End}(V)$. Si dice che T è riducibile in forma di Jordan se esiste una base (detta base di Jordan per T) di V in cui la matrice associata a T sia una matrice di Jordan.

Teorema 5.3 (Esistenza della forma di Jordan). Sia $T \in End(V)$. L'endomorfismo T è riducibile in forma di Jordan se e solo se il suo polinomio caratteristico $p_T(x)$ si spezza nel prodotto di fattori lineari.

Dimostrazione. Se T è riducibile in forma di Jordan basta calcolare $p_T(x)$ per la matrice associata a T nella base di Jordan per T e verificare che è prodotto di fattori lineari. Viceversa si applica il Teorema 3.2 e il Teorema 4.2. Dato che ogni $E_k^{\lambda_j}$ è ciclico, per ogni j, k si sceglie un generatore ciclico v_{jk} tale che, $(T - \lambda_j \operatorname{Id})^{n_{jk}} v_{jk} = 0$ (dove $n_{jk} = \dim E_k^{\lambda_j}$). Si pone allora $e_l^{jk} = (T - \lambda_j \operatorname{Id})^{n_{jk}-l} v_{jk}$, per $l = 1, \ldots, n_{jk}$. Per la scelta fatta risulta che $\{e_l^{jk}\}$, ordinata in modo che e_{l+1}^{jk} segua e_l^{jk} per ogni j, k, è una base di V, e si verifica subito che la matrice associata a T in tale base è una matrice di Jordan.

Teorema 5.4 (Unicità della forma di Jordan). La forma di Jordan di $T \in End(V)$ quando esiste è unica a meno di coniugio. In altri termini, se A è una matrice di Jordan di T in una data base di V e B è una matrice di Jordan di T in un altra base, allora esiste una matrice C invertibile tale che $B = C^{-1}AC$.

Dimostrazione. Notiamo che se A è una matrice di Jordan associata a T in una qualche base, allora lo spazio V ha una decomposizione in sottospazi T-invarianti ciclici (su ognuno di tali sottospazi T è dato da un blocco di Jordan di A). Si vede subito che ognuno di tali sottospazi è contenuto in un (unico) autospazio generalizzato di T e dunque l'unicità segue dal Teorema 4.2.

Per il teorema precedente è possibile parlare di "numero dei blocchi di Jordan di T di una certa dimensione relativi ad un autovalore". In effetti, come si vede dalla dimostrazione dei due precedenti teoremi, T ha un blocco di dimensione k relativo all'autovalore λ_i se e solo se nella decomposizione spettrale di V relativa a T esiste $E_s^{\lambda_j}$ di dimensione k. Poniamo

 η_k^j = numero di blocchi di Jordan di dimensione k relativi a λ_i .

Teorema 5.5 (Proprietà della forma di Jordan). Sia $T \in End(V)$ tale che

$$p_T(x) = (x - \lambda_1)^{\alpha_1} \cdots (x - \lambda_r)^{\alpha_r}$$

e

$$\mu_T(x) = (x - \lambda_1)^{\beta_1} \cdots (x - \lambda_r)^{\beta_r}.$$

Allora

- (1) $\alpha_j = \eta_1^j + 2\eta_2^j + \ldots + \beta_j \eta_{\beta_j}^j$.
- (3) $\eta_1^{j} + \ldots + \eta_{\beta_j}^{j} = mg(\lambda_j) = dimV_{\lambda_j}$.
- (4) $\dim[Im(T \lambda_{j}Id)^{\beta_{j}-k} \cap E_{\lambda_{j}}] = \sum_{l=0}^{k-1} (k-l)\eta_{\beta_{j}-l}^{j} \ per \ k = 1, \dots, \beta_{j} 1.$ (5) $\eta_{\beta_{j}-k}^{j} = \dim[Im(T \lambda_{j}Id)^{\beta_{j}-k+1} \cap V_{\lambda_{j}}] \dim[Im(T \lambda_{j}Id)^{\beta_{j}-k} \cap V_{\lambda_{j}}].$

(6)
$$\eta_k^j = 2 \dim \ker(T - \lambda_j Id)^k - \dim \ker(T - \lambda_j Id)^{k+1} - \dim \ker(T - \lambda_j Id)^{k-1}.$$

Dimostrazione. I punti dall'1 al 5 si ricavano direttamente dalla dimostrazione del Teorema 3.2 e 4.2 e dalle osservazioni precedenti. Per quanto riguarda il punto 6., si nota che

$$\begin{split} \dim[\mathrm{Im}(T-\lambda_{j}\mathrm{Id})^{\beta_{j}-k}\cap E_{\lambda_{j}}] &= \mathrm{rk}(T-\lambda_{j}\mathrm{Id})^{\beta_{j}-k}|_{E_{\lambda_{j}}} \\ &= \alpha_{j} - \dim\mathrm{Ker}(T-\lambda_{j}\mathrm{Id})^{\beta_{j}-k}|_{E_{\lambda_{j}}} = \alpha_{j} - \dim\mathrm{Ker}(T-\lambda_{j}\mathrm{Id})^{\beta_{j}-k}, \end{split}$$

poichè l'operatore $(T-\lambda_j\mathrm{Id})^{\beta_j-k}$ è invertibile su $\oplus_{i\neq j}E_{\lambda_i}$. Dalla formula 4., tenendo conto che $\alpha_j=\dim\mathrm{Ker}(T-\lambda_j\mathrm{Id})^{\beta_j}$ si ha la formula.