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DILATATION AND ORDER OF CONTACT FOR HOLOMORPHIC SELF-MAPS OF
STRONGLY CONVEX DOMAINS.

FILIPPO BRACCI

INTRODUCTION

Let f be a holomorphic self-map of the unit didc It is well known thatf has at most one
fixed point inA. Moreover if f is not an automorphism and has a fixed point\irthen such
a point isattractive i.e, the sequence of iteratdg*} converges to the constant map which
shrinks the disc to that point. If has no fixed points in\ then there exists a unique boundary
point, sayz € 9A, such that{ f*} converges uniformly on compacta 10 Such a point is
calledthe Wolff pointof f. Therefore the functional HOA, A) — {Id} — A associating to
any f its inner fixed point (if any) or its Wolff point is well defined. Moreover Heins [8] proved
that this function is continuous (where one endowmed( A, A) with the topology of uniform
convergence on compacta). Heins’ result has been generalized to strongly convex domains
by Joseph and Kwack [10] who used Abate’s results on Wolff points (see [1]) to define the
functional.

Supposef € Hol(A, A) has no fixed points itk and letr € 0A be its Wolff point. Leta( f)
be the real number given by

[z — f()P |z — ZIQ}
[0 = Su .
0= s R
The number( f) is called théboundary dilatation coefficiemf f atx. The boundary dilatation
coefficient owes its name to the following interpretation:h@nocycleE(x, R) of centerr and
radiusRk > 0 is given by

12
E(z,R) := {z € A| |1x_ |j||2 < R} :

The horocycleE(z, R) is a euclidean disc contained ik and tangent t@A atz. Then by
the very definition it follows thatf (E(x, R)) C E(z,a(f)R) for any R > 0. Hencea(f)
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measures how much “shrinks” any horocycle. From the classical Julia-Wolff-Cagattiory
Theorem one has that{ /) = f'(z), wheref’(x) indicates the non-tangential limit gf at z.
This happens just because= 0A. Indeed if f has a fixed point, € A then f'(z,) does not
control how muchyf shrinks the Poincérdiscs (the relatives of horocycles inside the disc) since
it could be zero. Therefore in this case we are led to defify@ as the maximum dilatation
of f on any Poinca disc of center, (see Section 1 for a precise definition). Thefy) = 0
if and only if f is constant, and the fact thatf f) = 1 does not necessarily imply thétis an
automorphism. Moreover in cagehas a fixed point in\ the dilatationx( f) turns out to be an
intrinsic measure of the “order of contact” fA) to 0A, where the order of contact is roughly
defined as the real numbérsuch that(1 — | f(z2)]) = O((1 — |z])¥) (see Definition 2.3). In
general the functional : Hol(A, A) — [0, 1] is lower semicontinuous. This allows to set up
conditions for describing the limit of a sequence of holomorphic self-maps.

Let D be a bounded strongly convex domainGf with regular boundary (say at least)
and endow HdlD, D) with the topology of the uniform convergence on compacta. Abate [1],
[2] proved that iff € Hol(D, D) has no fixed points i then there exists a unique boundary
point, sayz € 9D, such that the sequence of iterafg$} converges uniformly on compacta
to x. Call the pointz the Wolff pointof f. Then a boundary dilatation coefficiemtf) can be
defined atr (see Section 3). If has fixed points inD then one can define a dilatatiari f)
similarly as we did in the disc using Kobayashi balls instead of Pogsanes. Even in this
case the dilatation is a measure of the order of contagt bf) to the boundary. As in the disc
case it is possible to prove that: Hol(D, D) — |0, 1] is lower semicontinuous and again have
conditions for studying the limits of a sequence of holomorphic self-maps. The proof of this
result exploits a tool discovered by Lempert (see [13]) and developed by Abate (see [1]): the
complex geodesic projection deviEee Section 2). As a spin off result of our work we give a
different proof of Joseph-Kwack extension of Heins’ result (see Theorem 3.10).

The method of “reduction to complex geodesics” also suggests to associate to any direction
a “directional dilatation” which measures the “shrinking” oalong that direction. More in de-
tails letG be the (closure of the) space of closed complex geodesics endowes with the structure
of complete metric space coming from the Hausdorff distance on compabtésafe Definition
5.2). The functional

ag : G x Hol(D, D) — [0, 1],

associating tdG, f) the dilatationa(f) of the restriction off to G (see Section 5) is lower
semicontinuous. In Theorem 5.10 we prove that the functional which maps azpeifi? and
avectorv € C" — {0} to the element-, , € G containingz and parallel ta at z is continuous.
Therefore thalirectional dilatationa. ,(f) of a mapf € Hol(D, D), defined asv;_,(f), is a
lower semicontinuous function.

As applications we study the relationships among fixed points (also boundary fixed points in
the sense of non-tangential limits) of sequences of holomorphic self-maps with respect to the
limit function.
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1. THE DILATATION IN THE UNIT DISC

Let A be the unit disc irC, and endow HdlA, A) with the topology of the uniform conver-
gence on compacta. As the theory of holomorphic self-maps of the unit disc is well known, we
avoid to recall it here in detalil. Instead we refer tacitly the reader.tn,[1], [5], [15].

Let us start this section with the following examples:

Example 1.1.Let f; € Hol(A, A) be given byfy(z) := 22. Thenf, fixes0 and f'(0) = 0. Let
m(z) == (t — z)/(1 —tz) fort € (0,1). Thenn, is a automorphism oA such that),(0) = ¢
andn, ' = n,. Let f, := n, 0 fyon. Thenf, € Hol(A, A) for anyt and moreoverf,(t) = t
and f/(t) = 0. A straightforward computation shows that the seque¢é converges to the
hyperbolic automorphism
. 3z +1

TrET

The mapy has no fixed points id\, its Wolff pointis1 and+/(1) = 1/8 > 0.

Example 1.2.Let f € Hol(A, A) be a parabolic automorphism with Wolff poit Then
f'(1) = 1. The sequence of iteratég*} converges (by the Wolff-Denjoy Lemma [20], [7]) to
the constant map — 1 whose derivative is, of course, equalgto

The two previous examples show that the functional “first derivative at the Wolff/fixed point”
is by no means continuous. However the two examples are of different nature, as it will be clear
later.

Letw be the Poincdr distance on the unit disk.

Definition 1.3. Let f € Hol(A, A). If fis non-constant and has no fixed points\rthen the
dilatation, denoted byy(f), of f is its boundary dilatation coefficient at its Wolff point.
If f has afixed point, € A, then thedilatation of f is given by

Oé(f) = sup w(f<z>720).
zEA—{zo} w(z, ZO)

If fis aconstant such thg{A) = 7 € 0A then we leta(f) := 0.
Note that in the previous definition we allofto be the identity and that(/d) = 1.

Remarkl.4. By the Schwarz Lemma and the Wolff Lemma it follows th&j) < 1. Moreover
itis clear thato(f) = 0 if and only if f is a constant map.

If v is an automorphism ofA thena(y o f o v7!) = «(f), for the automorphisms are
isometries for the Poincardistance.

Remarkl.5. The dilatation in the case of a inner fixed point has the following interpretation.
Supposeg’ € Hol(A, A)andf(z) = zo. Let B(zy, R) be a Poinca disc of centet, and radius

R > 0. thenf(B(zo, R)) C B(zo,a(f)R). Actually one could equivalently have definef)

as

a(f) = ;g%{inf{q > 0]f(B(20, R)) € B(z0,qR?)}}.
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Example 1.6. Let us consider again the situation in Example 1.1 and 1.2. In Example 1.1 we
havea(fy) = 1 (asz? =~ z as|z| — 1). Thereforen(f;) = a(fy) = 1 for anyt and hence

liItILilnfcx(ft) =1>1/8=a(y).

In Example 1.2 we have(f;) = 1 for any k (by the Julia-Wolff-Carat@odory Theorem [5])
and then the limit ofv( f;) is 1 and the dilatation of is 0.

The situation of the previous example is a general one:
Theorem 1.7. The functionx : Hol(A, A) — [0, 1] is lower semicontinuous.

Proof. Let f;, f € Hol(A, A) be such thaff, converges uniformly on compacta fo If f is
constant then the result is trivially true. Now we divide the proof in three cases, which we can
always reduce to.

1) Supposefy, f € Hol(A, A) be such thaf(zx) = z; for somez, € A and that, — 2 €
A. We canw.l.0.g.suppose that( f;) — (. Then for any: € A we have

w(zk, fr(2)) < alfi)w(zr, 2),

and taking the limit we findi (2, f(2)) < PBw(z0, 2). thereforef (zy) = 2o anda(f) < S.

2) Suppos€y, f € Hol(A, A) be such thaf(z,) = 2 for somez;, € A and that, — = €
O0A. We can as well suppose thatf,) — 5. We want to show that is the Wolff point of f
and that3 > «(f). The pointz is the Wolff point of f by Heins’ Theorem [8]. However this is
not necessary and actually it will also follow from our considerations.A.et 0 and R, — oo
be such that

. 1 — |z

(L1) T R,
By Proposition 1.2.1 of1] (see also [11]) ifz € E(z, R) for someR > 0 thenz € B(z, Ry)
eventually and thereforg,(z) € B(z, o fr) Rx). Equivalently
1 —Zfu(2)[” 1 — |z
1—|fe(2)]? 1 — tanh®(a( ) Re)
Now for £ — oo the left-hand term tends to

[z — f(2))?

1= f()]*

(1.2)

As for the right-hand term we have
1— |z)? Iz 1 — tanh® Ry,
1 —tanh®*(a(fy)Ri) 1 — tanh? R, 1 — tanh?(a(fi)Ry)
By equation (1.1) the first term on the right-hand side tends.tés for the second factor we

first note that it is bounded below from a positive constant. If not then the right-hand term of
equation (1.3) would tend toand hence taking the limit in equation (1.2) we would find

lz— f(&)° _

=,

L=[f(z)]?

(1.3)
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implying f = x, against our assumption thate Hol(A, A). Therefore for any: large

2
(14) 0<(C< 1- tinh By ~ Q(Q(fk)_l)Rk.
1 — tanh*(a(fx)Ry)
This forces
(15) B = lim a(fi) = 1.

Sincea(f) < 1 this proves the assertion in this case. Note that sinee (1 — tanh®r) is
decreasing in > 0, then equation (1.3) and the Wolff Lemma imply thais the Wolff point
of f or thatf is the identity.

3) Supposef;, € Hol(A, A) be without fixed points i\ for any k. Suppose that, € 0A
is the Wolff point of f;, for any k, and thatr, — 7 € dA. Up to conjugation we can suppose
T = 1. Letn(z) := m2. Then{n,} is a sequence of rotations which tends to the identity.
Moreoverg,, := n; " o fi o n;, is such thay, has Wolff pointl andg,, — f. Since the boundary
dilatation coefficient is invariant under conjugation it follows thdy,) = a(fx). Now let
z € E(1,R). Theng(z) € E(1,a(gr)R). If a(gx) converges (as we may suppose)ftahen
f(z) € E(1,BR), and (if f # 1 as we may suppose) by the open mapping theorem it is actually
f(z) € E(1, BR), implying thata( f) < (. This and the Wolff Lemma imply thatis the Wolff
point of f unlessf is the identity. O

Remark1.8. In the previous proof we did not assume Heins’ Theorem, but actually we re-
proved it. Namely we showed that {ff,} < Hol(A, A) converges to a map € Hol(A, A)

then the sequence of fixed points (or Wolff points) fpfconverges to the fixed point (or the
Wolff point) of f, unlessf is the identity.

Remarkl.9. The previous proof shows that for a sequefitgs C Hol(A, A) with fixed points
2z € Ato converge to a non-constant mavithout fixed points imA is necessary that( f;,) —
1.

A better estimate is given by the following:

Proposition 1.10. Let{f,} C Hol(A, A) be such that for any there exists;, € A such that
f(zx) = zx andz, — 7 for somer € dA. Suppose thaf, — f for somef € Hol(A, A). Then
In particular if

lim (1 — a(fx)) - w(0, zx) = oo,

k—o0

then f is the constant map +— .

Example 1.11.The inequality in (1.6) could be strict and therefore the condition is by no means
necessary. For instance Igf(z) = iz, ¢;(z) = == fort € (0,1) and f,(z) := ¢ o fo o @i
Then it is easy to see tha{ f;) = 1 for anyt and thatf, converges to the constant mawith

dilatation equals t0.
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Proof of Proposition 1.10We argue as in the proof of part (2) of Theorem 1.7, choo&ing,
as there and assuming thatf,) — 3. As before if3 < 1 thenf is constant and equation (1.6)
follows. Otherwise we found equation (1.4). Now

e2a(fe) =Ry _ o=(1=a(fx))w(0:2k) | o2(a(fr)=1)(Rr—w(02x)/2)

Sincea( fr) — B = 1 then equation (1.6) will follow as soon as we show tRat— w(0, zx) /2
is bounded above dsincreases. But

1 1
R —w(0,2x)/2 = Ry, + 5 log(1 — |2x]) — élog(l + |zx]),
andR; + 5 log(1 — |2]) < C < oo for all k since by equation (1.1) we have

1— |Zk?|€2Rk — R.
2
This implies thatf maps any horocycle of centeland radius? > 0 into an horocycle of center
7 and radiu® R for 0 := lim infj,_, o, e~ 1—2Uk)«(0:20) 55 wanted. O

2. THE ORDER OF CONTACT IN THE DISC

In this section we give a definition of “order of contact” to the boundary. The usual order
of contact of a magf € Hol(A, A) at a given point € 0A is measured by the ratid —
|f(2))/(1 — |z]) asz — = which comes out naturally from Julia’s Lemma and (whenever less
than1) is very important in the study of compactness of composition operators (see [15]). Here
we generalize such an idea and introduce a precise definition of order of contact. Then we relate
it to the previously introduced dilatation.

Let us start with the following definition:

Definition 2.1. Let f € Hol(A, A), x € 0A andk € R. We set

L= f(2)]
Lox(f):= IIIZILla{lf A=)

Remark2.2. Note that

ThereforeifC, (f) > 0thenl, ,,(f) = oo foranym > kandifL, ;(f) < cothenl, ,.(f) =
0 foranym < k.
Moreover by Julia’s Lemma [12],. ,(f) > 0, henceLl, ,,,(f) = oo for m > 1.

Definition 2.3. Let f € Hol(A, A), z € 0A andk € R. We say thalf hasorder of contactt
atx, briefly O,(f) = k, if foranye > 0

Ez,k—l—e(f) = oo and Ea:,k—e(f) = 0.
The(global) order of contacOya( f) is defined as

Ooa(f) := sup O.(f).

xeaA
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By Remark 2.2 the order of contact is well defined &nd Oya (f) < 1.

Example 2.4. Let fy(2) be alens map Namely leto(z) := (1 + 2)/(1 — z) be the Cayley
transform which mapa onto the right half-plane. Then squeeze the half-plane onto the sector
{|argw| < 67 /2} by means ofv — w’ (for 0 < 6 < 1) and go back to the unit disc wit*.

The result is a holomorphic self-map Afwhose image looks like a lens. Analytically

_ (o(2)" -1
fg(Z) T (O’(Z))e—i- 1

The functionfy, mapsA — {£1} into A and f5(£1) = +1. We claim that Qa(f) = 6. Itis
clear that we have only to check that @f) = 0. Fork > 6.
1 —1fo(2)] [(1+2)" + (1 —2)°| = |[(1+2)° — (1 - 2)°

Laai(f) = liminf T3 = lim inf 29(1 — [2])

6 o o] _ 0 B 0
> liminf (EH2)7 A =2 -] +2)7 = (1 —2)7]
z—=+1 29(|1:|:Z|>k
Taking the square it is easy to see that this term goes.t®n the other hand it is easy to see
that forr € (0, 1)

1o
s (L= rl)?
ThereforeL,; 4(f) < oo which implies thatC., ,(f) = 0 for k < § and hence Q,(f) = #.

Remark2.5. The (global) order of contact is invariant under composition with automorphisms.
Indeed ifp andf are automorphisms ak then

L—lo(f(0" ()] _ 1—le(f(w)] 1—[fw)] (A —[wp"

(1 =]z L=[f(w)] (A =Jw)t (1= [0(w))

wherew = 071(2). Since(1 — |¢(¢)|)/(1 — [¢]) and(1 — [6(¢)])/(1 — |¢]) tends to a positive
number as¢| — 1, then

Loyw(f) = Lo@ww(po fod™),
and therefore @\ (f) = Osa(po fod71). In particular Qa(f) is invariant under conjugation.
By Remark 2.5 iff € Hol(A, A) has a fixed point il and there exists an automorphigm
such thatf o 6 has no fixed point it\ then Qa(f) = 1.

We want to show now that the dilatation is an intrinsic way of measuring the order of contact
previously introduced.

Lemma 2.6. Let f € Hol(A, A) be such thaff(0) = 0 andz € OA. Let

(2.1) a,(f) := limsup M

e w(0,2)

Then Q(f) = ax(f).
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Proof. We can suppose = 1. First of all note that the assertion is clearly trugfifz)| doesn't
accumulate abA for = — 1. Therefore we can suppose thétz)| — 1 for = — 1. By the
very definition ofw we have

(1+1£G))
w(0, f(2) _ gt
w(0, 2) 10gw '

(1=[2])
Therefore for any: € R such thatv;(f) < a we can find a suitable neighborhobdof 1 such
that foranyz €e ANU

1+1/(2)] 1+ 2]
(2.2) log ———= < alog .
1—[f(2)] 1—1z|
Sincet — log(1 +t)/(1 — t) is increasing, this is, for € A N U, equivalent to
L+ 1f(2)] _ 1=1f()]
(T4 ]zh) (1 =z])e
Taking the liminf on both sides we get
hminfm
=1 (1—|z])

Sincea > a4 (f) was arbitrary this implies that, ,(f) = co and Q(f) < a4 (f). On the other
hand ifL, ,(f) = oo for somea < a4 (f) then equation (2.3) as well as equation (2.2) holds for
z close tol. Hencelim sup,_; w(0, f(2))/w(0, z) < a and themy () < Oy(f). O

(2.3)

> ol=a > .

Theorem 2.7.Let f € Hol(A, A) be such that there exists € A with f(zy) = zo. Then
Osa(f) < a(f). Moreovera(f) = 1if and only if Qa(f) = 1. In particular if o(f) < 1
then f has no finite angular derivative at any boundary point and(if) = 1 then f(A) is not
relatively compact im\.

Proof. Since bothx(f) and Qa(f) are invariant under conjugation we can supposezhat 0.
Supposey(f) = 1. Let{z,,} C A be such that

. w(0, f(zm))
nlLLHIOO (,L)(O7 zm) - Oé(f)

If {z,,} accumulates ta € A thenz # 0 andw(f(0), f(z)) = w(0,x), implying thatf is an
automorphism ofA and hence g\ (f) = 1. If {z,,} accumulates at € 0A then Q.(f) =1
by Lemma 2.6.

In general for anyz € OA by Lemma 2.6 we have that,Of) < «(f) and therefore
Osa(f) < a(f). The last part follows easily from the very definition and from the Julia-
Wolff-Caratteodory Theorem [5] (see also [1] and [15]). O

Remark2.8. The order of contact @\ (f) could be strictly less than the dilatatiori f), e.g,

think of z — %z
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It is remarkable that in case of a (inner) fixed point the dilatatiofi) measures therder
of contactof f(A) to A butnotthe contact. That is if (A) is not compactly contained iA
thena(f) is not necessarily. For instance the lens map built in Example 2.4 has dilatation
< 1 by Theorem 2.7, bufy(£1) = +1.

Remark2.9. We do not know ifo( f) < 1is equivalent tof having no angular derivative at any
boundary point. Actually the open question is whetfidixes 0 and has order of contattat
x € OA imply thatL, ,(f) # 0, cc.

3. THE DILATATION IN STRONGLY CONVEX DOMAINS

Let D be a bounded strongly convex domain with smooth boundary (atd&ast.et k, be
the Kobayashi distance iR. For all this section fix a point, € D (sometimes we refer to such
a point as thdase poinbf D). For all the unproved statement and terminology we refer to [1]
or [4]. Let us recall (see [2]):

Theorem 3.1(Abate) Let f € Hol(D, D). If f has no fixed points itD then there exists a
unique pointr € 9D, theWolff point of f, such that the sequence of iterafg& } converges to
the constant map — .

Recall that if f € Hol(D, D) then theboundary dilatation coefficierdf f atx € 9D is the
(strictly) positive real numbes,.(f) given by

5 108 0u( ) = liminf[lp (20, w) — (20, £ ()]

Remark3.2 The numbers,(f) is finite or infinite independently of,. Namely ifw, € D and
B.(f) is the boundary dilatation coefficient with base paintthen3,.(f) < oo if and only if
B.(f) < oo. This is a simple application of the triangle inequality. In Lemma 6.1 we will show

that actuallys,.(f) = G.(f).

Similarly to the disc case, even in the strongly convex doniaiit is possible to define
horospheres. This definition due to Abate [2] exploits the Kobayashi distance and turns out to
be the right tool to study iteration theory. In particular the boundary dilatation coeffigi€fi}
measures how acts on horospheres centeredrat 0D. Using the explicit expression af
it is possible to show that in the disc the notion of boundary dilatation coefficient given in the
Introduction coincides with that given here (see [1]), and it is independent of the base point.

We also need (seeroposition 1.6 in4]):

Proposition 3.3. Let f € Hol(D, D) have no fixed points. A poiate 0D is the Wolff point of
f ifand only if f has limitz at = along some non-tangential path apd(f) < 1.

Motivated by the work in the unit disc we give:

Definition 3.4. Let f € Hol(D, D). If f is non-constant and has no fixed pointsZinthen
thedilatation «(f) of f is the boundary dilatation coefficient gfat its Wolff point. If f is a
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non-constant map with at least one fixed pointirthen thedilatation of f is given by:

_ ki (wo, f(2))
a(f) T zegl—l?wo} kD<w07 Z)

wheref(wg) = wy. We leta(f) := 0if f is constant.

Remark3.5. If f € Hol(D, D) thena(f) < 1 by Proposition 3.3 and the decreasing property
of Hol(D, D) with respect tokp. If Fix(f), the set of fixed points of, contains two points
(and then it is a submanifold of dimension greater or equal to one, see [17]jthfen= 1.
Moreovera(f) = 0 if and only if f is constant.

Theorem 3.6. The functionx : Hol(D, D) — [0, 1] is lower semicontinuous.

Before proving the theorem we need to introduce ltbenpert projection devicand prove
some facts about it.

By Lempert's work (see [13] and [1]) given any pointc D there exists a unique complex
geodesicy : A — D, i.e, a holomorphic isometry betweenandkp, such thaty extends
smoothly past the boundary(0) = z, andy(t) = z, with¢t € (0,1)if z € D andt = 1
if = € 0D. Moreover for any such complex geodesic there exists a holomorphic retraction
p: D — p(A),i.e. pis a holomorphic self-map ab such thatp o p = p andp(z) = = for
anyz € ¢(A). We call such @ the Lempert projectiorassociated tgp. Furthermore we let
p:= ¢ 'opand call it theeft inverseof ¢, for pop = Id A . The triple(p, p, p) is the so-called
Lempert projection device

Lemma 3.7. Suppose thaf € Hol(D, D) has no fixed points iV and letr € 9D be the Wolff
point of f. Lety : A — D be the complex geodesic such th40) = 2, andp(1) = 7 and let

p be the Lempert projection associated4olLet f := po f o . Thena(f) = a(f).

Proof. Using Abate’s version of the Julia-Wolff-Car&bdory Theorem for strongly convex
domains (actually we just need a maimed version of it, coming from the classical Julia-Wolff-
Caratleodory Theorem, seeheorem 2.4.(i) ij4]) we get

1=
a(f) = lim ———-=.
Then the classical Julia-Wolff-Caratbdory Theorem implies that(f) = «(f). O

Remark3.8. The mapf in the previous Lemma cannot be the identity&nFor if this were so
then forany(, £ € A

kp(o(€),0(&)) = kn(f(¢(Q)), f(¢(§))) = kp(p(f(v(C))), p(f((£))))
= kp(o(£(Q)), 2(f(€))) = kp(({). (€)),

forcing equality at all the steps. In particulgs » would be a complex geodesic afitlo(A)) =
p(A)—as sets—for the uniqueness of complex geodesics. But

fow(Q)=vopofop(()=1¢(C)
forany( € A, which would imply thatflw(A) = 1d, against our hypothesis.
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Lemma 3.9. Supposeg € Hol(D, D) be such thaf (z) = « for exactly oner € D — {z,}. Let
¢ : A — D be the complex geodesic such thab) = z, andp(t) = z for somet > 0 and let
p be the associated Lempert projection. lfet= po f o p. Thena(f) < a(f).

Proof. Note thatf mapsA into A and thatf(¢) = t. Now
w(t, f(€)) = knle(t), e(f(€)) = kp(z,po f o p())

< kp(z, f(¢(£))) < a(f)kp(z, p(§)) = alfw(t,§).
Since this holds for ang € A then it follows thatx(f) < a(f). O

Proof of Theorem 3.6Let { f,} C Hol(D, D) be such thaf, — f for somef € Hol(D, D).
We can suppose that f,) — (. If f is constant then there is nothing to prove. Also if (X
has positive dimension for artythena( f) = 1 and then the limitid which is certainly greater
than or equal tev( f). Therefore we can suppose tifalf, € Hol(D, D) and thatf; has at most
one fixed point inD for anyk.

Suppose first that for anythere exists;,. € D such thatf(z,) = 2. If 2z, — = € D thenx
is a fixed point forf. Now

kp(zk, fr(2)) < alfi)kp (2, 2)

foranyz € D, and passing to the limit we get for anye D

kp(z, f(2)) < Bkp(x, 2),

which means that > «(f).

Suppose now that; converges to the point € 9D. For anyk let o, : A — D be the
complex geodesic such that (0) = zp andy(tx) = z with ¢, € (0,1). Since the family
{¢r} Is normal we can suppose that, up to subsequenges; . Since for anyt and¢, ( € A

w(& C) = kD(@k(f)? @k(C))a

it follows thaty is a complex geodesic. Moreowvgrtends tol. Indeed ift, — r for » < 1 then
oo > w(0,7) = klim w(0,t;) = klim kp(zo, ox(tr)) = 00.

In the same way we can suppose that the Lempert projeciidgmsonverge to a holomorphic
mapp which is easily seen to be the Lempert projection associated ow Ietfk = Prpo fro
orandf := po fop. Thenfy, f € Hol(A, A) and moreoverf, converges t¢f. By Lemma 3.7
and Lemma 3.9 it follows that(f;,) < a(f) and thata(f) = a(f). Hence the result follows
from Theorem 1.7.

Finally suppose that each has no fixed points irD and letr, € 9D be the Wolff point
of f,. Let, — 7 € 9D. As before lety, be the family of complex geodesics such that
vr(0) = zo andpg(1) = 7. Up to subsequences we can suppose {hat converges to the
complex geodesig such thatp(0) = z, andy(1) = 7 and that the Lempert projectiong
converge to the Lempert projectiprassociated te. Let fe:=pro fopyandf :=po fop.
Thenf, — f, and the result follows from Theorem 1.7 and Lemma 3.7. 0
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In the proof of Theorem 3.6 we have not used the fact that “the Wolff (or fixed) points of
converge to the Wolff point of”. This is true thanks to a theorem due to Joseph and Kwack
[10]. However it follows directly from our method of reduction to the one variable case. We
briefly decribe this point.

Theorem 3.10(Joseph-Kwack)Let{ f,} € Hol(D, D) and letf € Hol(D, D). Suppose that
fr — fandf has no fixed points iV. Then

(1) if fr(z) = 2z and zp — x € 0D thenz is the Wolff point off.
(2) if fx has no fixed points for any and x;, € 0D is the Wolff point off, such that
xr — x € 0D thenz is the Wolff point off.

Proof. In the first case lep, : A — D be the complex geodesic such that0) = z, and
or(tr) = z, for somet, € (0,1). In the second case let, : A — D be the complex geodesic
such thatp, (0) = zo andpg (1) = z;. In both cases let, be the Lempert projection associated
to . As in the proof of Theorem 3.6 we suppose thatconverges to the complex geodesic
¢ : A — D such thatp(0) = 29 andyp(1) = . Also we supposg;, converging to the Lempert
projectionp associated tp. We setfy, := pj, o fx 0 ¢ andf :=po f o ¢. Thenf, — f. By
Lemma 3.7a(f) = a(f). If fis not the identity then by Heins’ Theorem (see Remark 1.8)
has Wolff pointl. Therefore, no matter whethgris the identity, (f)y<landfop:A — D
has non-tangential limit at1. Since a complex geodesic is transvers@fivby Hopf's Lemma
thenf has limitz atz along a non-tangential path and by Proposition 3.3 it followsthatthe
Wolff point of f. g

As an application of the previous results we have:

Corollary 3.11. Suppos€ f,} € Hol(D, D) and that for anyk there exists;, € D such that
f(zx) = zx. Lets = limsup,_, . a(fx). If B < 1then alimit of{ f; } is either a constant map
z — 1 € 0D wherer is in the cluster set ofz;. } or it has a unique fixed point imy € D such
thatw, belongs to the cluster set §f; }.

Proof. Suppose that, up to subsequendes} converges to a point € 9D. Using the notation
as in the proof of Theorem 3.6, the one-dimensional nfagenverge tof anda(f) alf) <
1. By Remark 1.9f is the constant map — 1 and thereforef (D) = 7.

If {2} converges tav, € D then clearlyf(w,) = wy. Moreovera(f) < 1 implies that the
dimension of Fixf) is zero and hence by Vigu17] w, is the only fixed point off. 0

4. THE ORDER OF CONTACT IN STRONGLY CONVEX DOMAINS

In this section we describe what is the “order of contact” for a self-map of a strongly convex
domain and how it is related to the dilatation. In all this seciibis a bounded strongly convex
domain withC? boundary and, € D is its base point.

We need to recall the following lemma (s€keorem (2.3.51) and (2.3.52) [ih] and[19]).
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Lemma 4.1 (Abate, Vormoor) Letd(-, -) denote the euclidean distance@. Then there are
two constant”; > 0 andC; > 0 depending only on, such that for allz € D

1 1
—C — Elog d(z,0D) < kp(z0,2) < Cy — Elog d(z,0D).

Letz € 0D andf € Hol(D, D). By Lemma 4.1 it follows easily that
. d(f(z),0D)
Now we define the order of contact in analogy to the disc case:

Definition 4.2. Let f € Hol(D, D), z € 0D andk € R. We set

... d(f(2),0D)
Lor(f) = IIIZILlilf —d(z,aD)k .

A similar argument as in Remark 2.2 allows one to definedfuer of contact off at x,
O.(f), as the unique real numbérsuch that’, ,,,(f) = oo form > k andL,.(f) = 0 for
t < k. The(global) order of contacts defined as

Oop(f) = sup Ou(f).

x€0D

By equation (4.1) it follows that the order of contact is at miostVe start to study the relation-
ship between the order of contact and the dilatation:

> 0.

Lemma 4.3. Let f € Hol(D, D) be such thaff (wy) = w, for somew, € D and letz € 0D.

- (w0, £(2)
1 kD wOaf z
S TR
Then Q(f) = a(f).
Proof. If a,.(f) < k then by Lemma 4.1 it follows that
_logd(f(z),0D)
M sup o (d(z, aD))F

Therefore for a fixed > 0 there exists a neighborhodd of = such that for any € U N D it
holds

<1

log d(f(z),0D) > log(d(z,dD))*1+9),
Sincer — logr is increasing for > 0 then
d(f(z),0D) > d(z, aD))k(H‘e)’

and thereforeC, 111 (f) > 1. Sincee is arbitrary this implies that J f) < k = a,(f). On
the other hand, i, . (f) = oo for somek then there exists a neighborhobdof  such that
foranyz € U N D it follows

d(f(2),8D) = d(z,0D)",
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which is equivalent to
log d(f(z),0D)
<k,
logd(z,0D)k —
implying thata, (f) < k and hencev,(f) < O.(f). O
Theorem 4.4.Let f € Hol(D, D) be such that there exists, € D with f(wy) = wy. Then
Osp(f) < a(f). Moreovera(f) = lifand only if Oyp(f) = 1.

Proof. For anyx € 9D we get Q(f) < «a(f) by Lemma 4.3, and hence;Q(f) < a(f).
Supposex(f) = 1 and let{z,,} C D be such that

. kD(w07f(zm))
A e (w0, 2)

=1.

We can suppose that, — x € D. If x € 9D then Q.(f) = 1 by Lemma 4.3 and we are done.
If x € Dthenkp(wy, f(x)) = kp(wy, x). Lety, : A — D be the complex geodesic such that
©(0) = wy andyp,(t) = x for somet > 0. Lety,y : A — D be the complex geodesic such
that ;) (0) = wo andyy(,)(r) = f(x) for somer > 0. Letpy,) : D — D be the Lempert

projection associated tpy ). Definef := gof( ) © Df() © f o,. Since
(O7T) - kD(w07 f(m)) - kD(wO:m) = W(O, t)a
thenr = t. Therefore
w(0,8) = kp(wo, x) = kp(wo, f(x)) = w(f(0), F(1)),

implying that f is an automorphism oh. Namely f mapsy,(A) onto ¢ (A) acting as an
automorphism. In particular

kp(wo, £(2)) o w(0, Q)

lim su =1,
Z_’%:(ll)) kD(w(h Z) G w(O, C)
and by Lemma 4.3 Q 1)(f) = 1 which gives the assertion. a

5. THE DIRECTIONAL DILATATION

Let us start with an example.

Example 5.1.Let f € Hol(B?, B?), whereB? is the unit ball inC", given by(z, z,) — (21,0).
Then £((0,0)) = (0,0) anda(f) = 1. Howeverf((0,¢)) = (0,0) for any¢ € A. Therefore
the mapf,(¢) := f1(¢,0) has dilatation. = «(f) while f»(¢) := f2(0, () has dilatatior?.

The previous example suggests that one could associgta family of “directional dilata-
tions” measuring in some sense the behavior of the map along these directions. To make precise
this idea we need to recall and to prove some facts.

Let D be a bounded strongly convex domani with boundary. LefC be the set of compacta
of D. We can endowC with a structure of complete metric space by defining kaaisdorff
distancebetween two elementd, B € K as

dy(A, B) := max{d(A, B),d(B, A)},
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whered(A, B) = max{d(z, B)|x € A} andd(-,-) is the euclidean distance. We denote by
H (D) the metric spacék, dy;). Note that by the very definitiofi4, } c H (D) is (Hausdorff-
yconverging toA € H(D) if and only if both any point ofA is in the cluster set of some
sequenceq z;} for z; € Aj and any sequencgz} such thatz, € A, accumulates only at
points of A. We define and topologize the “space of (images of) complex geodesics”:

Definition 5.2. Let
G:={Gc D|3p:A— D complex geodesicG = p(A)} U {z | z € OD}.
We endowg with the topology induced b (D).

Note that an element &f is either the closed image of a complex geodesic or a single bound-
ary point. Before proving some interesting propertieg afe need to look closely at complex
geodesics.

We recall (see [13]) that a complex geodegic A — D is defined to be a solution of
an Euler-Lagrange equation in the sense that there exists a positive fuRatiefined o)A
so thaty*(¢) = P(¢)¢n(y(C)), defined ondA, extends holomorphically t& (heren(z) is
the outer unit normal t&@D atx € 0D). The mapy* is called adual mapof . Thenp(z)

is defined to be the (unique) solution to the following equation in the unknownA (here
(z,w) = 3 zjw;):
(5.1) (z = (C), ¢"(C)) = 0.

Itis a basic fact in Lempert’s theory (see [13] and [1]) thais unique up to a positive constant
and extend€'! up to9A. Thereforep is uniquely determined by and extend€! up toOA.

Hence ifn := ¢ o 6 with § an automorphism of\ it follows that9~! o p is the left inverse
associated tg. The Lempert projection associated#as ¢ o p which therefore turns out to
depend only on the image(A) and to extend”! up to9D. Therefore ifG € G then there
exists auniqueC" mapp : D — D such thap is holomorphic onD, p?> = p andp(D) = G

(if G = x € OD thenp(D) := x). Conversely (see [14]) if : D — D is holomorphicp? = p

andG = p(D) is one-dimensional thefi is the image of a complex geodesic A — D, and
thereforep actually is the Lempert projection associated to a complex geodesic and in particular
extendsC'! up to the boundary. Therefore the correspondence:

F:G— P :={plp € Hol(D, D),p* = p,dimp(D) < 1},
G — pg

is one-to-one and onto. Moreover if we end®wwith the topology induced bidol(D, D) we
have

Lemma 5.3. The spacé is closed irtHol( D, D) and the mag : G — P is a homeomorphism.

Proof. Suppose tha{G,} C G converges tay € H(D), and letp, := F(Gy). Since{ps}
is a normal family it follows that it contains some converging subsequences. Suppose that
Pk, — p € Hol(D, D). Then taking the limit tg;, = p;,, we findp* = p. We have to show

that dinp(D) < 1. Assume not. Then there exist, z;, 2o € p(D) which are not contained in
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any complex geodesic. Lef, := py,.(z;) € D for j = 0,1,2. Thenz, € py, (D) = @m(A)
for some complex geodesig,, andj; = 0, 1, 2. Up to subsequenceg,, — ¢, with ¢ being a
complex geodesic. Therefogg,(A) 2 27, — z; € p(A)forj = 0,1,2and thusp(A) contains
20, 21, 22, @ contradiction. Thep € P (which is thus closed). By the previous discussion
extendsC! up to the boundary. Now if € G then there exist$z,} C D such thatz, € G,
andz, — z. Therefore

p(z) = lim py, (2,,) = lim z,, =z,
and hence C p(D). On the other hand if € p(D) then
z=p(z) = 77%i_]{ﬂoopkm(z).

Let 2, := pr,, (2) € Gi,.. Thenz = lim,,_, z, and therefore: € G, implying thatp(D) C

G and actuallyG = p(D). Since this holds for any converging subsequence§pf then
it follows that p;, actually converges tp, holomorphic retraction and that = p(D) (and
henceg is closed inH(D)). This also shows thak' is bi-continuous and therefore it is a

homeomorphism. O

The previous Lemma allows one to move freely from maps to sets. Before going ahead we
need to introduce some more notationGlfe G andG N D # () we indicate bypg : A — D
a complex geodesic such that(A) = G (note thaty is unique only up to composition by
automorphisms ofA on the right). IfG = = € dD then we indicate by the constant map
(—afor¢ e A.

Lemma5.4.Let{G,} C G, G € G. ThenG,, — G if and only if there exisp, and g such
thatye, — ¢a-

Proof. If ¢, — ¢ then itis easy to see using the definition that— p and by Lemma 5.3 it
follows thatG;, — G.

On the other hand iff, — G then we have two cases. & N D # () (which implies that
Gr. N D # () eventually) then let, € G N D. There existsz,} C D such thatz, € G,
andz, — zp. Letpg, be the complex geodesic such that, (0) = z,. Since the family
{¥q, } is normal, we can extract a converging subsequenge — ¢, wherep : A — D is
a complex geodesic fas(0) = z,. The sequence of Lempert’s projections associateg:to
converges to a holomorphic retractipthat by Lemma 5.3 must bE(G), thereforep = ¢g.
The same token shows that any other subsequengg®ff must converge te and therefore
V¢, converges tayg.

The second case is whénis a pointz € 0D. If G}, is a point for allk then the result is
trivial. Suppose then that th&,’s are not all reduced to a point. As befofe, } contains a
converging subsequence. If the limit maps a constant — y € 9D then by Lemma 5.3
it must bey = x. If ¢ were non-constant then the Lempert projectiprassociated to the
converging subsequence would converge to a non-constant holomorphic retgaciios by
Lemma 5.3G = F'~!(p) would not be a single point. Therefore the entire sequengemust
converge tapg. U
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Lemma 5.5. Let f € Hol(D, D). Lety : A — D be a complex geodesic and febe its left

inverse. Them(p o f o ¢) depends only oty := ¢(A).

Proof. By the discussion on complex geodesics at the beginning of this section any other para-
meterization of the geodesic disc whose closur@ gs the formp o 6 for some automorphism

6 of A. The associated left inverse is thereféré o 5. Thus the result follows from Remark

2.5. O

Definition 5.6. Let f € Hol(D, D) andG € G, with G N D # (). We define thelirectional
dilatation o (f) as

ac(f) == alpe o [ o pa).
If G is a (boundary) point then we set;(f) := 0.

Remarks.7. The directional dilatation is well defined by Lemma 5.5.
The main result for the directional dilatation is the following:
Theorem 5.8. The mapg x Hol(D, D) — [0, 1] defined as
(G, f) = ac(f)

is lower semicontinuous.

Proof. The result is trivially true ifG is reduced to a boundary point. Suppose that D +# ().
By Lemma 5.4 ifG), — G there existp, such thatp;, — ¢g. Therefore the left-inverses
Da, associated t@¢, converge to the left-invergg; associated t@; and hencégg, o fi o ¢,
converges tg o f o . the result follows then from Theorem 1.7. O

Let us indicate byS := 0B" = {v € C" : ||v|| = 1}. Letz, € D. Foranyv € S
let ¢, : A — D be the complex geodesic such that0) = 2, and¢! (0) = Av for some
A € C — {0}. Lempert's theory (see [13]) asserts that such a geodesic does exist, unique up
to automorphisms of the disc, and extends smoothly through the boundarys WD let us
indicate byA, := SN (C" — TCOD). Then for anyv € A, there exists a complex geodesic
v, : A — D such thatp, (1) = 7 andg! (1) = Av with A € C — {0} (see [6] foroD of class
C and [9] for oD of classC?®). Even in this case the geodesic is uniquely determined up to
right composition with automorphims of the unit disc.

Therefore there are two different ways of indicating a complex geodesic: by means of its
closed imagé- or by giving a point and a (non complex tangent if the point is on the boundary)
direction. One could therefore defingectional dilatationa. ,(f) := aq(f) for = € D and
v € S, according to whethef is the (closure of the) image gf, (and as usualk, ,(f) := 0 if
z € 0D andv € TCOD). Even in this case the result is a lower semicontinuous function:

Proposition 5.9. The mapD x S x Hol(D, D) — [0, 1] defined as
(Za v, f) = aZ,U(f)

is lower semicontinuous.

The proof is a consequence of Theorem 5.8 and the following Theorem:
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Theorem 5.10.The mapD x S — G which associates tfz, v) the element’. , € G according
to whetherG, , containsz and is parallel tov at z (or G, := z if 2 € 9D andv € TFOD) is
continuous.

Proof. Let {v;} C S and{z;} ¢ D. Suppose that, — v, z, — z with, respectivelyp € S
andz € D.

First suppose that € D. Thenz, € D eventually. Let{y,,} be the family of complex
geodesics such that,, (0) = z;, andy;, (0) = A\yvy for Ax > 0. Since this family is normal we
can extract a subsequenge,, } which converges to a map: A — D. Using the continuity
of kp it is not difficult to show thaty is a complex geodesic such that0) = z. Moreover
¢ (0) — Ao for some\ > 0. ThereforeG.,,, .,, — G., by Lemma 5.4. Note that the same
reasoning applies to any subsequence and therefore actually we'haye— G ,.

Suppose now that, € D and thenz € 9D. If v, € TS9D for any k thenv € T 9D.
Indeed ifp : C" — R is a local defining function foD nearr thendp,, (v) = 0 for k large,
and taking the limit we gefp,(v) = 0. In this case the assertion is verified@s ., = 2, —

z = G,,. Therefore we can suppose thate A,, for anyk. Let{y,, } be a family of complex
geodesics such that, (1) = 2z, andy;, (1) = A\yvy for A, # 0. Up to subsequences we can
suppose thap,, — ¢ with ¢ : A — D holomorphic. Ifo(A) C D then it is a complex
geodesic. Moreovep(l) = limy .o 0, (1) = z andy’(1) = limg_. ¢}, (1) = Av for some

A # 0. If v € TCAD this is impossible, all the converging subsequencdsg} must therefore
converge to a constantmagp— w € 9D, for{ € A, and itis easy to see that= ». By Lemma
5.4 thisimpliesthaty,, ,, — G., = z. If v € A, then Lemma 5.4 implies that,, ., — G.,
for any subsequencgp,, } which converges to a (non-constant) complex geodesic. So we are
led to prove that we can reparameterizge in such a way that no subsequenceqof, } can
converge to a constant map. Singe— v andv ¢ TCdD there existd, andC > 0 such that
foranyk > kg

@] > Sl

where ifz € 9D anda € C" — {0} then|(a)r| and|(a) 5| indicate respectively the complex
tangential and complex normal componentaof Hence fork > k, there exists, € (0,1)
such that for any;, > #; the pointz, is the nearest boundary point ¢g, (¢;.) (for ¢, (A) is
transversal t@ D by Hopf’'s Lemma) and

(@0, ()| > Cl((y, (),

where this time(y;, (tx))n and(g;, (tx))r indicate, respectively, the complex tangential and
the complex normal component of the vecidy (¢,) as if it were a vector otT;CkaD. Thus
Corollary 2 of [9] implies that the diameter af,, (A) is bounded from below independently of
k andProposition 4of [6] provides a compacdk’ CC D such thatp,, (A) N K # ( for anyk.
Therefore for any: there existg;, € A such thatp,, () € K. Then for anyk there exists an
automorphisn®;, of A such that),(0) = (x. Hencep, := ¢y o 0 is a reparameterization of
¢r such thatp,(0) € K for any k. Therefore any limitp is such thatp(0) € K and sop is a
complex geodesic.
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Now suppose that, € D for anyk andz € dD. Let{p, } be the family of complex
geodesics such that, (0) = z, andy/, (0) = Ay, for some), > 0. If v € TZ0D then any
limit of {¢,, } is the constant map+— = and the result follows from Lemma 5.4. Indeed if there
were a non-constant limit, then byCorollary 2 of [9] the directionsy,, := ¢;, (0)/[/¢}, (0)]|
of such subsequence would be eventually of the feum ) n| > C|(vn)r|, and thenvy| >
Clvr| which is impossible (here we retain the notations of the previous step). Suppose now
thatv € A,. Again we want to show that it is possible to reparametegizein such a way
that no subsequence is converging to a constant. Once we have this it is clear that any limit
must be of the formnp,;. ,—for the convergence is actually it (A)—and the result follows by
Lemma 5.4. Since, — v andv & TCAD then there exist€' > 0 such that for any: it follows
¢, (0))n] = C|(#,,(0))r]. Arguing as before we can find a suitable reparameterization of
{¢x} such that any convergent subsequence tends to a (non-constant) complex geodesic.

6. APPLICATIONS

The main point in the previous section was that the restrictiofi ef Hol(D, D) to a “ge-
odesic disc” is well-defined up to conjugation. Namelyit A — D andn : A — D are
complex geodesics such thatA) = n(A) =: G, andp, § are the associated left-inverses, then
po fopisconjugated tgo f on. Therefore givertz € G with G N D +# () we can defing; as

fo = {g € HOl(A,A) | 30 € Aut(A) : 0 o go b = pg o f o).

Note that any two functions, g : A — JA are conjugated, for AUf\) acts (doubly) transi-
tively on 0A. Therefore ifG = x € 0D we can defingf; as the conjugation class ¢f— 1.
The map

Hol(D, D) x G — Hol(A, A)/Aut(A),
(fv G) = fG

is continuous by Lemma 5.4.

Roughly speaking the underlying philosophy is thaaifis anintrinsic propertyof Hol(A, A)
(i.e. depending only on the conjugation class of Hb]A)) then)V extends to a “directional
property” on convex domains by, f) — W(fs). We give some examples of this.

Recall that iff € Hol(D, D) we indicate by, (f) the boundary dilatation coefficient gfat
x € 0D. We begin with the following lemma:

Lemma 6.1. Let f € Hol(D, D), 7 € 9D andG,H € GwithGND # 0, HN D # () and

7 € GN H. Letyg be a complex geodesic such thai(A) = G andpg(1) = 7. Letyy be

a complex geodesic such thag;(A) = H and (1) = 7. Letpg andpy be the left inverses

of o and ¢y respectively. Finally leti; := pg o f o pg andhy = pg o f o vy. Then
Bi(he) = Bi(hy) = B-(f). Therefore the boundary dilatation coefficient does not depend on
the base point chosen.

Proof. Let us choose, := ¢y (0) as base point. Thefiheorem 2.7.14 dfi] (see also [3]) and
the classical Julia-Wolff-Caraffodory Theorem [5] imply that, (f) = (1(hg). By Remark
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3.201(hy) = occifand only if 51 (he) = co. Suppose thefl; (hy) < co. The curve — ¢y (t)
goes non-tangentially to by Hopf's Lemma. Therefore agaifheorem 2.7.14 dfi] gives

. 1l—pgofo t

=1 1—pgopn(t)
Up to subsequences we can suppose(that f o vy (t))/||7 — f o pxu(t)| tends to some unit
vectorv. Therefore

I 1 —pgofoeu(t)
m —
t—1 1—pGong(t)
i Lo Peo fovn(t) |IT—fopn()[1—hu(t) 1—t
=1 |7 = fopn(t)] 1 —hg(t) I—t  1—pcopult)
By Lemma 2.6.44 dfL] (or see [3]) it follows then

) (ke el
Alhe) =y (o P o @y

= Bi(hm).
U

Note that if» € Hol(A, A) has a fixed point if\ so does any € Hol(A, A) conjugated to
h. Therefore iff € Hol(D, D) andG € G, G N D # (), with abuse of terminology we say that
fa has a fixed point in\ to mean that anyt € f; has a fixed point ir\. As custom we denote
by Fiz(f) the set of fixed points of in D.

By a result of Vigee [17] the set’iz( f) is a submanifold oD.

Proposition 6.2. Let f € Hol(D, D) and letG € G withG N D # (). Then

(1) If ag(f) < 1 and fg has no fixed points if\ then f has no fixed points i®, its Wolff
point belongs td~ anda(f) = aq(f).
(2) If ag(f) = 1 and f; has no fixed points itk then eitherf has no fixed points i, its

Wolff point belongs té7 anda(f) = 1 or dimFiz(f) > 1 andG N Fixz(f) # 0.
In particular if f; has no fixed points i\ thenag(f) = a(f).

Proof. (1) Letyg : A — D be a complex geodesic such that(A) = G andh := pgo f o pg
has Wolff point1 (here, as usual, we Igi; be the left-inverse of). Let T := ¢pg(1). By
Lemma 6.1 the boundary dilatation coefficientfodit 7 is independent of the base point. Hence

B-(f) = Bi(h) = ac(f) < 1.

Supposeriz(f) # 0. If 7 € Fixz(f) there existsdd € G such thatr € H andH C Fixz(f)
(see [17]). Therefor¢y = id A and by Lemma 6.B,(f) = $:(id) = 1, contradiction. Hence

T & Fiz(f). By the very definition of horospheres (see [2]) there exigts> 0 so that for any

0 < R < Ry, E(1,R) N Fiz(f) = 0. By Theorem 2.4.16 and Corollary 2.6.48[d] (see also
[3] and [4]) forany0 < R < Ry, z € E(1, R) andm € Nitholds f™(z) € E(r, R). Therefore
{f™(2)} accumulates at somg € E(r, R). By the fundamental theorem on iteration (see
Theorem 2.1.29 dfi] or [16]) this implies that- belongs to the closure of thieit manifold X

of f. Now X is a complex submanifold @b such thatFiz(f) C X, f(X) = X and f|x is
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an automorphism oK. Again this implies3, (f) = 1, contradiction. Therefor¢ has no fixed
points inD and its iterates accumulate7gti.e. 7 is the Wolff point of f.

As for (2), arguing as before and retaining the same notatighhds fixed points irD then
7 € X. Thusifz, € Fiz(f) thenf is the identity on the complex geodesic joiniagto  and
thereforer € Fiz(f). d

Let us now examine the case of sequences of converging maps.

Proposition 6.3. Let{ f,} C Hol(D, D) be such thaff, — f € Hol(D, D). Suppose that for
anyk there exists7,, € G with G N D # () such that( f;)s, = idg,. If G, — G € G then one
and only one of the following cases is possible:

(1) G € 9D and the mayf is the constant — G.

(2) G € 0D, f € Hol(D, D) has no fixed points an@ is its Wolff point.

(3) G € 0D, f € Hol(D, D) has fixed points itD, dimFiz(f) > 1 andG € Fix(f).
(4) G € D, f € Hol(D, D) has fixed points iD, dimFiz(f) > 1andG N D C Fix(f).

Proof. First suppose that € 9D. Then there exists a sequereg} such that,, € G, for any
k andz, — G. If f has no fixed points irD then the result follows from Theorem 3.10. fif
has a fixed point, € D then this is exactlyrheoreme 4.3 0f18]. However let us give another
proof based on our method. Let: A — D be a complex geodesic such thaid) = =z,
(1) = 1 and letp be the associated left-inverse. If we prove thatf) < 1 then by Lemma
6.1 it follows thatp o f o ¢ fixes0 and has boundary dilatation coefficientldéss than or equal
to 1, which is impossible by the Wolff Lemma [20] unlegdixes ¢(A). Suppose that (up to
subsequences)

Zk—G
_—
Iz = G|

for somev ¢ TSAOD. For anyk let g, : A — D be the complex geodesic such that0) = z;
andyy(1) = G. Let H, := i(A). By Theorem 5.10 and equation (6.H), — H € G where
H N D # (. Therefore we can reparameterize thes in such a way thap, — n for some
complex geodesig with left inverseq. Hencep,, o fi o ¢ converges t@ o f o n. Moreover
Dk © fr o p has fixed point, and(, — 1. By Remark 1.8j o f o n has Wolff pointl or it is
the identity. In both cases,(Go f on) < 1 and Lemma 6.1 giveS;(f) < 1. We are led to
show that it is actually possible to find sucka } for which equation (6.1) holds. Byheorem
2 of[9] for any k large G}, is almost parallel to some directionTi£0 D at any point oGy, N D.
SinceGy, is transversal t@D, if z;, € Gy is such thati(z;, 0Gy) is the maximum among all
z € G then such{z,} realizes equation (6.1) up to subsequences.

Suppose now that N D # 0. Thenid = (fi)a, — fc implying that f¢ = id and—arguing
as in Remark 3.8-z) = z foranyz € G N D, as claimed. g

Let f € Hol(D, D). Let us denote byix(f) the set of fixed points imD, i.e. Fiz(f),
together with any point € 9D such thatf has non-tangential limit atz andj,.(f) < 1.

As a corollary of Proposition 6.3 we have the following Theorem (seeTtgorem p. 1700
in [10]):

(6.1)

v,
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Theorem 6.4.Let{f,} C Hol(D, D) be such thaff, — f. Thenlimsup Fiz(f;) C Fiz(f).

Proof. Consider the famiyl" := {G,} such thatG, € G andG, C Fiz(f;) for somek.
By [17] for any z,w € Fixz(fx), 2 # w, there existds;, € G with G, N D # () such that
Gy C Fiz(fy) andz,w € G. Therefore the cluster set 6fcoincides withlim sup Fiz(f3,).
Let G be in the cluster set df. Then there exists a sequern@ég < G such that=,, — G and
eitherG,, N D C Fix(f,,) or G,, is the Wolff point of f,, (these are the only possibilities by
Proposition 6.2). Henc€ C Fiz(f) by Proposition 6.3 or Theorem 3.10. O
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