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FIRST ORDER EXTENSIONS OF HOLOMORPHIC FOLIATIONS
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Dedicated to professor Tatsuo Suwa for his60th birthday

INTRODUCTION

The theory of holomorphic foliations has been studied since the time of Poincaré [15] and
Dulac [9]. One of the main question was that of the existence of separatrices through a singular
point for a (germ of) one-dimensional foliation inC2. It has been known since the early years
of the past century that “generically” the answer is affirmative. But a final positive answer was
obtained only in 1982 by Camacho and Sad [8] who exploited an “index theorem” to reduce
the non-generic cases to a known ones. The work of Camacho and Sad gave rise to many
studies on those “indices (or residues) theorems”. After preliminary works of Lins Neto [14]
and Suwa [17], a general comprehension of this phenomenon, together with general principles,
is, at least in the opinion of the author, due to Lehmann and Suwa (see,e.g., [12], [13] and
[18]) who understood that the Camacho-Sad index theorem and its further generalizations were
essentially examples of localizations of characteristic classes of a particular vector bundle due to
the existence of a so-called “holomorphic action” on such a bundle outside some closed subsets.

Referring the reader to [18] or to section 3 for a precise definition of holomorphic actions,
here we content ourselves to state more precisely Camacho-Sad’s type theorems in terms of
the Lehmann-Suwa theory. LetM be a complex manifold of dimensionn and S ⊂ M a
submanifold of dimensionm. SupposeF is a holomorphic foliation onM of dimensionr for
which S is invariant. Then, outside the singular locus ofF (see section 1),F holomorphically
acts on the normal bundleNS of S in M , and there exists a “special connection” forNS so that,
as a consequence of theBott vanishing theorem(see section 3), the associated characteristic
forms of degree greater than2(m − r) vanish on such an open subset ofS. The Čech-de
Rham cohomology allows then to localize the characteristic classes ofNS of degree greater than
2(m − r) near the singular locus ofF . If S is compact the Poincaré and Alexander dualities
give then the corresponding localization at homology level, that is, the residues theorem (see
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section 4). A similar localization, calledvariation, is done for the virtual bundleTM |S − F
(see [18]).

If the foliation F were defined only onS one indeed could interpret residues theorems as
obstructions to the existence of an extension ofF to a foliation ofM (or at least of an open
neighborhood ofS in M ).

On the other hand, in recent works on discrete holomorphic dynamics by Abate, Tovena
and the author (see [1], [6], [5] and [2]) it turned out that a Camacho-Sad type theorem holds
(generically) even whenS ⊂ M is the fixed points set of a holomorphic self-mapf of M .
In such a case indeed it is possible to define a natural holomorphic one-dimensional foliation
on S and from this a holomorphic action onNS outside some “singular points” off and then
apply the Lehmann-Suwa machinery to produce residues theorems (which, as in the foliations
case, can be used to get information about the dynamics off nearS). However we remark
that the natural holomorphic foliation onS coming fromf is not extendible toM , and thus the
holomorphic action is not coming from a holomorphic foliation ofM havingS invariant, but
only from a sort of “first order extension” of such a foliation.

In the present paper, using the sheaves language, we propose a general framework which in
particular encompasses the Camacho-Sad and variation type theorems coming both from holo-
morphic foliations and from holomorphic mappings. In other terms the idea we try to formalize
and generalize in here is that a holomorphic action on the normal bundle of a submanifoldS of
M is only determined by its first jet extension along the tangential directions toS.

To be more precise, letΘS be the holomorphic tangent sheaf ofS and letE ⊂ ΘS be a
coherent subsheaf. Given a foliationF of S we define afirst order tangency extension with
respect toE to be a family of local extensions ofF in M which glue together in a suitable way,
that is, in such a way that two different extensions of the same element coincide up to order
two in the “normal directions” toE (see Definition 2.5). AssumeF andE are locally free and
let F,E be the associated bundle. IfE is compatible withF—which is always the case ifE is
involutive andF ⊂ E, (see Definition 3.2)—andF has a first order tangency extension with
respect toE , then there is a natural holomorphic action ofF on TM |S/E (see Theorem 3.3).
Thus one has localization of characteristic classes, that is residues theorems. The caseS is
singular (but satisfies some generic suitable hypothesis) is also included in the theory.

Aside the already cited examples of first order tangency extensions provided by restrictions
of ambient foliations and by holomorphic self-maps of the ambient, our picture includes the
caseS is foliated by a foliationE whose leaves are themselves foliated by another foliationF
coming from the restriction of an ambient foliation (see Corollary 3.5).

The plan of the paper is the following. In the first section we recall the basics about foliations.
In the second section we do some commutative algebra in order to obtain a natural definition of
“first order tangency with respect to some sheaf” and extensions and provide some examples.
In section3 we discuss holomorphic actions and show how a first order tangency extension with
respect to a compatible subbundle gives one. In the last section we recall briefly the Lehmann-
Suwa theory and determine the residues theorem for our setting.
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1. HOLOMORPHIC FOLIATIONS BASICS

Let M be a connected complex manifold of dimensionn. As a matter of notations,C∞ will
denote the sheaf ofC∞ functions onM andOM the sheaf of holomorphic functions onM . For
a bundleE onM , we indicate byC∞(E) the sheaf ofC∞ sections ofE onM , while we reserve
the italic symbolE to the sheaf ofholomorphicsections ofE.

Let ΘM denote the sheaf of germs of holomorphic vector fields onM , that is the sheaf
of holomorphic sections of the holomorphic vector bundleTM of M . Let F be a coherent
subsheaf ofΘM . We say thatF is involutive if [Fp,Fp] ⊂ Fp for anyp ∈ M . LetQ = ΘM/F
be the quotient sheaf. Let

Sing(F) = {p ∈ M : Qp is notOM,p-free}.
Definition 1.1. We call an involutive coherent subsheafF ⊂ ΘM a (singular) holomorphic
foliation of M . Thedimensionof F , denoted by dimF , is the rank ofFp for some (and hence
any)p ∈ M \ Sing(F). The closed complex subvariety Sing(F) ⊂ M is called thesingular
locusof F .

Remark1.2. (1) In [3] a foliation F is required also to befull , i.e., if for any open set
U ⊂ M and sections ∈ Γ(ΘM , U) such thatsp ∈ Fp for any p ∈ U \ Sing(F) it
follows that actuallys ∈ Γ(F , U). A foliation (defined as we did) which is full is
sometimes calledreduced. There is a canonical way to reduce a non-reduced foliation
([3], [16]). Note also that if a coherent subsheafF ⊂ ΘM is full and involutive on
M \ Sing(F) then it is actually a foliation.

(2) If Qp isOM,p-free so isFp. On the contraryFp might beOM,p-free whileQp might not
(for instance consider the foliationF on M generated by a single holomorphic vector
field v. ThenF isOM -free butQ is notOM -free on the zero set ofv.)

(3) At eachp ∈ M the foliationF naturally defines aC-vector subspaceFp of TpM . It
is easy to see that dimCFp = dimF if and only if p 6∈ Sing(F). ThereforeF =
∪

p∈M\Sing(F)
Fp is a vector subbundle ofTM onM \Sing(F), whose associated sheaf

of holomorphic sections isF . Thus a nonsingular foliation is exactly an involutive
distribution ofTM .

(4) Let (z1, . . . , zn) be local coordinates nearp ∈ M and assumeF is generated there by
X1, . . . , Xs. ThenXj =

∑n
l=1 ajl

∂
∂zl

for someajl ∈ OM . Let A = (ajl). By the
previous remark it follows thatp ∈ Sing(F) if and only if rankA(p) < dimF .

LetS ⊂ M be am-dimensional globally irreducible complex subvariety ofM . LetIS ⊂ OM

denote the sheaf of germs of holomorphic functions identically vanishing onS. Thus

(1.1) 0 → IS → OM → OS → 0

is an exact sequence of sheaves. One can define the sheafΘS of germs of holomorphic vector
fields onS as follows. LetΩM be the sheaf of germs of holomorphic1-forms onM . One first
defines the sheafΩS of holomorphic forms onS by means of the following exact sequence of
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OS-modules:

IS/I2
S → ΩM ⊗OS → ΩS → 0,

whereIS/I2
S 3 [f ] 7→ df ⊗1 ∈ ΩM ⊗OS. Applying the functorHomOS

(·,OS) to the previous
exact sequence and denoting byΘS = HomOS

(ΩS,OS) andNS = HomOS
(IS/I2

S,OS) we
have the exact sequence

0 → ΘS → ΘM ⊗OS → NS.

If S ′ = S \ Sing(S) thenΘS|S′ is the sheaf of germs of sections of the holomorphic tangent
vector bundleTS ′. SimilarlyNS coincides onS ′ with the sheaf of sections of the normal bundle
NS′ = TM |S′/TS ′.

Definition 1.3. We say that a coherent subsheafF ⊂ ΘS is afoliationof S if F is a holomorphic
foliation of S ′ = S \ Sing(S).

As we shall see, the behavior ofF on Sing(S) is not important and for our aim one could
define the foliation only on the nonsingular part ofS.

2. FIRST ORDER TANGENCY EXTENSIONS OF FOLIATIONS

Let S ⊂ M be a complex subvariety ofM of dimensionm < n and codimensionk = n−m.
Let S ′ = S \ Sing(S). Let

$ : ΘM ≈ ΘM ⊗OM
OM −→ ΘM ⊗OM

OS,

$ : v = v ⊗ 1 7→ v ⊗ 1.

Note that$ is a surjective morphism ofOM -modules butΘM ⊗OM
OS has a natural structure

ofOS-module. As aOS-module onS ′ one can regardΘM ⊗OM
OS as the sheaf of holomorphic

sections of the restriction of the holomorphic tangent spaceTM to S.
One can also think ofΘS as aOM -module with the restriction of scalars coming from the

surjectionOM → OS. Let E be a coherentOS-submodule ofΘS of rank s ≤ m (possibly
E = ΘS). We have the following commuting diagram ofOM -modules with exact rows and
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columns:

(2.1)

0x
0 −−−→ E γ−−−→ ΘM ⊗OM

OS −−−→ NE −−−→ 0

$

x
ΘM

j

x
0 −−−→ ΘM ⊗OM

I2
S −−−→ ΘM ⊗OM

IS
ψ−−−→ ΘM ⊗OM

IS/I2
S −−−→ 0x

0

We start with the following lemma:

Lemma 2.1. The following morphism ofOM -modules

ΘM ⊗OM
IS/I2

S −→ ΘM ⊗OM
IS/I2

S ⊗OM
OS,

v ⊗ [f ] 7→ v ⊗ [f ]⊗ 1
(2.2)

is an isomorphism.

Proof. Let T := ΘM ⊗OM
IS/I2

S. Apply the functorT ⊗OM
· to the exact sequence (1.1). Thus

we obtain the following exact sequence

(2.3) T ⊗OM
IS

A−−−→ T ⊗OM
OM

B−−−→ T ⊗OM
OS −−−→ 0.

HenceB is an isomorphism if and only if ImA = 0. Denote byY : IS → OM . Let w =
v ⊗ [f ]⊗ g ∈ ΘM ⊗OM

IS/I2
S ⊗OM

IS. Then

A(w) = v ⊗ [f ]⊗ Y (g) = v ⊗ [gf ]⊗ 1 = 0,

and ImB = 0 has wanted. ¤

By Lemma 2.1 we can well define the followingOM -morphism:

(2.4) χE : E ⊗OM
IS/I2

S → ΘM ⊗OM
IS/I2

S.

The mapχE is given by composing the map (γ is given by (2.1))

(2.5) γ ⊗ id : E ⊗OM
IS/I2

S −→ (ΘM ⊗OM
OS)⊗OM

IS/I2
S,

with the inverse of the isomorphism given by Lemma 2.1.

Proposition 2.2. If S is locally complete intersection then the morphism(2.4) is injective.
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Proof. We have only to show that the map (2.5) is injective. IfA,B areOS-modules and
we indicate byA′,B′ theOM -modules defined byA,B by restriction of scalars then (asOM -
modules)

(A⊗OS
B)′ ≈ A′ ⊗OM

B′.
SinceS is locally complete intersection thenIS/I2

S is locally OS-free. Thus we have the
following commuting diagram ofOM -modules with exact rows and columns:

(2.6)

ΘM ⊗OM
OS ⊗OS

IS/I2
S ΘM ⊗OM

OS ⊗OM
IS/I2

Sx
xγ⊗id

E ⊗OS
IS/I2

S E ⊗OM
IS/I2

Sx
0

ThereforeχE is injective. ¤
Definition 2.3. Let v ∈ ΘM . We say thatv is tangentially vanishing at the first order with
respect toE if $(v) = 0 and, ifw ∈ ΘM ⊗OM

IS is the (only) element such thatj(w) = v, then

ψ(w) ∈ χE
(E ⊗OM

IS/I2
S

)
,

where$, j andψ are defined in (2.1) andχE is defined in (2.4).

Remark2.4. Let p ∈ S ′ and let{z1, . . . , zn} be local coordinates centered atp such thatS ′ =
{zm+1 = . . . = zn = 0}. Assume thatX1, . . . , Xt ∈ ΘS generateE nearp and letXi =∑m

j=1 aij
∂

∂zj
. Let v ∈ ΘM,p. Thenv is tangentially vanishing at the first order with respect toE

if and only if there exist̃aij, fi, gk ∈ OM , i = 1, . . . , t, j = 1, . . . , m, k = 1, . . . , n such that
ãij|S = aij, fi ∈ IS, gi ∈ I2

S and

v =
∑

i=1,...,t
j=1,...,m

fiãij
∂

∂zj

+
n∑

i=1

gi
∂

∂zi

.

Now letF ⊂ ΘS be a dimensionr foliation of S. Let {Uα} be a covering ofS made of open
subsets ofM . For anyα let Gα ⊂ ΘM |Uα be an involutive subsheaf ofΘM restricted toUα.
Thus we have the following commuting diagram ofOM -modules with exact rows and columns:

(2.7)

0 −−−→ Gα
ια−−−→ ΘM |Uα

$α

y
y$

Gα ⊗OM
OS

κα−−−→ ΘM |Uα ⊗OM
OSy

y
0 0
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Note thatκα is not injective in general.

Definition 2.5. We say that{Uα,Gα} is afirst order tangency extension ofF with respect toE
if

(1) κα(Gα ⊗OM
OS) = F|Uα∩S for anyα.

(2) Let p ∈ Uα ∩ Uβ ∩ S. If fα ∈ Gα,p andfβ ∈ Gβ,p are such that$(ια(fα)) = $(ιβ(fβ))
thenια(fα)− ιβ(fβ) is tangentially vanishing at the first order with respect toE .

Remark2.6. (1) We remark explicitly that condition 2. must hold also forα = β.
(2) Assumep ∈ S ∩ Uα. Let v ∈ Fp and letṽ ∈ Gα such that$(ια(ṽ)) = v. In the sequel

we refer to such ãv as anextensionof v and sometimes we simply writẽv|S = v.

Let p ∈ S0 and let{z1, . . . , zn} be local coordinates centered atp such thatS ′ = {zm+1 =
. . . = zn = 0}. Assume thatX1, . . . , Xt ∈ ΘS generateE at p. Let Xi =

∑m
j=1 aij

∂
∂zj

,

with aij ∈ OS. Let ãij ∈ OM be such that̃aij|S = aij and setX̃i =
∑

ãij
∂

∂zj
. Let v =∑m

j=1 hj
∂

∂zj
∈ F for hj ∈ OS. Then condition (1) means that there existα andṽ ∈ Gα given

by ṽ =
∑n

l=1 h̃l
∂

∂zl
with h̃j ∈ OM such that

h̃j(z1, . . . , zm, 0, . . . , 0) ≡ hj(z1, . . . , zm), j = 1, . . . , m

h̃j(z1, . . . , zm, 0, . . . , 0) ≡ 0, j = m + 1, . . . , n.
(2.8)

Also, for any other extensioñw ∈ Gβ of v (possiblyα = β) it follows that

ṽ − w̃ =
t∑

l=

alX̃l +
n∑

l=1

bl
∂

∂zl

with al(z1, . . . , zm, 0 . . . , 0) ≡ 0 for l = 1, . . . , t andbl(z1, . . . , zn) =
∑

m+1≤j,k≤n b̃l
jkzjzk for

l = 1, . . . , n, b̃l
jk ∈ OM .

Before providing some examples of first order tangency extension, we state the following
simple fact.

Proposition 2.7. Let M be a complex manifold andS ⊂ M a subvariety. LetE , E ′ ⊂ ΘS be
two coherentOS-submodules ofΘS. If F ⊂ ΘS is a holomorphic foliation ofS which has a
first order tangency extension with respect toE then it has also a first order tangency extension
with respect toE ′.

Proposition 2.7 means in particular that each time a foliationF of S has a first order tan-
gency extension with respect to some submodule ofΘS then it has indeed a first order tangency
extension with respect toΘS.

If S is an invariant set of a holomorphic foliationF onM then the foliationF|S of S defined
as the image ofF ⊗OM

OS into ΘS, is a foliation inS. It is not obvious—and indeed it is not
true in general—that extension is the inverse operation of restriction. That is to sayF|S might
not haveF as a first order tangency extension with respect toF|S (or with respect toΘS) as the
following example shows.
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Example 2.8. Consider the foliationF of M = C3 with coordinates(z1, z2, z3) generated
by X1 = z1

∂
∂z1

andX2 = ∂
∂z2

. Let S = {z1 = 0}. ThenS is invariant byF andF|S is
generated (onOS) by X2. HoweverX2 has the following two extensions inF : v1 = X2 and
v2 = X1 + X2. But v1 − v2 ∈ ΘM comes from ∂

∂z1
⊗ z1 ∈ ΘM ⊗OM

IS and thus projects to
∂

∂z1
⊗ [z1] ∈ ΘM⊗OM

IS/I2
S. Since the image ofF|S⊗IS/I2

S into ΘM⊗OM
IS/I2

S is generated
by ∂

∂z2
⊗ [z1] thenF is not a first order tangency extension ofF|S with respect toF|S or with

respect toΘS. Note however thatS = SingF , and the foliation onM generated by∂
∂z2

provides
a first order tangency extension ofF|S with respect toF|S and with respect toΘS.

The problem with the previous example is that the mapF ⊗OM
OS → ΘM ⊗OM

OS is not
injective on Sing(F). However whenF is locally free everything works. Indeed we have

Proposition 2.9. LetF ⊂ ΘM be a holomorphic foliation ofM . Let S ⊂ M be a complex
subvariety ofM which is invariant byF . LetF|S be the image ofF ⊗OM

OS into ΘS. Let
S0 := S \ Sing(F). ThenF is a first order tangency extension ofF|S0 with respect toF|S0.

Proof. OnS0 the sheafF is locallyOM -free. Let

0 → A→ B → C → 0

be an exact sequence ofOM -modules onS0. SupposeF ⊗OM
B → ΘM ⊗OM

B is injective.
Thus we have the following commuting diagram (onS0):

(2.9)

0 0x
x

0
(4)−−−→ F ⊗OM

C −−−→ ΘM ⊗OM
Cx

x
0 −−−→ F ⊗OM

B −−−→ ΘM ⊗OM
B −−−→ NB −−−→ 0x

x
x

0
(2)−−−→ F ⊗OM

A −−−→ ΘM ⊗OM
A −−−→ NA −−−→ 0

(1)

x
x

x(3)

0 0 0

HereNA (and similarlyNB) is defined to be the quotient of the modules on the same row.
The exactness of the diagram is clear except, maybe, at points(1), (2), (3) and(4). Exactness
at point(1) comes from beingF anOM -free and thusOM -flat module. From this and from
a simple diagram chasing, exactness at point(2) follows. Once we have this, we can define a
natural injective map at(3) and using this, another diagram chasing gives exactness at point(4).
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Now letA = IS, B = OM andC = OS. The previous argument shows that

(2.10) 0 → F ⊗OM
IS → ΘM ⊗OM

IS

and

(2.11) 0 → F ⊗OM
OS → ΘM ⊗OM

OS

are exact. In particular by (2.10) we can repeat the argument of (2.9) forA = I2
S, B = IS and

C = IS/I2
S to get the exact sequence

(2.12) 0 → F ⊗OM
IS/I2

S → ΘM ⊗OM
IS/I2

S.

Thus if v ∈ F is such thatv ⊗ 1 = 0 in ΘM ⊗ OS thenv ⊗ 1 = 0 in F ⊗ OS by (2.11).
Therefore there existsw ⊗ f ∈ F ⊗ IS which lifts v ⊗ 1. Thanks to (2.12) it follows that
v ⊗ [f ] ∈ F ⊗ IS/I2

S ⊂ ΘM ⊗ IS/I2
S. Therefore any two extensions of the same element

of F|S differ by an element which is inF ⊗ IS/I2
S. Arguing as in Lemma 2.1 it follows that

F ⊗ IS/I2
S ≈ F ⊗ OS ⊗ IS/I2

S = F|S ⊗ IS/I2
S and thus the difference of two extensions of

the same element ofF|S is tangentially vanishing at the first order with respect toF|S. ¤
Example 2.10. If S has codimension one inM and it is the fixed points set of a holomorphic
self-mapf of M which is tangential(or nondegenerate) to S or if S is comfortably embedded
into M (see [2], [5]) then it is possible to define a natural one-dimensional foliation onS which
has a natural first order tangency extension (but not a true extension) with respect toΘS and (in
some cases) with respect toF on S ′. For the reader convenience we briefly sketch here such a
construction. Letp ∈ S. First forH ∈ OM,p we defineTp(H) := max{l ∈ N : H ◦ f −H ∈
I l

S}. Then we defineνf (p) = min{Tp(H) : H ∈ OM,p}. If S is globally irreducible (as we
suppose), thenνf (p) is independent ofp ∈ S and we simply denote it byνf . Then on each local
chart{U, (z1, . . . zn)} we consider the (local) section

n∑
j=1

[zj ◦ f − zj]⊗ ∂

∂zj

∈ (IS/I2
S)⊗νf ⊗OS

(ΘM ⊗OM
OS),

where[zj ◦ f − zj] is the class ofzj ◦ f − zj in Iνf

S /Iνf+1
S ' (IS/I2

S)⊗νf . It turns out that
those local sections glue together to form a global sectionXf of (IS/I2

S)⊗νf ⊗OS
(ΘM ⊗OM

OS). We say thatf is tangential(or nondegeneratein the terminology of [1], [6], [7]) if ac-
tually Xf is a section of(IS/I2

S)⊗νf ⊗OS
ΘS (note that beingIS/I2

S a rank oneOS-free
module there is a natural injection of(IS/I2

S)⊗νf ⊗OS
ΘS into (IS/I2

S)⊗νf ⊗OS
(ΘM ⊗OM

OS)). Also, if f is non-tangential butS satisfies some cohomological condition (for instance
if S is the zero section of a line bundleM on S) then there are natural projections from
(IS/I2

S)⊗νf ⊗OS
(ΘM ⊗OM

OS) to (IS/I2
S)⊗νf ⊗OS

ΘS and still one can considerXf as a
section of(IS/I2

S)⊗νf ⊗OS
ΘS. In the latter case we say thatS is comfortably embedded

into M (see [2]). Now, sinceIS/I2
S is OS-free, there is a natural injective morphism from

(IS/I2
S)⊗νf ⊗OS

ΘS toHomOS
(HomOS

((IS/I2
S)⊗νf ,OS), ΘS). Thus iff is tangential orS is

comfortably embedded intoM one has a natural one dimensional foliationF of S given by the
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image of the morphism fromN⊗νf

S = HomOS
((IS/I2

S)⊗νf ,OS) to ΘS induced byXf . There
is a first order tangency extension ofF with respect toΘS restricted to the nonsingular part
S ′ = S \ Sing(S). For instance, in casef is tangential and{Uα, (z1, . . . , zn)} is a local coor-
dinates system such thatS ′ ∩ U = {zn = 0} we letGα be the sheaf ofOM -modules generated
by

∑
(zj ◦ f − zj)/z

νf
n

∂
∂zj

. Then one can show that{Uα,Gα} is a first order tangency extension
of F with respect toΘS. Similarly for the caseS is comfortably embedded (see [2]). Moreover
in caseνf > 1, S is comfortably embedded andf is tangential there is a first order tangency
extension ofF with respect toF itself (seeTheorem 5.3in [2]).

3. HOLOMORPHIC ACTIONS FOR FIRST ORDER TANGENCY EXTENSIONS

Let M be an-dimensional complex manifold and letTM be its holomorphic tangent bundle.
First we recall the definition of holomorphic action (see,e.g., [18], p. 75).

Definition 3.1. Let F be an involutive subbundle ofTM . A holomorphic actionof F on a
holomorphic vector bundleL overM is aC-bilinear mapθ : C∞(F )× C∞(L) → C∞(L) such
that

(1) θ([u, v], s) = θ(u, θ(v, s))− θ(v, θ(u, s)) for u, v ∈ C∞(F ) ands ∈ C∞(L);
(2) θ(hu, s) = hθ(u, s) for h ∈ C∞, u ∈ C∞(F ) ands ∈ C∞(L);
(3) θ(u, hs) = hθ(u, s) + u(h)s for h ∈ C∞, u ∈ C∞(F ) ands ∈ C∞(L);
(4) θ(u, s) ∈ L for u ∈ F ands ∈ L.

Holomorphic actions were introduced by Bott [4] in case of a holomorphic vector field. We
need another definition:

Definition 3.2. Let S be a complex manifold. LetL, F ⊂ TS be two vector bundles. We say
thatL is compatiblewith F if [L, F ] ⊆ L.

Note thatTS is compatible with any of its subbundle and each involutive bundle is compatible
with itself. Moreover generally ifL is involutive andF ⊂ L thenL is compatible withF .

Theorem 3.3. Let M be an-dimensional complex manifold andS ⊂ M a (nonsingular) sub-
manifold of dimensionm < n. LetF be ar-dimensional nonsingular holomorphic foliation on
S and letF ⊂ TS be the associated subbundle. LetL ⊂ TS be a subbundle compatible withF
and letL be the sheaf of its holomorphic sections. IfF admits a first order tangency extension
with respect toL then there exists a holomorphic action ofF onNL := TM |S/L.

Proof. We want to define a holomorphic actionθ : C∞(F ) × C∞(NL) → C∞(NL). Since
F ⊗OS

C∞ = C∞(F ), it is enough to defineθ for u ∈ F ands ∈ C∞(NL). Let ũ ∈ Gα be
an extension ofu for someα (see Definition 2.5). Let̃s ∈ C∞(TM) be such thatπ(s̃|S) = s,
whereπ : TM |S → NL is the canonical projection. Define

θ(u, s) = π([ũ, s̃]|S),

where the Lie bracket[·, ·] has obviously to be thought of inΘM . First we show thatθ is well
defined, that is, it is independent of the extensionss̃ andũ chosen. Let̃s′ ∈ C∞(NL) be such
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thatπ(s̃′|S) = s. Sinceũ|S ∈ F and(s̃− s̃′)|S ∈ C∞(L), and since[L, F ] ⊂ L, it follows that
[ũ, s̃′− s̃]|S ∈ C∞(L) and thus it goes to0 once applyingπ, henceθ is independent of̃s. As for
the independence from the extensionũ, let ũ′ be another such an extension foru. By definition
ũ − ũ′ =

∑
gjvj +

∑
hjwj with gj|S ≡ 0 andvj ∈ ΘM such thatvj|S ∈ L, andhj ∈ I2

S and
wj ∈ ΘM . Thus

[ũ− ũ′, s̃]|S = [
∑

gjvj +
∑

hjwj, s̃]|S
= −(

∑
s̃(gj)vj +

∑
s̃(hj)wj)|S = −

∑
s̃(gj)|Svj|S ∈ C∞(L).

Applying π even this term goes to zero and thusθ is well defined.
It is straightforward to see thatθ satisfies properties (2) to (4) of Definition 3.1. As for

property (1), letu, v ∈ F and letũ, ṽ be local extensions ofu andv respectively, belonging
to the sameGα. Since this latter is involutive by hypothesis, it is easy to see that[ũ, ṽ] ∈ Gα

(Lie bracket made inΘM ) is a local extension of[u, v] (where this time the Lie bracket as to be
thought inΘS). Therefore by the Jacobi identity

θ(u, θ(v, s)) = π([[ũ, ṽ], s̃]|S) = π([ũ, [ṽ, s̃]]|S)− π([ṽ, [ũ, s̃]]|S).

Now
θ(u, θ(v, s)) = θ(u, π([ṽ, s̃]|S)) = π([ũ, w̃]|S),

wherew̃ ∈ C∞(TM) is any vector field such thatπ(w̃|S) = π([ṽ, s̃]|S). Since we can certainly
takew̃ = [ṽ, s̃], and similarly we can argue forθ(v, θ(u, s)), it follows that even property (4) is
satisfied. ¤
Remark3.4. (1) In caseL = TS we call the holomorphic action given by Theorem 3.3 a

Camacho-Sadaction for the first example of such an action in the casen = 2, m = 1
andF is the restriction of a holomorphic foliation onM , is due to Camacho and Sad [8].

(2) In caseL = F we call the holomorphic action given by Theorem 3.3 aLehmann-Suwa
action (see [13] and [11]).

(3) The bundleL in Theorem 3.3 needs not to be involutive.

Aside the previous examples, a new typical setting where Theorem 3.3 applies is provided by
the following situation.

Corollary 3.5. LetM be a complex manifold of dimensionn. LetS ⊂ M be a submanifold of
dimensionm < n. Assume thatL ⊂ ΘS is a nonsingular foliation of dimensions of S. Let
F ⊂ ΘM be a nonsingular foliation ofM of dimensionr < s leaving invariant the leaves ofL,
i.e., F|S ⊂ L. Let L, F ⊂ TS denote the bundle associated toL andF|S respectively. Then
there exists a holomorphic action ofF onNL := TM |S/L.

Proof. The bundleL is compatible withF . Moreover, sinceF|S has a first order tangency
extension with respect toF|S (see Proposition 2.9) andFS ⊂ E then, by Proposition 2.7,
Theorem 3.3 applies and one has a holomorphic action ofF onTM |S/L. ¤
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4. RESIDUESTHEOREMS

Existence of holomorphic actions on a holomorphic bundle are obstructed by characteristic
classes. Indeed we have

Theorem 4.1 (Bott vanishing theorem). Let S be a complex manifold of dimensionm. Let
F ⊂ TS be an involutive subbundle of rankr. Suppose thatF holomorphically acts on the
holomorphic subbundleL ⊂ TS. Then there exists a connection∇ for L such that for any
homogeneous symmetric polynomialϕ of degreed > m− r it follows

ϕ(∇) = 0.

In particular any characteristic class ofL of degree> m− r is zero.

For the reader convenience we sketch here a proof of this result and refer to [18],p. 76, or [3]
for details.

Proof of Theorem 4.1.Let θ : C∞(F )× C∞(L) → C∞(L) denote the holomorphic action ofF
on L. We letC ⊗ TS = F ⊕ F ′ ⊕ T 0,1S for someC∞ complementF ′ of F . Then we define
the connection∇ for L such that:

∇vs = θ(v, s) for v ∈ C∞(F ), s ∈ C∞(L),

∇vs = ∂vs for v ∈ C∞(T 0,1S), s ∈ C∞(L).

Thus from property(1) in Definition 3.1 and by the very definition of∇ it follows that ifK is the
curvature of∇ thenK(x, y) = 0 whenever eitherx, y ∈ C∞(F ), orx ∈ C∞(F ), y ∈ C∞(T 0,1S)
or x, y ∈ C∞(T 0,1S). Therefore in a basis which respects the decompositionC ⊗ TS∗ =
F ∗⊕ F ′∗⊕ (T 0,1S)∗ it follows that the matrix ofK is made of forms which belong to the ideal
generated by the basis ofF ′∗, from which the result follows. ¤

Now we recall briefly the general Lehmann-Suwa philosophy for localization of characteristic
classes (see,e.g., [18]). AssumeS is a subvariety of dimensionm of the complexn-dimensional
manifoldM . SupposeW̃ is aC∞ complex vector bundle onM . Let S0 be an open subset of
S \ Sing(S) and assumeW = W̃ |S0 is holomorphic. Moreover suppose that for some reason
(like existence of holomorphic actions) there exists a connection∇ for W on S0 such that
ϕ(∇) = 0 for any homogeneous symmetric polynomial of a given degreed. Then we denote by
Ũ0 a tubular neighborhood ofS0 in M . Also we denote bỹU1 a regular neighborhood ofΣ :=
S \ S0 (we are assuming such a regular neighborhood does exist, which is always the case ifΣ
is an analytic set, as in our setting). For the forthcoming considerations we may assume without
loss of generality that̃U0∪Ũ1 is a regular neighborhood ofS in M . Let∇0 be the pull back tõU0

of ∇. Let∇1 be any connection for̃W on Ũ1. Let ϕ be a homogenoeus symmetric polynomial
of degreed. Let ϕ(∇0,∇1) denote the Bott difference form ofϕ(∇0), ϕ(∇1) relative to the
coveringŨ0, Ũ1. The cocycle

(ϕ(∇0), ϕ(∇1), ϕ(∇0,∇1))
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represents in thěCech-de Rham cohomology relative to{Ũ0, Ũ1} the classϕ(W̃ ) ∈ H2d(S,C).
Sinceϕ(∇0) = 0 it follows that actually the cocycle represents a class in the relative coho-
mology H2d(S, S \ Σ,C) which we indicate byϕ(W̃ , Σ). If Σ is compact, the Alexander
homomorphismA : H2d(S, S \ Σ,C) → H2m−2d(Σ,C) (see,e.g., [18], VI.4) sendsϕ(W̃ , Σ)
to a “residual class”

Res(W̃ , Σ) = A(ϕ(W̃ , Σ)) ∈ H2m−2d(Σ,C).

Now, letΣ = ∪Σλ be the decomposition in connected components ofΣ and letiλ : H∗(Σλ,C) →
H∗(S,C) be the morphism coming from the inclusionΣλ ↪→ S. if S is compact then by the
Poincaŕe homomorphismP : H∗(S,C) → H2m−∗(S,C) we have the following “residue theo-
rem” in H2n−2d(S,C): ∑

λ

iλRes(W̃ , Σλ) = [S] ∩ ϕ(W̃ ).

In caseW is aC∞M -module such thatW ⊗OM
OS is locally free onS0, one can argue similarly

as before, considering a finite resolution ofW⊗OM
AM (whereAM is the sheaf of real analytic

functions onM ) made of real analytic locally free sheaves (see [3] or [18],p. 184).
Now we go back to our situation. LetF ⊂ ΘS be a holomorphic foliation ofS of dimension

r. LetL ⊂ ΘS be a coherent sheaf and denote by

Sing(L) = {p ∈ S \ Sing(S) : ΘS,p/Lp is not locally OS,p-free}.
Moreover let

Σ(S,F ,L) := Sing(S) ∪ Sing(F) ∪ Sing(L),

and∪λΣλ = Σ(S,F ,L) be the connected components decomposition. LetF, L ⊂ TS0 be the
holomorphic bundle associated respectively toF andL onS0. Assume the following:

(a) E is compatible withF andF has a first order tangency extension with respect toL
onS0.

(b) There exists aC∞M -modulesQ such thatj(Q ⊗OM
OS) = ΘM ⊗OM

OS/L, where
j : Q⊗OM

OS → ΘM ⊗OM
OS.

The previous recalled Lehmann-Suwa theory give us:

Theorem 4.2. Let ϕ be a homogeneous symmetric polynomial of degreed > m − r. In the
above situation, for anyλ such thatΣλ is compact, there exists a residue Resϕ(F ,Q; Σλ) ∈
H2m−2d(Σλ,C) determined only by the local behavior of the first order tangency extension of
F nearΣλ.

If moreoverS is compact then
∑

λ

iλResϕ(F ,Q; Σλ) = [S] ∩ ϕ(Q) in H2m−2d(S,C).

Some final remarks are in order.
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(1) The previous condition (b) means that the sheafΘM ⊗OS/L has some relation with the
ambientM . Actually one needs only an extension ofTM |S − L to M in the K-theory.
In particular ifS is nonsingular andL is locally free onS then one can takeQ to be the
C∞-sheaf of sections of the pull back ofTM |S/L to a tubular neighborhood ofS. In
the singular cases the existence ofQ depends onL. For instance ifL is the restriction
to S of an ambient foliation thanQ naturally exists. IfL = ΘS thenQ exists in caseS
is a so-calledstrongly locally complete intersection(see [13]).

(2) As remarked several times at various places of the paper, the existence of a foliationF
extending to the first order tangency which acts onL needs only to have a vanishing of
certain forms onS0. Therefore Theorem 4.2 would apply even ifF were defined only
outside Sing(S) ∪ Sing(L).

(3) The explicit calculation of residues is a very important and usually very involved part of
a useful residue theorem. However, we do not pursue this task here, and refer the reader
to [18], [13], [2] for effective calculations. With regard to the previous comment we
only remark that ifF does not exist on Sing(S) ∪ Sing(L) than it could be impossible
(or at least, not yet done) to calculate explicitly the residue.
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