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INTRODUCTION

The theory of holomorphic foliations has been studied since the time of Péifitaf and
Dulac [9]. One of the main question was that of the existence of separatrices through a singular
point for a (germ of) one-dimensional foliation @F. It has been known since the early years
of the past century that “generically” the answer is affirmative. But a final positive answer was
obtained only in 1982 by Camacho and Sad [8] who exploited an “index theorem” to reduce
the non-generic cases to a known ones. The work of Camacho and Sad gave rise to many
studies on those “indices (or residues) theorems”. After preliminary works of Lins Neto [14]
and Suwa [17], a general comprehension of this phenomenon, together with general principles,
is, at least in the opinion of the author, due to Lehmann and Suwa ésge}12], [13] and
[18]) who understood that the Camacho-Sad index theorem and its further generalizations were
essentially examples of localizations of characteristic classes of a particular vector bundle due to
the existence of a so-called “holomorphic action” on such a bundle outside some closed subsets.
Referring the reader to [18] or to section 3 for a precise definition of holomorphic actions,
here we content ourselves to state more precisely Camacho-Sad’s type theorems in terms of
the Lehmann-Suwa theory. Lét/ be a complex manifold of dimensiomandS Cc M a
submanifold of dimensiom. SupposeF is a holomorphic foliation o/ of dimensionr for
which S is invariant. Then, outside the singular locusf{see section 1)F holomorphically
acts on the normal bundlgs of S in M, and there exists a “special connection” fég so that,
as a consequence of tiott vanishing theorer(see section 3), the associated characteristic
forms of degree greater tha&im — r) vanish on such an open subsetsf The Cech-de
Rham cohomology allows then to localize the characteristic class€s of degree greater than
2(m — r) near the singular locus of. If S is compact the Poincarand Alexander dualities
give then the corresponding localization at homology level, that is, the residues theorem (see
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section 4). A similar localization, calledariation is done for the virtual bundl&M|s — F
(see [18]).

If the foliation F were defined only ort one indeed could interpret residues theorems as
obstructions to the existence of an extensiorFofo a foliation of M (or at least of an open
neighborhood of in M).

On the other hand, in recent works on discrete holomorphic dynamics by Abate, Tovena
and the author (see [1], [6], [5] and [2]) it turned out that a Camacho-Sad type theorem holds
(generically) even whets C M is the fixed points set of a holomorphic self-mapf M.

In such a case indeed it is possible to define a natural holomorphic one-dimensional foliation
on S and from this a holomorphic action d¥s outside some “singular points” gf and then

apply the Lehmann-Suwa machinery to produce residues theorems (which, as in the foliations
case, can be used to get information about the dynamigsraarS). However we remark

that the natural holomorphic foliation aghcoming fromf is not extendible td//, and thus the
holomorphic action is not coming from a holomorphic foliationMdf having S invariant, but

only from a sort of “first order extension” of such a foliation.

In the present paper, using the sheaves language, we propose a general framework which in
particular encompasses the Camacho-Sad and variation type theorems coming both from holo-
morphic foliations and from holomorphic mappings. In other terms the idea we try to formalize
and generalize in here is that a holomorphic action on the normal bundle of a submaiufold
M is only determined by its first jet extension along the tangential directiofs to

To be more precise, léds be the holomorphic tangent sheaf fand let€ C Og be a
coherent subsheaf. Given a foliatighof S we define afirst order tangency extension with
respect t& to be a family of local extensions ¢f in M which glue together in a suitable way,
that is, in such a way that two different extensions of the same element coincide up to order
two in the “normal directions” t& (see Definition 2.5). Assumg& and€ are locally free and
let ', E' be the associated bundle.Afis compatible withF"—which is always the case f is
involutive andF’ C F, (see Definition 3.2)—andF has a first order tangency extension with
respect taf, then there is a natural holomorphic actionfoon 7'M |s/E (see Theorem 3.3).

Thus one has localization of characteristic classes, that is residues theorems. THReisase
singular (but satisfies some generic suitable hypothesis) is also included in the theory.

Aside the already cited examples of first order tangency extensions provided by restrictions
of ambient foliations and by holomorphic self-maps of the ambient, our picture includes the
caseS is foliated by a foliation€ whose leaves are themselves foliated by another foliakion
coming from the restriction of an ambient foliation (see Corollary 3.5).

The plan of the paper is the following. In the first section we recall the basics about foliations.
In the second section we do some commutative algebra in order to obtain a natural definition of
“first order tangency with respect to some sheaf” and extensions and provide some examples.
In section3 we discuss holomorphic actions and show how a first order tangency extension with
respect to a compatible subbundle gives one. In the last section we recall briefly the Lehmann-
Suwa theory and determine the residues theorem for our setting.
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1. HOLOMORPHIC FOLIATIONS BASICS

Let M be a connected complex manifold of dimensianAs a matter of notationg;> will
denote the sheaf @f*° functions onM/ andO,, the sheaf of holomorphic functions dd. For
a bundleF on M, we indicate byC>( E) the sheaf of”> sections ot on M, while we reserve
the italic symbok to the sheaf oholomorphicsections ofF.

Let ©,, denote the sheaf of germs of holomorphic vector fieldsidnthat is the sheaf
of holomorphic sections of the holomorphic vector bundl&/ of M. Let F be a coherent
subsheaf 0B,,. We say thatF is involutiveif [F,, F,] C F, foranyp € M. LetQ = O,,/F
be the quotient sheaf. Let

SingF) = {p € M : Q,is notO,, ,-free}.

Definition 1.1. We call an involutive coherent subshe&f C ©,, a (singular) holomorphic
foliation of M. Thedimensionof F, denoted by dinF, is the rank ofF, for some (and hence
any)p € M \ SingF). The closed complex subvariety S{if§) C M is called thesingular

locusof F.

Remarkl.2 (1) In [3] a foliation F is required also to béull, i.e. if for any open set
U C M and sections € I'(©,,U) such thats, € F, foranyp € U \ SingF) it
follows that actuallys € T'(F,U). A foliation (defined as we did) which is full is
sometimes callededuced There is a canonical way to reduce a non-reduced foliation
([3], [16]). Note also that if a coherent subshe&afCc ©,, is full and involutive on
M \ Sing(F) then it is actually a foliation.

(2) If Q,is Oy ,-free so isF,. On the contraryF, might beO,, ,-free while Q,, might not
(for instance consider the foliatiaf on M generated by a single holomorphic vector
field v. ThenF is O,-free butQ is notO,,-free on the zero set af)

(3) At eachp € M the foliation F naturally defines &-vector subspacé), of 7,M. It
is easy to see that dind}, = dimF if and only if p ¢ SingF). ThereforeF =
U, e Sings) F'» 18 @ vector subbundle af M on M \ Sing(F), whose associated sheaf
of holomorphic sections is. Thus a nonsingular foliation is exactly an involutive
distribution of T'M.

(4) Let (z,...,2,) be local coordinates nearc M and assumé- is generated there by
Xi,..., X, ThenX; = 31 a;5- for someay € Oy. Let A = (ay). By the
previous remark it follows thai € Sing(F) if and only if rankA(p) < dimF.

LetS C M be am-dimensional globally irreducible complex subvariety\déf LetZs C Oy,
denote the sheaf of germs of holomorphic functions identically vanishing dinus

(1.2) 0—Zg— Oy — 05— 0

is an exact sequence of sheaves. One can define the@hedfgerms of holomorphic vector
fields onS as follows. Let(2,, be the sheaf of germs of holomorphigdorms on). One first
defines the shedds of holomorphic forms ort by means of the following exact sequence of
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Og-modules:
Ts/T: — Qu ® Og — Qg — 0,

whereZs /72 > [f] — df ® 1 € Qy ® Og. Applying the functorHomy, (-, Os) to the previous
exact sequence and denoting ®y = Homy, (s, Os) andNs = Homo, (Zs/Z2, Os) we
have the exact sequence

0—>@S—>@M®OS—>NS.

If S" =S\ SingS) thenBg|y is the sheaf of germs of sections of the holomorphic tangent
vector bundlel’s’. Similarly Ng coincides or” with the sheaf of sections of the normal bundle
Ng = TM]|g/TS'.

Definition 1.3. We say that a coherent subshgat- O is afoliationof S if F is a holomorphic
foliation of S’ = S\ Sing(.9).

As we shall see, the behavior &f on Sing.S) is not important and for our aim one could
define the foliation only on the nonsingular partsf

2. FIRST ORDER TANGENCY EXTENSIONS OF FOLIATIONS

LetS C M be a complex subvariety @il of dimensionn < n and codimensiok = n—m.
LetS” = S\ Sing(S). Let

w:O) ~ Oy ®o,, O — Ou ®o,, Os,
wv=0v1—ov®l.

Note thatw is a surjective morphism aP,,-modules bub,,; ®0,, Os has a natural structure
of Og-module. As a80s-module onS’ one can regar®,; ®o,, Os as the sheaf of holomorphic
sections of the restriction of the holomorphic tangent sfgateto S.

One can also think o as aO,,-module with the restriction of scalars coming from the
surjectionO,; — Og. Let & be a coherenOg-submodule 0f©g of ranks < m (possibly
£ = Bg). We have the following commuting diagram ©6%,;,-modules with exact rows and



EXTENSIONS OF FOLIATIONS 5

columns:
0
0 — E 2, Oy ®o,, O —— Ne — 0
(2.1) Oum
J

O —_— 6M ®O]\/[ Ig' — @M ®O[w IS L) @M ®O]\/I IS/Ig - O

T

0
We start with the following lemma:

Lemma 2.1. The following morphism a®,,-modules

2.2) On ®o,, z-S/Ig — Op Ro,, Z-S/z-g‘ ®oy Os,
' VR [flmve[flel
is an isomorphism.

Proof. Let7 := O, ®o0,, Zs/Z2. Apply the functorZ ®o,, - to the exact sequence (1.1). Thus
we obtain the following exact sequence

(23) T®(9M Ts L T(X)@M O L T®@M 0O —— 0.

HenceB is an isomorphism if and only if Id = 0. Denote byY : Zg — Oy. Letw =
VR [f]® g€ On Ro,, Zs/TE ®0,, s. Then

Alw)=ve [floY(g) =ve[gfl®1=0,
and ImB = 0 has wanted. OJ
By Lemma 2.1 we can well define the followird@),,-morphism:
(2.4) X° 1 € ®oy, Is/Ts — Ou Qo Ls/Té.
The mapy¢ is given by composing the map {s given by (2.1))
(2.5) v@id: € ®o,, Zs/Ti — (Om ®o,, Os) ®o,, Ls/Ls,
with the inverse of the isomorphism given by Lemma 2.1.

Proposition 2.2. If S is locally complete intersection then the morphi@w)is injective.
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Proof. We have only to show that the map (2.5) is injective. Af5 are Os-modules and
we indicate byA’, B’ the O,,-modules defined by, B by restriction of scalars then (&3,,-
modules)

(A®oy B) ~ A ®0,, B'.
Since S is locally complete intersection thefy/Z2 is locally Os-free. Thus we have the
following commuting diagram of),,-modules with exact rows and columns:

Or R0y, Os @0 Is/Ts ——= On Qo,, Os ®o,, Ls/Ls
w T
(2.6) £ ®o, Is/T? S £ ®o,, Is/T?
0
Thereforey? is injective. O

Definition 2.3. Let v € ©,,. We say that is tangentially vanishing at the first order with
respect tcf if w(v) = 0and, ifw € O ®p,, Zs is the (only) element such thgtw) = v, then

¢(w) S Xg (8 Qo IS/IE) )
wherew, j andy are defined in (2.1) ang® is defined in (2.4).

Remark2.4. Letp € S and let{zy, ..., z,} be local coordinates centeredzasuch thatS’ =
{Zm+1 = ... = z, = 0}. Assume thatXy,..., X; € ©g generate€ nearp and letX; =
Z;”Zl aija%_. Letv € ©,,. Thenv is tangentially vanishing at the first order with respecfto
if and only if there exist;;, fi,gr € Oy, i =1,...,¢, 5 =1,...,m, k =1,...,n such that
dij‘S = Q4 fz € Zg, g; € Ig« and

Now let F C ©g be a dimensiom foliation of S. Let{U, } be a covering ob made of open
subsets of\/. For anya let G, C O]y, be an involutive subsheaf &, restricted tol,,.
Thus we have the following commuting diagram®j,-modules with exact rows and columns:

0 —— G e Oumlu.
(27) Yo Ko, Og e @M|Ua X0 Os

| |

0 0
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Note thatx,, is not injective in general.

Definition 2.5. We say tha{U,,, G, } is afirst order tangency extension &fwith respect t&
if
(1) ka(Ga ®0,, Os) = Flu.ns for anya.
(2) Letpe U, NUgNS. If f, € G, p andfz € Gg,, are such thato(t.(f,)) = @ (¢5(f3))
then,(f.) — t3(fs) is tangentially vanishing at the first order with respecf to

Remark2.6. (1) We remark explicitly that condition 2. must hold also toe 5.
(2) Assumep € SNU,. Letv € F, and leto € G, such thato(.,(?)) = v. In the sequel
we refer to such @ as anextensiorof v and sometimes we simply writgg = v.

Letp € S° and let{z, ..., z,} be local coordinates centeredasuch thatS’ = {z,,,, =
. = z, = 0}. Assume thatX;,..., X; € Og generatef atp. Let X; = Z;":l aijﬁ,
J

with a;; € Os. Leta; € Oy be such thati;|s = a;; and setX; = Y a;+2. Letv =
> hjz= € F for h; € Og. Then condition (1) means that there exisand € G, given
by o =31, ﬁla% with 2; € Oy such that

hi(ze, ooy 2ms 0, 0 = hi(21, oo 2m), G=1,....m
2.8) ~1(1 ) 3(1' ), J
hi(z1,...,2m,0,...,0) =0, j=m+1,...,n.

Also, for any other extensiom € G of v (possiblya = ) it follows that

t ~ n 8
V—w = a X+ bj—
lg 1<\ lz:;lazl

with a(z1,. .., 20, 0...,0) = 0for L = 1,... .t andby(z1,. .., 20) = 3 1<jsen Vinzize fOT
l: 17...,71,52-]6 GO]\/].

Before providing some examples of first order tangency extension, we state the following
simple fact.

Proposition 2.7. Let M be a complex manifold anfl C M a subvariety. Let, &’ C ©g be
two coherentOg-submodules 0bs. If F C Oy is a holomorphic foliation ofS which has a
first order tangency extension with respecttthen it has also a first order tangency extension
with respect t&€”.

Proposition 2.7 means in particular that each time a foliatoof S has a first order tan-
gency extension with respect to some submodule othen it has indeed a first order tangency
extension with respect ©5.

If S is an invariant set of a holomorphic foliatiofion A then the foliationF|s of S defined
as the image of ®p,, Os into Og, is a foliation inS. It is not obvious—and indeed it is not
true in general—that extension is the inverse operation of restriction. That is t6|sayight
not haveF as a first order tangency extension with respedt o (or with respect t® ) as the
following example shows.
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Example 2.8. Consider the foliationF of A/ = C* with coordinates z1, 29, z3) generated
by X; = zla% and X, = 8%. Let S = {z; = 0}. ThenS is invariant byF and F|s is
generated (oi0s) by X,. HoweverX, has the following two extensions if: v; = X, and
vy = X1+ Xo. Butv; — vy € O, cOMes froma%1 ® 2z € Oy ®o,, Is and thus projects to

a% ®[21] € On ®0,,Zs/Z%. Since the image oF |s ® Zs/ZZ into O ®o,, Zs/Z% is generated
by % ® [21] thenF is nota first order tangency extension #f¢ with respect taF|s or with
respect t®g. Note however that = SingF, and the foliation on\/ generated bg‘f—2 provides
a first order tangency extension 615 with respect taF |s and with respect t®s.

The problem with the previous example is that the mflapp,, Os — O ®o,, Og is not
injective on SingF). However wherF is locally free everything works. Indeed we have

Proposition 2.9. Let ¥ C ©,, be a holomorphic foliation ofi/. LetS C M be a complex
subvariety ofM which is invariant byF. LetF|s be the image ofF ®¢,, Os into Og. Let
SY:= S\ Sing F). ThenF is a first order tangency extension6fso with respect taF|so.

Proof. On SV the sheafF is locally O,;-free. Let
0—-A—-B—-C—0

be an exact sequence ©f,;-modules onS°. SupposeF ®p,, B — O Ro,, B is injective.
Thus we have the following commuting diagram (&1):

0 0

T I

0 Y Fgo, C —— Oy 0, C

(2.9) 0 — F®o, B —— On®o, B Nz 0
Oﬁf@oMA—>@M®oMA Ny 0
(1) T(i’*)
0 0 0

Here N4 (and similarly N) is defined to be the quotient of the modules on the same row.
The exactness of the diagram is clear except, maybe, at gaéini(), (3) and(4). Exactness

at point(1) comes from beingF an O,,-free and thug?,,-flat module. From this and from

a simple diagram chasing, exactness at p@hntfollows. Once we have this, we can define a
natural injective map dB) and using this, another diagram chasing gives exactness a{ ppint
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Now let A = Zg, B = O, andC = Og. The previous argument shows that

(2.10) 0 — ‘F®OJW IS - @M ®O]\4 IS
and
(2.11) 0 — F ®0,, Os = Oy ®o,, Os

are exact. In particular by (2.10) we can repeat the argument of (2.9) ferZ%, B = Zs and
C = Is/T% to get the exact sequence

(212) 0— F®O]M IS/‘,Z:% — On R0 IS/IE‘

Thusifv € Fissuchthav ® 1 = 0in Oy ® Osthenv ® 1 = 0in F ® Og by (2.11).
Therefore there existe @ f € F ® Zg which lifts v ® 1. Thanks to (2.12) it follows that
v® [f] € F®Is/IT: C Oy ® Is/T:. Therefore any two extensions of the same element
of F|s differ by an element which is itF ® Zs/Z2. Arguing as in Lemma 2.1 it follows that
FRIs/Ti ~ F® 05 ®1Ls/T% = Fls ® s /T2 and thus the difference of two extensions of
the same element of| 5 is tangentially vanishing at the first order with respecHg. O

Example 2.10.1f S has codimension one i/ and it is the fixed points set of a holomorphic
self-mapf of M which istangential(or nondegenerajeto S or if S is comfortably embedded
into M (see [2], [5]) then it is possible to define a natural one-dimensional foliatighiwhich

has a natural first order tangency extension (but not a true extension) with respgcna (in
some cases) with respectfoon S’. For the reader convenience we briefly sketch here such a
construction. Lep € S. Firstfor H € Oy, we definel,(H) :=max{l e N: Ho f — H €

ZL}. Then we define/;(p) = min{T,,(H) : H € Oy,}. If Sis globally irreducible (as we
suppose), then,(p) is independent gf € S and we simply denote it by;. Then on each local
chart{U, (z, ... z,)} we consider the (local) section

n

0
Z[ZJ‘ of—z]® 9. € (Zs/Z3)%" @0, (Om ®o,, Os),

j=1 J

where[z; o f — z;] is the class ok; o f — z; in T/ /TJ/ ! ~ (Tg/Z2)®". It turns out that
those local sections glue together to form a global secligrof (Zs/Z2)%"f ®o4 (On ®o,,
Os). We say thatf is tangentialor nondegenerat the terminology of [1], [6], [7]) if ac-
tually X, is a section of(Zs/Z%)*f @0, Og (note that beindls/Z% a rank oneOs-free
module there is a natural injection (fs/Z2)®"" ®e, Os iNto (Zs/Z2)%" R0y (Oum Ro,,
Og)). Also, if f is non-tangential buf satisfies some cohomological condition (for instance
if S is the zero section of a line bundli®@ on S) then there are natural projections from
(Zs/12)%"f @0y (On Rp,, Os) t0 (Zs/12)%"f ®0, Os and still one can consideX; as a
section of (Zs/Z2)®" ®0, Os. In the latter case we say thatis comfortably embedded
into M (see [2]). Now, sinces/Z?% is Og-free, there is a natural injective morphism from
(Zs/T2)%"1 @04 Os 1o Home (Homey((Zs/Z2)%"7,O0s),O05). Thusif f is tangential oS is
comfortably embedded intd/ one has a natural one dimensional foliatibrof S given by the
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image of the morphism froV{"’ = Home, ((Zs/Z2)%"*, Os) to O induced byX . There

is a first order tangency extension Bfwith respect to©g restricted to the nonsingular part
S’ = S\ Sing(S). For instance, in casgis tangential anqU,, (z1, ..., 2,)} is a local coor-
dinates system such th&tN U = {z, = 0} we letG, be the sheaf of,,-modules generated
by > (zj0 f — zj)/sza%. Then one can show thét/,,, G, } is a first order tangency extension
of F with respect t® . Similarly for the case& is comfortably embedded (see [2]). Moreover
in casev; > 1, S is comfortably embedded anflis tangential there is a first order tangency
extension ofF with respect taF itself (seeTheorem 5.3n [2]).

3. HOLOMORPHIC ACTIONS FOR FIRST ORDER TANGENCY EXTENSIONS

Let M be an-dimensional complex manifold and [€tV/ be its holomorphic tangent bundle.
First we recall the definition of holomorphic action (seey, [18], p. 75.

Definition 3.1. Let F' be an involutive subbundle a&fM. A holomorphic actiorof F' on a
holomorphic vector bundlé over M is aC-bilinear mapd : C*°(F') x C>*(L) — C*(L) such
that

1) 0([u,v],s) = 0(u,0(v,s)) — 0(v,0(u, s)) for u,v € C>*(F) ands € C>*(L);

(2) 6(hu,s) = h8(u, s) for h € C*,u € C*(F) ands € C>*(L);

(3) 6(u, hs) = h8(u, s) + u(h)s for h € C*,u € C>*(F) ands € C*(L);

(4) 0(u,s) € Lforu € Fands € L.

Holomorphic actions were introduced by Bott [4] in case of a holomorphic vector field. We
need another definition:

Definition 3.2. Let S be a complex manifold. Let, FF C T'S be two vector bundles. We say
that L is compatiblewith F'if [L, F] C L.

Note thatl'S is compatible with any of its subbundle and each involutive bundle is compatible
with itself. Moreover generally if. is involutive andF” C L thenL is compatible with".

Theorem 3.3. Let M be an-dimensional complex manifold asdC M a (nonsingular) sub-
manifold of dimensiom < n. LetF be ar-dimensional nonsingular holomorphic foliation on
S andletF’ C T'S be the associated subbundle. ILetC 7'S be a subbundle compatible with
and let£ be the sheaf of its holomorphic sectionsFlfdmits a first order tangency extension
with respect toC then there exists a holomorphic actionf6fon Ny, := T M|g/ L.

Proof. We want to define a holomorphic actigh: C>(F) x C*®(NL) — C*(Ng). Since
F ®oy C* = C>*(F), it is enough to definé for v € F ands € C>*(N.). Leta € G, be
an extension ofi for somea« (see Definition 2.5). Le§ € C>°(T'M) be such thatr(5|s) = s,
wherer : TM|s — Ny, is the canonical projection. Define

0(“? S) = 71'([@, 5”5)7

where the Lie brackdt, -] has obviously to be thought of if,,. First we show thaf is well
defined, that is, it is independent of the extensi@@smdu chosen. Le&’ € C~(N.) be such
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thatr(5'|s) = s. Sinced|s € F and(s — §')[s € C*(L), and sincgL, F] C L, it follows that
[u, 8’ — §]|s € C°°(L) and thus it goes t6 once applyingr, hence is independent of. As for
the independence from the extensigriet &’ be another such an extension forBy definition
a—u =Y gjv;+ > hjw; with g;|ls = 0 andv; € O, such that,|s € £, andh; € 7% and
w; € @M Thus

(i — ' 8]ls = ) gws+ > hjw;, 3lls
== 3(g)v + ) _d(hpwi)ls == 8(gy)|svils € C(L).

Applying 7 even this term goes to zero and titlis well defined.

It is straightforward to see that satisfies properties (2) to (4) of Definition 3.1. As for
property (1), letu,v € F and letu, v be local extensions af andv respectively, belonging
to the same&j,,. Since this latter is involutive by hypothesis, it is easy to see[that € G,
(Lie bracket made i®,,) is a local extension df:, v| (where this time the Lie bracket as to be
thought in©g). Therefore by the Jacobi identity

0(u,0(v, s)) = m([[a, 0], 8]|s) = = ([a, [0, 8]]|s) — = ([0, [@, 3]]|s)-
Now
0(u,0(v, 5)) = 0(u, 7([0, 8]|s)) = m([a, @]]s),
wherew € C>(T'M) is any vector field such that(w|s) = 7([7, §]|s). Since we can certainly

takew = [0, 5], and similarly we can argue fé(v, 6(u, s)), it follows that even property (4) is
satisfied. 0

Remark3.4. (1) In caseL = T'S we call the holomorphic action given by Theorem 3.3 a
Camacho-Sadoction for the first example of such an action in the case 2, m = 1
and.F is the restriction of a holomorphic foliation av1, is due to Camacho and Sad [8].
(2) In caseL = F we call the holomorphic action given by Theorem 3.Beimann-Suwa
action (see [13] and [11]).
(3) The bundleL in Theorem 3.3 needs not to be involutive.

Aside the previous examples, a new typical setting where Theorem 3.3 applies is provided by
the following situation.

Corollary 3.5. Let M be a complex manifold of dimensianLetS C M be a submanifold of
dimensionm < n. Assume thal C Oy is a nonsingular foliation of dimensionof S. Let
F C O, be anonsingular foliation o/ of dimension < s leaving invariant the leaves &,
i.e, Fls C L. LetL, F C TS denote the bundle associatedfcand F|s respectively. Then
there exists a holomorphic action 6fon N, := T'M|s/ L.

Proof. The bundleL is compatible withF'. Moreover, sinceF|s has a first order tangency
extension with respect t@|s (see Proposition 2.9) an#s C & then, by Proposition 2.7,
Theorem 3.3 applies and one has a holomorphic actign@h 7'M |5/ L. O
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4. RESIDUESTHEOREMS

Existence of holomorphic actions on a holomorphic bundle are obstructed by characteristic
classes. Indeed we have

Theorem 4.1 (Bott vanishing theorem)Let S be a complex manifold of dimension. Let
F C TS be an involutive subbundle of rank Suppose that’ holomorphically acts on the
holomorphic subbundlé. C T'S. Then there exists a connecti@hfor L such that for any
homogeneous symmetric polynomiadf degreel > m — r it follows

¢(V) = 0.
In particular any characteristic class df of degree> m — r is zero.

For the reader convenience we sketch here a proof of this result and refer tp.[Z8]or [3]
for details.

Proof of Theorem 4.1Let 6 : C*°(F) x C>(L) — C*(L) denote the holomorphic action &f
onL. WeletC® TS = F @ F' @ T%'S for someC> complementt”’ of . Then we define
the connectiorV for L such that:

Vs =0(v,s) forve C®(F),s € C*(L),
V,s = 0,5 forv e C=®(T%'S),s € C(L).

Thus from property1) in Definition 3.1 and by the very definition &f it follows that if K is the
curvature ofV thenK (z,y) = 0 whenever either, y € C*(F), orz € C*(F),y € C*(T"5)
orz,y € C>®(T%'S). Therefore in a basis which respects the decompositiah 7'S* =
F*& F” @ (T*'S)* it follows that the matrix ofK” is made of forms which belong to the ideal
generated by the basis 6t*, from which the result follows. O

Now we recall briefly the general Lehmann-Suwa philosophy for localization of characteristic
classes (see.g, [18]). AssumeS is a subvariety of dimensian of the complex:-dimensional
manifold M. SupposéV is aC> complex vector bundle on/ . Let S° be an open subset of
S\ Sing(S) and assumél’ = | is holomorphic. Moreover suppose that for some reason
(like existence of holomorphic actions) there exists a connecfidior W on S° such that
»(V) = 0 for any homogeneous symmetric polynomial of a given dedr@éen we denote by
U, a tubular neighborhood & in M. Also we denote by/; a regular neighborhood 6f :=
S\ S° (we are assuming such a regular neighborhood does exist, which is always theXtase if
is an analytic set, as in our setting). For the forthcoming considerations we may assume without
loss of generality that,UU, is a regular neighborhood ofin M. LetV, be the pull back td/,
of V. Let V, be any connection foi” onU;. Let ¢ be a homogenoeus symmetric polynomial
of degreed. Let ¢(V,, V1) denote the Bott difference form of(V,), (V1) relative to the
coveringlUy, U;. The cocycle

(©(Vo),¢(V1),0(Vo, V1))
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represents in th€ech-de Rham cohomology relative(tt,, U/, } the classpo(W) € H24(S, C).
Sincep(V,) = 0 it follows that actually the cocycle represents a class in the relative coho-
mology H>4(S, S \ ¥,C) which we indicate byy(1W,%). If ¥ is compact, the Alexander
homomorphismd : H?4(S, S\ ,C) — Ham_24(Z, C) (see,e.g, [18], VI.4) sendsp(IW, X)

to a “residual class”

RegW, %) = A(p(W,%)) € Hap_2q(%,C).

Now, let> = UX, be the decomposition in connected componentsad leti) : H,.(X,,C) —
H.(S,C) be the morphism coming from the inclusiah, — S. if S is compact then by the
Poincaé homomorphisnP : H*(S,C) — H,,,.(S, C) we have the following “residue theo-
rem”in Hy, 24(S, C):

> iRegIW, %) = [S] N p(W).

In caseW is aCj;-module such thatV ®e,, O is locally free onS?, one can argue similarly
as before, considering a finite resolution®f®,, Ay (WhereA,, is the sheaf of real analytic
functions onM) made of real analytic locally free sheaves (see [3] or [{8]184.

Now we go back to our situation. L&t C ©4 be a holomorphic foliation of of dimension
r. Let L C ©4 be a coherent sheaf and denote by

Sing£) = {p € S\ SingS) : ©g,/L, isnotlocally Og ,-free}.

Moreover let
X(S,F, L) :=SingS) U Sing F) USing L),

andu,X, = X(S, F, L) be the connected components decomposition.ALét C 7'S° be the
holomorphic bundle associated respectivelytand £ on S°. Assume the following:

(a) F is compatible with/ and F has a first order tangency extension with resped to
on S°,
(b) There exists &3-modules@ such thatj(Q ®op,, Os) = On ®o,, Os/L, where
J:Q®o, Os = Oy ®o,, Os.
The previous recalled Lehmann-Suwa theory give us:

Theorem 4.2. Let ¢ be a homogeneous symmetric polynomial of degree m — r. In the
above situation, for any such that>, is compact, there exists a residue RE5, Q; X)) €
Hs,24(25, C) determined only by the local behavior of the first order tangency extension of
F nearX,.

If moreoversS is compact then

> izRes(F, Q%)) = [S] N(Q) in Hap4(S, C).
A

Some final remarks are in order.
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(1) The previous condition (b) means that the si@af® Os/L has some relation with the
ambient) . Actually one needs only an extensionfod/|s — L to M in the K-theory.

In particular if S is nonsingular and is locally free onS then one can tak@ to be the
C>-sheaf of sections of the pull back @f\/|s/L to a tubular neighborhood &f. In
the singular cases the existence®tiepends or. For instance it is the restriction
to S of an ambient foliation tha® naturally exists. If£L = O4 thenQ exists in cas&
is a so-calledstrongly locally complete intersectidsee [13]).

(2) As remarked several times at various places of the paper, the existence of a fofiation
extending to the first order tangency which actsloneeds only to have a vanishing of
certain forms ons°. Therefore Theorem 4.2 would apply everifwere defined only
outside SingS) U Sing(L).

(3) The explicit calculation of residues is a very important and usually very involved part of
a useful residue theorem. However, we do not pursue this task here, and refer the reader
to [18], [13], [2] for effective calculations. With regard to the previous comment we
only remark that ifF does not exist on Sirig) U Sing(£) than it could be impossible
(or at least, not yet done) to calculate explicitly the residue.
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