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INFINITESIMAL GENERATORS ASSOCIATED WITH SEMIGROUPS
OF LINEAR FRACTIONAL MAPS

FILIPPO BRACCI, MANUEL D. CONTRERAS†, AND SANTIAGO DÍAZ-MADRIGAL†

Abstract. We characterize the infinitesimal generator of a semigroup of linear frac-
tional self-maps of the unit ball in Cn, n ≥ 1. For the case n = 1 we also completely
describe the associated Koenigs function and we solve the embedding problem from a
dynamical point of view, proving, among other things, that a generic semigroup of holo-
morphic self-maps of the unit disc is a semigroup of linear fractional maps if and only if
it contains a linear fractional map for some positive time.

Introduction

Let U be an open set in Cn, n ≥ 1. A continuous semigroup (ϕt) of holomorphic
functions in U is a continuous homomorphism from the additive semigroup of non-negative
real numbers into the composition semigroup of all holomorphic self-maps of U endowed
with the compact-open topology. In other words, the map [0, +∞) 3 t 7→ (ϕt) ∈ Hol(U,U)
satisfies the following three conditions:

(1) ϕ0 is the identity map idU in U,
(2) ϕt+s = ϕt ◦ ϕs, for all t, s ≥ 0,
(3) ϕt tends to idU as t tends to 0 uniformly on compacta of U .

Any element of the above family (ϕt) is called an iterate of the semigroup. If the
morphism [0, +∞) 3 t 7→ ϕt ∈ Hol(U,U) can be extended linearly to R (and then
necessarily each ϕt is invertible) we have a group of automorphisms of U . It is well known
(see, e.g., [1] or [28]) that every fractional iterate of a semigroup is injective and that if
for some t0 > 0 the iterate ϕt0 ∈ Aut(U) then ϕt ∈ Aut(U) for all t > 0 and the semigroup
is indeed a group of automorphisms of U .
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The theory of semigroups in the unit disc D has been deeply studied and applied in
many different contexts. We refer the reader to the excellent monograph by Shoikhet [28]
and references therein for more information about this.

For several and natural reasons, those semigroups in D whose iterates belong to some
concrete class of holomorphic functions relatively easy to handle are of special interest.
Undoubtedly, the most important example of this kind is that of semigroups of linear
fractional self-maps of D (shortly, LFM(D,D)), namely, those semigroups (ϕt) in D for
which every iterate ϕt ∈ LFM(D,D). Among those semigroups of linear fractional maps,
there are the groups of automorphisms of D.

Semigroups in D can be first classified looking at their common Denjoy-Wolff fixed
point. It can be proved (see [29], [30], [13]) that any semigroup (ϕt) in D belongs to one
and only one of the following five classes :

(1) trivial-elliptic: all the iterates are the identity idD map.
(2) Neutral-elliptic: there exists τ ∈ D with ϕt(τ) = τ and |ϕ′t(τ)| = 1 for every t > 0

and ϕt 6= idD for some t > 0.
(3) Attractive-elliptic: there exists τ ∈ D with ϕt(τ) = τ and |ϕ′t(τ)| < 1, for every

t > 0.
(4) Hyperbolic: there exists τ ∈ ∂D with limr→1− ϕt(rτ) = τ and limr→1− ϕ′t(rτ) < 1,

for every t > 0.
(5) Parabolic: there exists τ ∈ ∂D with limr→1− ϕt(rτ) = τ and limr→1− ϕ′t(rτ) = 1,

for every t > 0.

In cases (2) to (5), the point τ is unique and it is called the Denjoy-Wolff point of
the semigroup. According to the Julia-Wolff-Carathéodory theorem (see, e.g. [1], [27]),
in cases (4) and (5) all iterates have non-tangential (or angular) limit τ at τ and their
first derivatives have a non-tangential limit at τ given by a real number in (0, 1]. As
customary, we call elliptic semigroup any semigroup in the classes (1) to (3) and non-
elliptic the semigroups in the classes (4) and (5). An analogous classification is available
for semigroups of Bn, the unit ball of Cn (see, e.g., [1] or [11] or Section two).

To any semigroup in D there are attached two analytic objects which can be used to
describe the dynamical behavior: the infinitesimal generator and the Koenigs map. We
are going to quickly recall how they are defined.

Given a semigroup (ϕt) in D, it can be proved (see [28], [7]) that there exists a unique
holomorphic function G : D→ C such that, for each z ∈ D, the trajectory

γz : [0, +∞) → D, t 7→ γz(t) := ϕt(z)

is the solution of the Cauchy problem{
ẇ = G(w)
w(0) = z.

Moreover, G(z) = limt→0+(ϕt(z) − z)/t, for every z ∈ D. The function G is called the
infinitesimal generator (or the semi-complete vector field) of (ϕt). There is a very nice
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representation, due to Berkson and Porta [7], of those holomorphic functions of the disc
which are infinitesimal generators. Namely:

Theorem 0.1 (Berkson-Porta). A holomorphic function G : D→ C is the infinitesimal
generator of a semigroup in D if and only if there exists a point b ∈ D and a holomorphic
function p : D→ C with Re p ≥ 0 such that

G(z) = (z − b)(bz − 1)p(z), z ∈ D.

The point b in Berkson-Porta’s theorem is exactly the Denjoy-Wolff point of the semi-
group, unless the semigroup is trivial. Other alternative descriptions of infinitesimal
generators can be found in [28, Section 3.6] (where a different sign convention is chosen).

As for the Koenigs function, if (ϕt) is a semigroup in D with Denjoy-Wolff point τ ∈ D
and infinitesimal generator G, then there exists a unique univalent function h ∈ Hol(D,C)
such that h(τ) = 0, h′(τ) = 1 and, for every t ≥ 0,

h ◦ ϕt(z) =
dϕt

dz
(τ)h(z) = eG′(τ)th(z).

While, if (ϕt) is a semigroup in D with Denjoy-Wolff point τ ∈ ∂D, then there exists a
unique univalent function h ∈ Hol(D,C) such that h(0) = 0 and, for every t ≥ 0,

h ◦ ϕt(z) = h(z) + t.

In both cases, the function h is called the Koenigs function of the semigroup (ϕt).
Infinitesimal generators can be defined also in several variables (see [1], [2], and [28])

even if their characterizations are not so easy to handle as in the one dimensional case.
However the construction of Koenigs’ functions in several variables is still at a pioneeristic
step and it has been successfully developed only for linear fractional semigroups (see [11]
and [17] for a different construction but only for a single linear fractional map of Bn) and,
in the realm of discrete iteration, for regular hyperbolic self-maps of Bn (see [10]). See also
[18], where C. de Fabritiis characterized infinitesimal generators of a “one dimensional”
type of semigroups of the ball using the Koenigs function.

A related problem is that of embedding a given holomorphic self-map of a domain
U ∈ Cn into a semigroup of holomorphic self-maps of U . Such a problem has been
studied since long, see [28] for a good account of available results.

Semigroups of Aut(D) are quite well-understood (see [8]) in terms of infinitesimal gen-
erators and Koenigs functions. Moreover, the embedding problem is completely solved:
every automorphism of the unit disc can be embedded in a suitable (semi)group of Aut(D).

However, strange as it may seem, the situation for semigroups of LFM(Bn,Bn) (even
for n = 1) is still not completely clear. Despite the fact that convergence questions are
basically understood, there is not a full description of their basic theoretical elements such
as infinitesimal generators and Koenigs functions. The corresponding embedding problem
for n = 1 has been treated in the literature and it is known that, in general, the answer is
negative. In most cases some analytic criteria for deciding the solvability of this problem
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are available (see [28, Sections 4.3 and 5.9]) but the problem in its complete generality
seems to be still open.

In this paper, we consider those problems for semigroups of LFM(Bn,Bn), especially
for n = 1. We completely characterize infinitesimal generators of semigroups of linear
fractional self-maps of the ball (in one and several variables). In particular we prove the
following result:

Theorem 0.2. Let (ϕt) be a semigroup of holomorphic self-maps of Bn. Then (ϕt) is a
semigroup of linear fractional maps if and only if there exist a, b ∈ Cn and A ∈ Cn×n (not
all of them zero) such that the infinitesimal generator of (ϕt) is

G(z) = a− 〈z, a〉z − [Az + 〈z, b〉z]

with |〈b, u〉| ≤ Re〈Au, u〉, for all u ∈ ∂Bn.

For the case n = 1, in Section two we present a more precise statement classifying
all possible cases (see Propositions 2.4 and 2.5), and we present a precise description of
Koening maps for linear fractional semigroups (see Proposition 2.8). Finally, in the third
section we deal with the embedding problem. First we prove the following rigidity result:

Theorem 0.3. Let (ϕt) be a semigroup in D. If for some t0 > 0 the iterate ϕt0 is a linear
fractional self-map of D then ϕt is a linear fractional self-map of D for all t ≥ 0.

Then we settle the embedding problem for a linear fractional self-map of D proving
that it can be embedded in a semigroup of D if and only if it can be embedded into a
semigroup of linear fractional self-maps of D if and only if it can be embedded into a
group of Möbius transformations of the Riemann sphere C∞ which for t ≥ 0 preserves
the unit disc (see Theorem 3.3). Finally, we give a simple criterium for embeddability of
linear fractional self map of D (see Theorem 3.4).

Part of this research has been carried out while the second and the third quoted authors
were visiting the University of Florence. These authors want to thank the Dipartimento
di Matematica “U. Dini”, and especially professor G. Gentili, for hospitality and support.

We also want to thank the anonymous referee for her/his precise suggestions and re-
marks.

1. Infinitesimal Generators in Several Variables

Following [16], we say that a map ϕ : Bn → Cn is a linear fractional map if there exist
a complex n × n matrix A ∈ Cn×n, two column vectors B and C in Cn, and a complex
number D ∈ C satisfying

(i) |D| > ‖C‖ ; (ii) DA 6= BC∗,

such that

ϕ(z) =
Az + B

〈z, C〉+ D
, z ∈ Bn.
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Condition (i) implies that 〈z, C〉 + D 6= 0 for every z ∈ Bn and therefore, ϕ is actually
holomorphic in a neighborhood of the closed ball. In fact, ϕ ∈ Hol(rBn;Cn) for some
r > 1. On the other hand, condition (ii) just says that ϕ is not constant. If the image
ϕ(Bn) ⊂ Bn, then we say that ϕ is a linear fractional self-map of Bn and write ϕ ∈
LFM(Bn,Bn).

It is worth recalling that if ϕ ∈ LFM(Bn,Bn) has no fixed points in Bn, then there exists
a unique point τ ∈ ∂Bn such that ϕ(τ) = τ and 〈dϕτ (τ), τ〉 = α(ϕ) with 0 < α(ϕ) ≤ 1
(see, e.g., [9, Theorem 2.2]). We call τ the Denjoy-Wolff point of ϕ and α(ϕ) the boundary
dilatation coefficient of ϕ.

A semigroup in Hol(Bn;Bn) is a semigroup of linear fractional maps if ϕt ∈ LFM(Bn,Bn)
for all t ≥ 0.

Likewise the one-dimensional case, given a semigroup (ϕt) in Hol(Bn,Bn) there exists
a holomorphic map G ∈ Hol(Bn;Cn), the infinitesimal generator of the semigroup, such
that

∂ϕt

∂t
= G ◦ ϕt

for all t ≥ 0 (see, e.g., [1, Proposition 2.5.22]).
The following result, essentially due to Abate [1] (see also [4] and [11]) allows to talk

about elliptic, hyperbolic, and parabolic semigroups in Bn:

Theorem 1.1. Let (ϕt) be a semigroup in Hol(Bn,Bn). Then, either all the iterates have
a common fixed point in Bn or all the iterates ϕt (t > 0) have no fixed points in Bn and
then they share the same Denjoy-Wolff point τ ∈ ∂Bn. In this case, there exists 0 < r ≤ 1
such that αt = rt, where αt := α(ϕt) denotes the boundary dilatation coefficient of ϕt (for
t > 0) at τ .

A detail study of semigroups of linear fractional maps in Hol(Bn,Bn) can be found in
[11]. In this section, we present a characterization of holomorphic functions G : Bn → Cn

which are infinitesimal generators of semigroups of linear fractional maps. Before that,
we need the following technical lemma.

Lemma 1.2. Let (ϕt) be a semigroup of holomorphic self-maps of Bn with associated
infinitesimal generator G. Assume that e1 ∈ ∂Bn is the Denjoy-Wolff point of (ϕt) and
that G extend C1 in a open neighborhood of e1. Then

(1) G(e1) = 0.
(2) 〈dGe1(e1), e1〉 ∈ R.
(3) 〈dGe1(ej), e1〉 = 0 for all j = 2, . . . , n.

Proof. ¿From G(ϕt(z)) = ∂
∂t

ϕt(z) it follows that ϕt are C1 in a neighborhood of e1 as well,

and then (1) follows. Also for any v ∈ Cn, we have 〈dGe1(d(ϕt)e1)v, e1〉 = ∂
∂t
〈d(ϕt)e1v, e1〉

and then (2) and (3) follow from Rudin’s version of the classical Julia-Wolff-Carathéodory
theorem in Bn applied to ϕt, see [26] or [1]. ¤
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In the proof of Theorem 0.2 we will also make use of the following generalization of
Berkson-Porta’s criterion due to Aharonov, Elin, Reich and Shoikhet (see [2, Theorem
4.1], where however a different sign convention is chosen because they look at the problem
∂ϕt

∂t
= −G ◦ ϕt):

Theorem 1.3. Let F ∈ Hol(Bn,Cn). Then F is the infinitesimal generator of a semigroup
of holomorphic self-maps of Bn fixing the origin if and only if F (z) = −Q(z)z where Q(z)
is a (n× n)-matrix with holomorphic entries such that

Re〈Q(z)z, z〉 ≥ 0,

for all z ∈ Bn.

And now we can prove Theorem 0.2:

Theorem 1.4. Let (ϕt) be a semigroup of holomorphic self-maps of Bn. Then (ϕt) is a
semigroup of linear fractional maps if and only if there exist a, b ∈ Cn and A ∈ Cn×n (not
all of them zero) such that the infinitesimal generator of (ϕt) is

G(z) = a− 〈z, a〉z − [Az + 〈z, b〉z]

with

(1.1) |〈b, u〉| ≤ Re〈Au, u〉,
for all u ∈ ∂Bn.

Proof. Suppose first that (ϕt) is a semigroup of linear fractional maps given by

ϕt(z) =
Atz + Bt

〈z, Ct〉+ 1
,

for some holomorphic functions t 7→ At ∈ Cn×n, t 7→ Bt, Ct ∈ Cn. Differentiating with
respect to t at t = 0 and denoting by A = −∂At

∂t
|t=0, B = ∂Bt

∂t
|t=0, C = −∂Ct

∂t
|t=0 we obtain

G(z) :=
∂ϕt

∂t
|t=0 = B − 〈z, B〉z − [Az + 〈z, C −B〉z].

Thus the infinitesimal generator G of (ϕt) has the required expression. We only need to
verify (1.1). To this aim, if B 6= 0 then H(z) = −B+〈z, B〉z is the infinitesimal generator
of a group of hyperbolic automorphisms of Bn (this follows either by a direct simple
computation or by applying [2, Theorem 3.1]). Since the set of infinitesimal generators is
a (real) cone (see, for example, [1, Corollary 2.5.59]) it follows that G+H is an infinitesimal
generator of a semigroup of holomorphic self-maps of Bn. Let b = C−B. By Theorem 1.3
applied to G + H, we have

(1.2) Re〈Az, z〉+ ‖z‖2 Re〈z, b〉 ≥ 0,

for all z ∈ Bn. Now, apply (1.2) to z = eiθru where u ∈ ∂Bn, r ∈ (0, 1) and θ ∈ R. It
follows that

Re〈Au, u〉+ r Re〈eiθu, b〉 ≥ 0,
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for u ∈ ∂Bn and all r ∈ (0, 1), θ ∈ R. Therefore for a fixed u ∈ ∂Bn and θ ∈ R, taking
the limit for r → 1 we get

(1.3) Re〈Au, u〉 ≥ −Re〈eiθu, b〉.
Finally, fix u ∈ ∂Bn and write b = ρeiβu + u⊥ with ρ ≥ 0, β ∈ R and u⊥ ∈ Cn so that
〈u, u⊥〉 = 0. Set θ = β + π. Then

−Re〈eiθu, b〉 = −ρ cos(θ − β) = ρ = |〈u, b〉|,
and from (1.3) we obtain (1.1).

Conversely, suppose G(z) = a − 〈z, a〉z − [Az + 〈z, b〉z] satisfies (1.1). Then, we have
that

(1.4) Re〈Az, z〉+ ‖z‖2 Re〈z, b〉 ≥ 0,

for all z ∈ Bn. We can write G(z) = H(z) + P (z) with H(z) = a − 〈z, a〉z and P (z) =
−[Az + 〈z, b〉z]. As before, one can prove that H is the infinitesimal generator of a
(semi)group of holomorphic maps in Bn. By (1.1) and Theorem 1.3 the function P (z) is
an infinitesimal generator of a semigroup of holomorphic self-maps of Bn as well. Therefore
G is an infinitesimal generator of a semigroup (ϕt) of holomorphic self-maps of Bn. The
point now is to show that such a semigroup is composed by linear fractional maps. There
are two cases: either G(z0) = O for some z0 ∈ Bn or G(z) 6= O for all z ∈ Bn.

If G(z0) = O then ϕt(z0) = z0 for all t ≥ 0. In this case we first rotate conjugating with
a unitary matrix U in order to map z0 to the point re1 where r := ‖z0‖ < 1. In terms of
infinitesimal generators this amounts to send G to UGU∗, and (1.4) is preserved. Next,
we move re1 to the origin 0 by means of the transform T ∈ Aut(Bn)

T (ζ, w) =
(r − ζ)e1 − (1− r2)1/2(0, w)

1− rζ
, (ζ, w) ∈ C× Cn−1.

The automorphism T is an involution, that is, T (T (z)) = z for all z ∈ Bn (see [1, Section
2.2.1] for this and others properties of this T ). The infinitesimal generator G is sent to
G̃(z) = dTT (z)G(T (z)). Let δ := (1 − r2)1/2. A direct computation shows that (with
obvious notations)

dTT (ζ,w)G(T (ζ, w)) = δ−2

(
1− rζ 0
−rw δId

)
A

(
r − ζ
−δw

)

+
〈(r − ζ,−δw), b〉

1− rζ

(
1− rζ 0
−rw −δId

)(
r − ζ
−δw

)
.

Then G̃ is of the form G̃(z) = −[Mz + 〈z, c〉z] for some M ∈ Cn×n and c ∈ Cn and, since
it is an infinitesimal generator, again by Theorem 1.3, it satisfies

(1.5) Re〈Mz, z〉+ ‖z‖2 Re〈z, c〉 ≥ 0
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for all z ∈ Bn. Notice that −M is dissipative because, looking at degrees in z, equa-
tion (1.5) implies that Re〈Mz, z〉 ≥ 0 for all z ∈ Bn.

Assume first that −M is not asymptotically stable. Thus there exists v ∈ Cn, ‖v‖ = 1,
such that Mv = iαv for some α ∈ R. Substituting z = ζv for ζ ∈ C, |ζ| < 1 in (1.5) we
obtain that 〈v, c〉 = 0. Now let z = ζv + εc for |ζ| < 1 and ε ∈ R small. Substituting this
into (1.5) we obtain

(1.6) ε(Re〈Mc, ζv〉+ ‖ζv‖2‖c‖2) ≥ O(ε2),

where O(ε2) is the Landau symbol for denoting a (polynomial in this case) expression
divisible by ε2. If c 6= 0, we can take ζ of small modulus such that d := Re〈Mc, ζv〉 +
‖ζv‖2‖c‖2 6= 0. But then, taking |ε| << 1 such that ε · d < 0 we contradict (1.6).
Therefore if −M is not asymptotically stable then c = 0. Thus ϕt(z) = e−tMz is a
semigroup of linear fractional maps from Bn into Bn (because −M is dissipative) whose
infinitesimal generator is G̃. Hence, also G is an infinitesimal generator of a semigroup of
linear fractional self-maps of Bn.

Next, we assume −M is asymptotically stable, that is, all its eigenvalues have negative
real part. In particular M and M∗ are invertible and there exists a unique v ∈ Cn such
that −M∗v = c. Let At := exp(−tM) and ct := (exp(−tM∗)− I)v. Notice that both At

and ct are defined for all t ∈ [0, +∞). Moreover set ϕ̃t(z) = (Atz)/(〈z, ct〉 + 1). A priori
since ‖ct‖ can be strictly greater than 1 for some t > 0, ϕ̃t might not be defined in all Bn.
However, once fixed t0 ∈ (0, +∞), there exists r = r(t0) > 0 and ε = ε(t0) > 0 such that
for all z ∈ Bn

r := {z ∈ Bn : ‖z‖ < r} and t ∈ S(t0, ε) := {t ∈ [0, +∞) : |t − t0| < ε}, the
map ϕ̃t is well defined in Bn

r × S(t0, ε), holomorphic in the first variable and holomorphic
in the second variable. A direct computation shows that ϕ̃t(z) satisfies

∂

∂t
ϕ̃t(z) = G̃(ϕ̃t(z)), ϕ̃0(z) = z

in Bn
r ×S(t0, ε). Therefore, by uniqueness of Cauchy-type problem (see, e.g., [22]), if ψt is

the semigroup of holomorphic self-maps of Bn whose infinitesimal generator is G̃ it follows
that ψt(z) ≡ ϕ̃t(z) in Bn

r ×S(t0, ε). By holomorphic continuation for any fixed t ∈ S(t0, ε)
it follows that ψt(z) = ϕ̃t(z) for all z ∈ Bn. Since ψt sends the unit ball into itself, we have
that ‖ct‖ < 1 for all t > 0, proving that ψt = ϕ̃t is actually a linear fractional self-map
of Bn. By the arbitrariety of t0 we find that ψt is a linear fractional semigroup of Bn and
then G̃—and hence G—is the infinitesimal generator of a semigroup of linear fractional
self-maps of Bn, as wanted.

Now we are left with the case G(z) 6= O for all z ∈ Bn. In this case ϕt has no fixed
points in Bn for all t > 0 and there exists a unique common Denjoy-Wolff point that,
up to rotations, we may assume to be e1. We transfer our considerations to the Siegel
half-plane Hn := {(ζ, w) ∈ C × Cn : Re ζ > ‖w‖2} by means of the Cayley transform
C : Bn → Hn given by C(z1, z

′′)) = (1+z1

1−z1
, z′′

1−z1
). The infinitesimal generator G is mapped

to dCC−1(ζ,w)(G(C−1(ζ, w)). For a vector v ∈ Cn we will write v = (v1, v
′′) ∈ C × Cn−1.
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A direct computation shows that

dCC−1(ζ,w)(G(C−1(ζ, w)) =
ζ + 1

2

(
ζ + 1 0

w Id

)(
a1

a′′

)

−
〈
(

ζ − 1
2w

)
, a〉

2(ζ + 1)

(
ζ + 1 0

w Id

)(
ζ − 1
2w

)

− 1

2

(
ζ + 1 0

w Id

)
A

(
ζ − 1
2w

)

−
〈
(

ζ − 1
2w

)
, b〉

2(ζ + 1)

(
ζ + 1 0

w Id

)(
ζ − 1
2w

)
.

Therefore dCC−1(ζ,w)(G(C−1(ζ, w)) is of the form N + Mz + Q〈z, z〉 with N ∈ Cn, M ∈
Cn×n and Q a quadratic form on Cn×Cn. We examine the quadratic terms. As a matter
of notation, we write A =

(
A11 A12
A21 A22

)
, for A11 ∈ C, At

12, A21 ∈ Cn−1 and A22 ∈ C(n−1)×(n−1).
Moreover, if v, w are vector in Cm for m ≥ 1 we write vw :=

∑m
j=1 vjwj. Thus we have

Q((ζ, w), (ζ, w)) =
a1ζ

2

(
ζ
w

)
− a1ζ + 2wa′′

2

(
ζ
w

)
− 1

2

(
A11ζ

2 + 2ζwA12

A11ζw + 2(wA12)w

)

− b1ζ + 2wb′′

2

(
ζ
w

)

=

(
ζ2

2
(a1 − a1 − A11 − b1)− ζw(a′′ + A12 + b′′)

ζw
2

(a1 − a1 − A11 − b1)− [w(a′′ + A12 + b′′)]w

)
.

By Lemma 1.2.(1) applied to G(z) we obtain the following equality:

a1 − a1 − A11 − b1 = 0,

while, applying Lemma 1.2.(3) to G(z) we obtain

a′′ + A12 + b′′ = O,

and therefore Q ≡ 0.
Thus G̃(z) = Mz + N for some n× n matrix and some vector N ∈ Cn. Let ψt be the

semigroup of holomorphic self-maps of Hn of whom G̃ is the infinitesimal generator. Let

ϕ̃t(z) := etMz +

(∫ t

0

esMds

)
N.

Then ϕ̃t is defined for all z ∈ Cn and all t ∈ [0, +∞). A direct computation shows that

∂

∂t
ϕ̃t(z) = G̃(ϕ̃t(z))
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for all z and t. Thus by the uniqueness of solution of partial differential equations, it
follows that ϕ̃t = ψt for all t and in particular the semigroup associated to G̃ is linear,
which, going back to the ball, means that G is the infinitesimal generator of a linear
fractional semigroup of Bn as wanted. ¤

As a corollary we have the following result of which we give a proof just for the sake
of completeness (for other proofs see [5], [19], [32] and see also [3] for a slightly improved
result).

Corollary 1.5. Let (ϕt) be a semigroup of holomorphic self-maps of Bn with infinitesimal
generator G ∈ Hol(Bn,Cn). The following are equivalent.

(1) (ϕt) is a group of holomorphic self-maps of Bn.
(2) There exist a ∈ Cn and A ∈ Cn×n (not all of them zero) such that G(z) =

a− 〈z, a〉z − Az with

(1.7) Re〈Az, z〉 = 0,

for all z ∈ Cn.

Proof. If (ϕt) is a group of holomorphic self-maps of Bn, then the family of functions
(ψt) := (ϕ−t) is a semigroup of linear fractional maps of Bn and its infinitesimal generator
is −G. Therefore, bearing in mind that G and −G are infinitesimal generator of linear
fractional maps, the above theorem implies that we have

(1.8) Re〈Au, u〉 = 0

for all u and (1.1) implies that b = 0. Conversely, if G(z) = a − 〈z, a〉z − Az with
Re〈Az, z〉 = 0 for all z ∈ Cn, the above theorem shows that both G and −G are infini-
tesimal generators and the Cauchy problems

∂g

∂t
= ±G ◦ g, with g(0) = z

have solutions in [0, +∞) for all z ∈ Bn. Therefore G is the infinitesimal generator of a
group of automorphisms. ¤

2. Infinitesimal generators in dimension one and Koenigs Functions

Koenigs functions and infinitesimal generators are related in a very concrete way. An
explicit reference for the following result is not really available but essentially the idea of
the proof is given in [29] (also, cfr. [21]).

Proposition 2.1. Let (ϕt) be a non-trivial semigroup in D with infinitesimal generator
G and Koenigs function h.

(1) If (ϕt) has Denjoy-Wolff point τ ∈ D then h is the unique holomorphic function
from D into C such that
(i) h′(z) 6= 0, for every z ∈ D,
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(ii) h(τ) = 0 and h′(τ) = 1,
(iii) h′(z)G(z) = G′(τ)h(z), for every z ∈ D.

(2) If (ϕt) has Denjoy-Wolff point τ ∈ ∂D then h is the unique holomorphic function
from D into C such that:
(i) h(0) = 0,
(ii) h′(z)G(z) = 1, for every z ∈ D.

For further reference we state here the following simple fact.

Lemma 2.2. Let p(z) = mz + n be a complex polynomial. Then Re p(z) ≥ 0 for every
z ∈ D if and only if Re(n) ≥ |m|.

Our first result is a translation to one variable of the result contained in the previous
section. This result extends and, somehow, completes [28, Proposition 3.5.1].

Theorem 2.3. Let G : D→ C be a holomorphic function. Then, the following are equiv-
alent:

(1) The map G is the infinitesimal generator of a semigroup of LFM(D,D).
(2) The map G is a polynomial of degree at most two and satisfies the following bound-

ary flow condition

Re(G(z)z) ≤ 0, for all z ∈ ∂D.

(3) The map G is a polynomial of the form G(z) = αz2+βz+γ with Re(β)+|α+γ| ≤ 0.
(4) The map G is a polynomial of the form

G(z) = a− az2 − z(mz + n), z ∈ D
with a, m, n ∈ C and Re(n) ≥ |m|.

(5) The map G is the infinitesimal generator of a semigroup in D and it is a polynomial
of degree at most two.

Moreover, Re(n) = m = 0 in statement (4) if and only if Re(β) = |α + γ| = 0 in
statement (3) if and only if equality holds for all z ∈ ∂D in statement (2) if and only if G
is the infinitesimal generator of a semigroup of Aut(D).

Proof. By Theorem 0.2, statement (1) is equivalent to (4). Statement (4) is then equivalent
to (2), (3) and (5) by direct computations using Lemma 2.2. Finally, the last assertion
follows from the fact that if G is the infinitesimal generator of a semigroup in D, then
this semigroup is composed of automorphisms of D if and only if −G is the infinitesimal
generator of a semigroup in D as well. ¤

This theorem clearly implies that not every polynomial of degree two can be realized
as an infinitesimal generator of a semigroup in D. At the same time, it also suggests to
analyze carefully those complex polynomials G of degree zero, one, and two which are
infinitesimal generators of semigroups in D.
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Trivially, if G is of degree zero, then G is an infinitesimal generator of a semigroup in
D if and only if the constant is zero and, in this case, the corresponding semigroup is the
trivial one. The next two propositions describe what happens when the degree is one and
two.

Proposition 2.4. Let G(z) = λ(z − c), λ 6= 0, be a complex polynomial of degree one.
Then G is the infinitesimal generator of a semigroup in D (which is necessarily a semi-
group of LFM(D,D)) if and only if Re λ + |λc| ≤ 0. Moreover, if G is an infinitesimal
generator the associated semigroup is given by

ϕt(z) = eλtz + c(1− eλt), z ∈ D,

and c ∈ D is its Denjoy-Wolff point. Furthermore,

(1) if Re λ = 0 then c = 0 and the semigroup is a neutral-elliptic semigroup of Aut(D).

(2) if 0 < |Re λ| < |λ| then |c| < 1, |Re λ| ≥ | Im λ| |c|√
1− |c|2 with Re λ < 0 and the

semigroup is attractive-elliptic.
(3) if |Re λ| = |λ| then |c| = 1, λ ∈ (−∞, 0) and the semigroup is hyperbolic.

Proof. Theorem 2.3 implies that G(z) = λ(z − c) is an infinitesimal generator of a semi-
group in D (which is necessarily a semigroup of linear fractional maps) if and only if
Re λ + |λc| ≤ 0. Note that the latter inequality implies that c ∈ D. Moreover, G(c) = 0
and thus in case G is the infinitesimal generator of a semigroup in D, the point c is the
Denjoy-Wolff point of the associated semigroup (this follows for instance from Berkson-
Porta’s Theorem 0.1 which shows that, unless G ≡ 0 then it has a unique zero in D which
is exactly the Wolff-Denjoy point of the associated semigroup).

Now assume that G is the infinitesimal generator of the semigroup (ϕt) in D. If |Re λ| <
|λ|, then the inequality Re λ + |λc| ≤ 0 implies c ∈ D. By Proposition 2.1, the Koenigs
function h of the semigroup satisfies

h′(z)(z − c) = h(z), z ∈ D,

h(c) = 0 and h′(c) = 1. That is, h(z) = z−c and ϕt(z) = h−1(eG′(c)th(z)) = eλtz+c(1−eλt)
for all z. Now (1) and (2) follow easily from direct computations.

If |Re λ| = |λ| then λ = Re λ < 0 and c ∈ ∂D again by the inequality Re λ + |λc| ≤ 0
and the semigroup is hyperbolic. ¤

The previous proposition implicitly says that linear infinitesimal generators of semi-
groups in D are in one-to-one correspondence with affine semigroups. In other words, for
seeing non-linear phenomena, we have to deal with polynomials of degree two or more.

Proposition 2.5. Let G(z) = λ(z−c1)(z−c2) be a complex polynomial of degree two with
λ = |λ|eiθ, λ 6= 0. Then, G is the infinitesimal generator of a semigroup in D (necessarily
a semigroup of LFM(D,D)) if and only if

(2.1) Re(eiθc1 + eiθc2) ≥ 0 and (|c1|2 − 1)(1− |c2|2) ≥ [Im(eiθc1 − eiθc2)]
2.
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Moreover if G is the infinitesimal generator of a semigroup in D then c1 ∈ D is the
Denjoy-Wolff point of (ϕt) and the following are the only possible cases:

(1) if c1 = c2 ∈ ∂D then Re(eiθc1) ≥ 0 and (ϕt) is a parabolic semigroup. Moreover in
this case, (ϕt) is a parabolic semigroup of Aut(D) if and only if Re(eiθc1) = 0.

(2) if c1 ∈ ∂D and c2 ∈ C \ (D ∪ {c1}) then eiθ(c2 − c1) ∈ (0, +∞) and (ϕt) is a
hyperbolic semigroup. Moreover in this case, (ϕt) is a hyperbolic semigroup of
Aut(D) if and only if c2 ∈ ∂D if and only if ei2θc1c2 = −1.

(3) if c1 ∈ D then c2 ∈ C \ D and (ϕt) is an elliptic semigroup. Moreover:
a) if c2 ∈ ∂D then the semigroup is attractive-elliptic with two fixed points in D

and eiθ(c2 − c1) ∈ (0, +∞).
b) if c2 ∈ C \ D and c2c1 6= 1 then the semigroup is attractive-elliptic with only

one fixed point in D and Re(eiθ(c1+c2)) ∈ (0, +∞), Im(eiθ(c1−c2)) ∈ [−β, β],

where β :=
√

(|c1|2 − 1)(1− |c2|2) > 0.
c) if c1 6= 0 and c2c1 = 1 then the semigroup is a neutral-elliptic semigroup of

Aut(D) and Re(eiθc1) = 0.

Proof. First of all, a direct computation from Theorem 2.3 shows that G is the infinitesimal
generator of a semigroup of linear fractional maps of D if and only if (2.1) holds.

Now assume that G is the infinitesimal generator of a semigroup (ϕt) of LFM(D,D) and
then (2.1) holds. We first recall that (as a consequence of Berkson-Porta’s Theorem 0.1)
either c1 or c2 is the Denjoy-Wolff point of (ϕt). Without loss of generality we can assume
that c1 is the Denjoy-Wolff point of (ϕt). From Theorem 0.1 one sees that c2 6∈ D.
Furthermore, as a consequence of the Schwarz lemma or the Julia-Wolff-Caratheodory
theorem (see [14, Theorem 1] or [28]) one can show that Re G′(c1) ≤ 0 and, if c1 ∈ ∂D
then Re G′(c1) = 0 if and only if (ϕt) is a parabolic semigroup of linear fractional maps.
Taking these into account, direct computations from (2.1) give statements (1), (2), and
(3), with the possible exception of the characterization of semigroups of automorphisms.

In order to obtain the characterization of semigroup of automorphisms, it is enough to
realize that (ϕt) is a semigroup of automorphisms if and only if −G is an infinitesimal
generator for a semigroup in D and apply (2.1) to −G. ¤

Remark 2.6. Assume G is as in Proposition 2.5.(3).(c) and conjugate the semigroup (ϕt)
with the automorphism T (z) = (c1 − z)(1− c1z)−1. The new semigroup (T ◦ ϕt ◦ T ) has
infinitesimal generator given by G̃(z) = T ′(T (z)) ·G(T (z)). A direct computation shows
that G̃(z) = λ(c1)

−1(1− |c1|2)z and thus we are in the case of Proposition 2.4.(1).

Since an infinitesimal generator G generates a semigroup of automorphisms of D if and
only if −G is an infinitesimal generator of a semigroup in D, in the Berkson-Porta repre-
sentation of an infinitesimal generator G(z) = (z − τ)(τz − 1)p(z), parabolic semigroups
of Aut(D) appear exactly when τ ∈ ∂D and p = iβ for some real β 6= 0 and elliptic
(necessary neutral-elliptic) semigroups of Aut(D) are exactly generated when τ ∈ D and
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p = iβ for some real β 6= 0. Using Theorem 2.3, in the following example we explain the
hyperbolic case.

Example 2.7. Recall that if H := {w ∈ C : Re w > 0} is the right half plane, a Cay-
ley transform with pole τ ∈ ∂D is any biholomorphic map C : D → H such that
limD3z→τ |C(z)| = ∞. It is well known that every Cayley transform is a linear frac-
tional map. Let G : D → C be a holomorphic function. Then G is the infinitesimal
generator of a hyperbolic semigroup of Aut(D) if and only if G(z) = (z − τ)(τz − 1)p(z),
with τ ∈ ∂D and p is a Cayley transform with pole τ .

Indeed, if G generates a semigroup (ϕt) of hyperbolic automorphisms then there exists
σ ∈ ∂D \ {τ} such that G(σ) = 0 (such a point σ is the second common fixed point for
(ϕt)). According to Theorem 2.3 we have then G(z) = λ(z − τ)(z − σ). From this we
get p(z) = λ(z − σ)(τz − 1)−1. Now p(σ) = 0 and since linear fractional maps on the
Riemann sphere maps circles onto circles, we see that p(∂D) = ∂H proving that p is a
Cayley transform with pole τ .

Conversely, using Theorem 2.3, we see that G is the infinitesimal generator of a non-
trivial semigroup of LFM(D,D). It is enough to show that the semigroup is composed of
automorphisms of D. Indeed p is not constant, and then G cannot generate parabolic or

elliptic groups. To this aim, using again Theorem 2.3 and writing p(z) =
az + b

τz − 1
, we have

only to check that a = τb and Re(b − aτ) = 0. Since p is bijective, p(∂D) = ∂H and, in
particular, Re p(−τ) = 0 thus Re(a(−τ) + b) = 0. Therefore, it only remains to prove the
other condition. For every z ∈ ∂D, we have

0 = Re((az + b)(1− zτ)) = Re(b− aτ) + Re((a− bτ)z) = Re((a− bτ)z).

Therefore |a− bτ | = 0 as needed.

We end this section looking at relationships between Koenigs functions and semigroups
of linear fractional maps. As customary, ∞−1 means 0.

Proposition 2.8. Let h : D→ C be a holomorphic function.

(1) The map h is the Koenigs function associated to a non trivial-elliptic semigroup
of LFM(D,D) if and only if

h(z) = (1− β−1τ)
z − τ

1− β−1z

for some τ ∈ D and β ∈ C∞ \ D.
(2) The map h is the Koenigs function associated to a hyperbolic semigroup of LFM(D,D)

if and only if there exists α ∈ (−∞, 0) such that

h(z) = α log

(
1− τz

1− β−1z

)

where τ ∈ ∂D, β ∈ C∞ \D and log denotes the principal branch of the logarithm.
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(3) The map h is the Koenigs function associated to a parabolic semigroup of LFM(D,D)
if and only if there exists α 6= 0 with Re α ≤ 0 such that

h(z) = α
z

z − τ

where τ ∈ ∂D.

Proof. (1) Let ητ (z) := (τ − z)(1 − τz)−1. Notice that ητ ∈ Aut(D) and η−1
τ = ητ .

Conjugating (ϕt) with ητ we obtain a semigroup (φt) with Wolff-Denjoy point 0. By
uniqueness of the Koenigs function, if h is the Koenigs function of (ϕt) and g is the
Koenigs function of (φt), we have

(2.2) h(z) = (|τ |2 − 1)g(ητ (z)).

Since the infinitesimal generator F of (φt) is given by F (z) = η′τ (z)G(ηt(z)) and, by
Theorem 2.3, it is of the form −Mz2 −Nz (note that F (0) = 0 because φt(0) = 0 for all
t). Now, a direct computation using Proposition 2.1.(1.iii) shows that g is of the claimed
form and, by (2.2), so is h.

(2) Let G be the infinitesimal generator of (ϕt); and let τ ∈ ∂D be the Denjoy-Wolff
point of (ϕt). Using Propositions 2.1.(2.iii), 2.4.(3), and 2.5.(2) a direct computation
yields that the Koenigs function h is of the form

1

G′(τ)

(
log(1− τz)− log(1− 1

β
z)

)
,

where β ∈ C∞ \ D and log is the principal branch of the logarithm. Now, we recall that
G′(τ) ∈ (−∞, 0) [14] and since 1− τz, 1− β−1z ∈ H, for all z ∈ D,

Arg(1− τz)− Arg(1− 1

β
z) = Arg

(
1− τz

1− β−1z

)
,

where Arg denotes the principal argument.
(3) Once more, a direct computation from Proposition 2.5.(1) and Proposition 2.1.(2.iii),

implies that Koenigs functions associated to parabolic semigroups of LFM(D,D) are ex-

actly those of the form α
z

z − τ
, with τ ∈ ∂D the Denjoy-Wolff of the semigroup and α a

given number which, by Proposition 2.1.(2), is α 6= 0 and Re α ≤ 0.
Finally, we point out that proving the converse in each of the three cases is just a direct

(and lengthy) computation. ¤

It is clear from the proof that the point τ in the statement of the previous theorem is
the Denjoy-Wolff point of the corresponding semigroup, while the point β in cases 1 and
2 is exactly the repulsive fixed point of each iterate, seen as a Möbius transform of the
Riemann sphere.
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3. The Embedding Problem

The abstract embedding problem is a rather classical one and has been treated from
the times of Abel. In its most general form the embedding problem can be stated as
follows: given a space X in some category (topological, differential, holomorphic) and a
map f : X → X in the same category, determine whether it is possible to construct a
semigroup (ft) over X, continuous in t with iterates ft in the same category of f , such
that f = f1.

When X = D and f is a linear fractional map, the embedding problem has been treated
by several authors (see [23] and references therein) and it is known that, in general, it has
a negative answer.

As stated in the introduction, in this paper we prove that a linear fractional self-map
of D can be embedded in a semigroup of D if and only if it can be embedded into a
semigroup of linear fractional self-maps of D, obtaining a precise characterization of those
linear fractional map which can be embedded.

The proof of this result requires several tools, most of them based on model theory
and some of them quite recent. In fact, we will need a new representation, with strong
uniqueness, for hyperbolic semigroups in D which could have some interest in its own.
Such a model is a continuous version of the classical Valiron’s construction, (see, e.g. [12]).

Proposition 3.1. Let (ϕt) be a hyperbolic semigroup in D with Denjoy-Wolff point τ ∈ ∂D
and associated Koenigs function h. Then there exists a univalent function σ : D→ H such
that |σ(0)| = 1 and

σ ◦ ϕt = ϕ′t(τ)σ, for every t ≥ 0.

Indeed, there exists α ∈ (−∞, 0) such that σ = σ(0)eαh.
Moreover, if a non-constant holomorphic (a priori, not necessary univalent) function

ρ ∈ Hol(D,H) satisfies |ρ(0)| = 1 and ρ ◦ ϕt = ϕ′t(τ)ρ, for every t ≥ 0, then ρ = σ.

Proof. Since every iterate ϕt (t > 0) is hyperbolic, we can consider the Valiron normal-
ization (see, e.g. [12]) with respect to 0 and obtain a non-constant holomorphic function
σt ∈ Hol(D,H) such that |σt(0)| = 1 and

σt ◦ ϕt = ϕ′t(τ)σt.

Such a map σt is univalent for all t ≥ 0 because ϕt is. Now recall that by the chain-rule
for non-tangential derivatives, [0, +∞) 3 t 7→ ϕ′t(τ) ∈ [0, 1] is a measurable algebraic
homomorphism from (R, +) and (R∗, ·). Therefore, there exists α ∈ (−∞, 0) such that
ϕ′t(τ) = eαt.

Set σ = σ1. Then, for every n ∈ N, we have σ ◦ ϕn = enαtσ = ϕ′n(τ)σ. Hence, both σ,
σn are intertwining functions for ϕn and, according to the strong uniqueness result proved
in [12, Proposition 6], we deduce that there exists cn > 0 such that σ = cnσn. From the
choice of our normalization, |σ(0)| = |σn(0)| = 1, and so σ = σn. A similar argument
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also shows that σ = σt for every positive and rational t and, finally, continuity in t of the
semigroup implies that σ = σt for every t > 0.

Since σ(D) ⊂ H, we can consider log σ(z), where log denotes the principal branch of the
logarithm and, by definition, log(σ ◦ϕt) = log σ +αt for all t ≥ 0. Therefore, the function
σ̂ := log σ(z)− log σ(0) ∈ Hol(D,C) satisfies σ̂(0) = 0 and σ̂ ◦ϕt = σ̂ +αt. Differentiating
with respect to t and evaluating at t = 0, we find that

σ̂′(z)G(z) = α, for every z ∈ D,

where G denotes the infinitesimal generator of (ϕt). According to Proposition 2.1, we

conclude that
1

α
σ̂ = h. Thus σ = σ(0)eαh.

Finally, the uniqueness assertion follows from the corresponding one for intertwining
mappings. Indeed, if ρ ∈ Hol(D,H) is non constant and satisfies ρ ◦ ϕt = ϕ′t(τ)ρ for all
t ≥ 0, then in particular ρ ◦ϕ1 = ϕ′1(τ)ρ and according to [12, Proposition 6] then ρ = cσ
for some c > 0. The further normalization |ρ(0)| = 1 implies that ρ = σ. ¤

Now we can prove the following rigidity result:

Theorem 3.2. Let (ϕt) be a semigroup in D. If for some t0 > 0 the iterate ϕt0 is a linear
fractional self-map of D then ϕt is a linear fractional self-map of D for all t ≥ 0.

Proof. Up to rescaling we can assume that t0 = 1. First of all, if ϕ1 ∈ Aut(D) then
ϕt ∈ Aut(D) for all t ≥ 0 and the result holds. Thus we assume ϕ1 is not surjective and
we consider the possible dynamical types of ϕ1:

(Attractive-Elliptic case) Since composition of linear fractional maps is linear fractional,
up to conjugation with a suitable automorphism of D, we can assume that (ϕt) has Denjoy-
Wolff point 0. Thus

ϕ1(z) =
az

cz + 1
, z ∈ D

for a = ϕ′1(0) (thus 0 < |a| < 1) and c ∈ C. Hence for all n ∈ N

(3.1) ϕn(z) =
anz

c1−an

1−a
z + 1

.

Now let σ : D → C be the Schröder function of ϕ1 (see, e.g., [27]). This is the unique
univalent (because ϕ is) holomorphic function such that σ(0) = 0, σ′(0) = 1 and σ ◦ϕ1 =
ϕ′1(0)σ; it is defined as the limit of the sequence {ϕn/ϕ

′
n(0)}. Thus a direct computation

from (3.1) shows that σ is the linear fractional map given by

(3.2) z 7→ z
c

1−a
z + 1

.

If h : D→ C is the Koenigs function of the semigroup (ϕt) then h(0) = 1, h′(0) = 1 and
h ◦ ϕt = ϕ′t(0)h for all t ≥ 0. In particular h ◦ ϕ1 = ϕ′1(0)h and by uniqueness h = σ,
which implies ϕt(z) = h−1(ϕ′t(0)h(z)) ∈ LFM(D,D) for all t ≥ 0.
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(Hyperbolic case) The semigroup (ϕt) is hyperbolic with Denjoy-Wolff point τ ∈ ∂D.
Let σ : D→ H be the function defined in Proposition 3.1. By the very construction and
uniqueness of the Valiron intertwining function (see [12]) it follows that

(3.3) σ(z) = lim
N3n→∞

1− τϕn(z)

|1− τϕn(0)| , z ∈ D.

Now, ϕn ∈ LFM(D,D) for all n ∈ N, so the Schwarzian derivates Sϕn
≡ 0 in D for all

n ∈ N. Since the limit in (3.3) holds uniformly on compacta in D, then Sσ ≡ 0 in D
implying that σ ∈ LFM(D,H). Finally ϕt(z) = σ−1(ϕ′t(τ)σ(z)) ∈ LFM(D,D) for every
t ≥ 0.

(Parabolic case) The semigroup (ϕt) is parabolic with Denjoy-Wolff point τ ∈ ∂D and
ϕ′t(τ) = 1. Let h be the associated Koenigs function. Thus, h ∈ Hol(D,C) is univalent,
verifies h(0) = 0 and h ◦ ϕt = h + t. Since ϕ1 ∈ LFM(D,D) \ Aut(D) and it is parabolic,

lim
N3n→∞

kD(ϕn(z), ϕn+1(z)) = 0,

for every z ∈ D, where kD denotes the hyperbolic metric in D. Thus we can apply
Baker-Pommerenke’s normalization (see [6]) and obtain a univalent map σ ∈ Hol(D,C),
which is a uniform limit on compacta of D of linear fractional combinations of iterates
of ϕ1 such that σ(0) = 1 and σ ◦ ϕ = σ + 1. Arguing as before, σ ∈ LFM(D,C).
By [15, Theorem 3.1] there exists λ ∈ C such that h = σ + λ ∈ LFM(D,C). Thus
ϕt(z) = h−1(h(z) + t) ∈ LFM(D,D), for every t ≥ 0. ¤

Now the following result is a direct consequence of Theorem 3.2 and the fact that the
automorphisms of C∞ are exactly linear fractional maps.

Theorem 3.3. Let ϕ ∈ LFM(D,D). Then, the following are equivalent:

(1) The map ϕ can be embedded into a semigroup in D.
(2) The map ϕ can be embedded into a semigroup of LFM(D,D).
(3) The map ϕ, thought of as an element of Aut(C∞), can be embedded into a group

(ϕt)t∈R of Aut(C∞) with the property that ϕt(D) ⊆ D for all t ≥ 0.

In the last result of this section, we provide a purely dynamical analysis of the embed-
ding problem for linear fractional self-maps of the unit disc. Probably, we are giving new
information only for what concerns the case (2) but, for the sake of completeness, we deal
with all cases. It is interesting to compare our approach to this embedding problem with
the one given in [28, Section 5.9].

Given a point a ∈ D\{0} there exists a unique λ ∈ C such that Re λ < 0, Im λ ∈ (−π, π]
and eλ = a. The canonical spiral associated to a is the curve

γa : [1,∞) −→ D, γa(t) := eλt.
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Note that γa is a spiral (actually a segment if a ∈ (0, 1)) which goes from a to zero. The
curve γa has finite length `(γa) given by

`(γa) =

∫ +∞

1

|γ ′a(t)|dt =
|λa|

Re(−λ)
≥ |a|.

Theorem 3.4. Let ϕ be an arbitrary element of LFM(D,D).

(1) If ϕ is trivial, neutral-elliptic, hyperbolic or parabolic, then ϕ can be always em-
bedded into a semigroup in D.

(2) If ϕ is attractive-elliptic with Denjoy-Wolff point τ ∈ D and repulsive fixed point
β ∈ C∞\D, let ` be the length of the canonical spiral associated to ϕ′(τ) ∈ D \ {0}.
Then, ϕ can be embedded into a semigroup in D if and only if

(3.4)

∣∣∣∣τ −
1

β

∣∣∣∣ ` ≤ |ϕ′(τ)|
∣∣∣∣1−

τ

β

∣∣∣∣ .

[Again, ∞−1 means 0].

Proof. (1) If ϕ is trivial or neutral-elliptic, then ϕ ∈ Aut(D) and, up to conjugation with
an automorphism of D which maps the Denjoy-Wolff point of ϕ to 0, by the Schwarz
lemma ϕ(z) = eiaz for some a ∈ R and clearly ϕ can be embedded into the semigroup
(z, t) 7→ eitaz. In the hyperbolic or parabolic case, we can conjugate ϕ with a Cayley
transform from D to H which maps the Denjoy-Wolff point of ϕ to ∞. Thus we obtain a
linear fractional self-map φ of H of the form w 7→ eaw + b with a ∈ (0, +∞) and b ∈ C,
Re b ≥ 0 in the hyperbolic case; and a = 0, b ∈ C with Re b ≥ 0 in the parabolic case.
Thus in the hyperbolic case φ belongs to the semigroup (w, t) 7→ eatw+ b

ea−1
(eat−1) while

in the parabolic case φ belongs to the semigroup (w, t) 7→ w + bt. Going back to the unit
disc this implies that ϕ can be embedded into a semigroup in D.

(2) Let φ := ατ ◦ϕ◦ατ , with ατ (z) =
τ − z

1− τz
. The map φ is an attractive-elliptic linear

fractional map with Denjoy-Wolff point 0 and repulsive fixed point β̂ = ατ (β) ∈ C∞ \ D
given by

φ(z) =
az

cz + 1
,

where a := ϕ′(τ) = φ′(0), 0 < |a| < 1 and c =
1

β̂
(1 − a) ∈ C. Let λ ∈ C be such that

Re λ < 0, Im λ ∈ (−π, π] and eλ = a. An easy computation shows that

(3.5)

∣∣∣∣τ −
1

β

∣∣∣∣ ` ≤ |ϕ′(τ)|
∣∣∣∣1−

τ

β

∣∣∣∣ ⇐⇒
∣∣∣∣λ

c

1− a

∣∣∣∣ ≤ Re(−λ).

Now, assume (3.4) holds. By Theorem 2.3 and (3.5), we deduce that

F (z) := λ
c

1− a
z2 + λz, z ∈ D
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is the infinitesimal generator of a semigroup (φt) of LFM(D,D). Since F (0) = 0 then (φt)
is a non trivial-elliptic semigroup in D. Using Proposition 2.1(1), one can find that the
Koenigs function of the semigroup is h(z) = z

c
1−a

z+1
and φt = h−1(eλth). From this one

can check that φ1 = φ. Thus φ can be embedded in a semigroup in D and so does ϕ.
Conversely, if ϕ can be embedded in a semigroup in D, so does φ. Let (φt) be a

semigroup in D such that φ1 = φ. According to Theorem 3.2, φt is a linear fractional
self-map of D for all t ≥ 0. If h is the Koenigs function of (φt) then φt(z) = h−1(eαth(z))

with Re α < 0 and h(z) =
z

c
1−a

z + 1
by (3.2). Using Proposition 2.1, one can deduce that

the infinitesimal generator of (φt) is

G(z) = α
c

1− a
z2 + αz, z ∈ D.

By Theorem 2.3 ∣∣∣∣α
c

1− a

∣∣∣∣ ≤ Re(−α).

Since φ1 = φ, eα = φ
′
1(0) = φ′(0) = a = eλ. Therefore, λ − α = 2kπi, for some k ∈ Z.

Bearing in mind that λ ∈ (−π, π], we find that Re(α) = Re(λ) and |α| ≥ |λ| and by (3.5)
inequality (3.4) holds. ¤

The above inequality explains dynamically well-known phenomena concerning the em-
bedding problem (shortly, EP). For instance, when ϕ′(τ) ∈ (0, 1), trivially the length

of the associated spiral is exactly ϕ′(τ). Since always

∣∣∣∣τ −
1

β

∣∣∣∣ ≤
∣∣∣∣1−

τ

β

∣∣∣∣ , we see that

the answer to (EP) for those attractive-elliptic maps is always positive. However, when
ϕ′(τ) ∈ (−1, 0), the length of the spiral is strictly bigger than |ϕ′(τ)| , so we can have
positive and negative answers. The inequality also says that, for an attractive-elliptic el-
ement of LFM(D,D) the (EP) can be positively solved whenever the repulsive fixed point
is close enough to 1

τ
, namely when the map is similar enough to a neutral-elliptic map.

Moreover, if ϕ is a hyperbolic or parabolic linear fractional self-map of D and β denote
the repelling fixed point of ϕ in the hyperbolic case and β = τ the Denjoy-Wolff point of
ϕ in the parabolic case, it follows

∣∣∣∣τ −
1

β

∣∣∣∣ =

∣∣∣∣1−
τ

β

∣∣∣∣ and `(γa) = |ϕ′(τ)| = ϕ′(τ) ∈ (0, 1],

and thus (3.4) always holds for ϕ hyperbolic or parabolic.
Finally, if ϕ is neutral-elliptic, since τ ∈ D and the repulsive fixed point is 1

τ
it follows

0 = |τ − τ | `(γa) < |ϕ′(τ)| (1− |τ |2),
and even in this case (3.4) always holds.
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