
Annali Scuola Norm. Sup. Pisa,
Cl. Sci.(5) Vol. II (2003) 493-520.

THE DYNAMICS OF HOLOMORPHIC MAPS NEAR CURVES OF FIXED
POINTS.

FILIPPO BRACCI†

ABSTRACT. Let M be a two dimensional complex manifold and f : M → M a holomorphic
map. Let S ⊂ M be a curve made of fixed points of f , i.e. Fix(f) = S. We study the dynamics
near S in case f acts as the identity on the normal bundle of the regular part of S. Besides results
of local nature, we prove that if S is a globally and locally irreducible compact curve such that
S · S < 0 then there exists a point p ∈ S and a holomorphic f -invariant curve with p on the
boundary which is attracted by p under the action of f . These results are achieved introducing
and studying a family of local holomorphic foliations related to f near S.

INTRODUCTION

Let M be a two-dimensional complex manifold, ∆ := {ζ ∈ C : |ζ| < 1}. Let f : M → M be
holomorphic and p ∈ M . A parabolic curve for f at p is the image of an injective analytic disc
ϕ : ∆ → M such that ϕ is continuous up to the boundary of ∆, p = ϕ(1), f(ϕ(∆)) ⊆ ϕ(∆)
and for any q ∈ ϕ(∆) it follows that limn→∞ fn(q) = p. Moreover ϕ is said to be tangent to a
direction [v] ∈ CP1 at p if [ϕ(ζ)] → [v] for ζ → 1 (where [·] denotes the canonical projection
of C2 − {0} onto CP1).

Theorem 0.1 (Écalle, Hakim, Abate). If f has an isolated fixed point p ∈ M and dfp = Id then
there exists at least one parabolic curve for f at p.

This theorem is a complete generalization of the well known one-dimensional Leau-Fatou
flower theorem.

The “flower theorem in two-dimensions” has quite an odd story. The first who (partially)
proved it in the 1980’s was J. Écalle [10] who, using his theory of formal series and resurgence,
was able to produce small pieces of f -invariant curves attached to the point p in case f is
“generic”. In the middle of the nineties, several people felt a need for a complete analytic proof
of such a theorem. After some preliminary results of T. Ueda [19] and B. Weickert [20], a
major step in this direction has been done by M. Hakim [12] who proved the “flower theorem”
for “generic maps” (not only in C2 but also in Cn). Her idea was to look at f − Id near p. That
is to say, if some conditions on the first non-zero homogeneous polynomial in the expansion of
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reali e complesse.
1



2 FILIPPO BRACCI

f − Id are satisfied, then one can apply some Banach spaces techniques to construct parabolic
curves. After his results in [1], Abate understood that if Hakim’s conditions at p were not
satisfied then one could have tried to blow-up the point p to reach a more favorable situation
on the exceptional divisor. This is exactly the same strategy exploited by C. Camacho and
P. Sad [7] to show that any holomorphic foliation on a two dimensional complex manifold has
a separatrix at a singular point. Indeed Abate’s proof of the flower theorem follows the same
lines of Camacho-Sad argument. Abate defines “singularities” and “reduced singularities” for
a holomorphic map and proves a reduction theorem which, roughly speaking, says that after
a finite number of blow ups one gets a holomorphic map with only “reduced singularities” on
the exceptional divisor. Then he defines an index for holomorphic maps on curves of fixed
points and proves an index theorem which allows to localize the characteristic classes of the
curve near the singularities of the map. After that he has formally the same ingredients as in the
Camacho-Sad theory, and he can argue in the same way to obtain a point where Hakim’s theory
applies.

Besides giving a complete analytic proof of the flower theorem, Abate’s work made evident
that, firstly, the dynamics near isolated fixed points can be well understood only once one un-
derstands the dynamics near curves of fixed points, secondly, some results on the older theory
of holomorphic foliations can be properly translated to give new results in discrete dynamics.
An evidence of this second claim is a recent work of the author and F. Tovena [4], in which it is
proved a discrete dynamics analogous of a generalization of the Camacho-Sad index Theorem
due to T. Suwa [18].

In a sense this similarity with holomorphic foliations has to be expected according to some
mathematical folklore: one should always find a formal vector field along the curve of fixed
points of a holomorphic map (provided this map is tangent to the identity on such a curve) in
such a way that the map is the time one flow of this formal vector field, and then somehow use
the theory of formal foliations.

One aim of this paper is to provide a new approach which avoids the use of formal foliations
but provides an actual link between holomorphic foliations and holomorphic maps. Given a
holomorphic self-map f of M which fixes p ∈ M and such that dfp = Id, we associate to f
a family of holomorphic 1-forms Ωf,p, see (1.1), which is composed by forms whose flows are
“first-order approximations” of f at p. That is to say, the normalizations of such forms all have
the same linear part at p (up to scalar multiples). This allows to define a (reduced) singularity of
f as a (reduced) singularity of the family Ωf,p. With this approach, the Reduction Theorem 3.3
follows directly from the Seidenberg Reduction Theorem for holomorphic foliations. Then we
turn our attention to the case f has a curve of fixed points, say S ⊂ M . In this case, if p ∈ S, we
select from the family of 1-forms Ωf,p those forms which might generate foliations which have
S locally as a leaf (see (2.1)). It will turn out that the existence of such forms is dynamically
very relevant. Indeed f is said non-tangential on S if such forms do not exist, tangential if they
do. In case f is tangential on S, starting from such forms, we define a flat connection for the
normal bundle of (the regular part of) S, outside the singularities of f on S. In particular, in
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case f has no singularities on S and S is non singular then we have a vanishing theorem (see
Theorem 4.6). If S is compact (no matters whether non singular or not) and f has singularities
on S then the characteristic classes of S localize around the singularities of f on S producing
“residual indices” (see Theorems 5.2, 6.2) and we recover the index theorems of [2] and [4]. All
these results can also be regarded as topological obstructions for a curve to be the fixed points
locus of a (tangential) holomorphic self-map of M .

The second target of these notes is to study the dynamics near a curve S ⊂ M of fixed points
of f , in case f acts as the identity on the normal bundle NS of (the regular part of) S. Let p
be a non singular point of S. The differential dfp has two eigenvalues (counting multiplicity)
at p. One must be 1. The other eigenvalue gives the action of f on NS,p. If this eigenvalue
has modulo 6= 1 then the center stable/unstable manifold theorem [21] provides a clear picture
of the dynamics of f near S at p (see also [16]). Here we deal with the case where 1 is the
only eigenvalue of df on S. This situation is the one we find blowing up a fixed point q ∈ M
where dfq = Id, and therefore seems to deserve a special care. After relating the previous
work about indices and singularities to blow-ups, we give an algorithm for producing parabolic
curves starting with a curve of fixed points whose index is not a positive rational number. Our
algorithm is a generalization (and “translation to discrete dynamics”) of J. Cano’s work [8]. Our
argument allows new results also in the holomorphic foliations case, even if we are not going
to explicitly state them here. This is the key to several results. For instance, we show that f is
non-tangential on a curve S (and identically acting on the normal bundle NS) if and only if f
has a parabolic curve at all but a discrete set of points of S (see Proposition 7.12). Finally we
show that if S is compact, globally and locally irreducible and S · S < 0 then there exists at
least a point of S where f has at least one parabolic curve (see Theorem 7.14). From this we
give a new proof of Theorem 0.1.

I want to sincerely thank professors Marco Abate, Marco Brunella and Daniel Lehmann for
many valuable discussions and suggestions without which this work would not have came to be.
Also, I wish to thank Francesco degli Innocenti for pointing out some mistakes in a previous
version of this paper and the referee for many valuable comments.

1. ONE JET OF FOLIATIONS ATTACHED TO FIXED POINT GERMS

Let M be a two dimensional complex manifold, p ∈ M and let f : M → M be holomorphic
and such that f(p) = p, dfp = Id. For p ∈ S we denote byOp the ring of germs of holomorphic
functions at p. For y, x ∈ Op let

ωy,x,p := (y ◦ f − y)dx− (x ◦ f − x)dy.

Let us consider the family of germs of holomorphic foliations given by

(1.1) Ωf,p := {ωy,x,p = 0 : y, x ∈ Op, dyp ∧ dxp 6= 0}.
Note that the vector field

Xy,x,p := (x ◦ f − x)
∂

∂x
+ (y ◦ f − y)

∂

∂y
,
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is the dual of ωy,x,p. That is to say, Xy,x,p generates the foliation defined by ker ωy,x,p near p.
In other words, one may think of associating to f the foliation generated by the “vector field”
f(p)− p, except that this is not well defined and depends on the coordinates chosen. However
we will show that the first jet of this “vector field” is independent of the coordinates (up to
nonzero multiples) and this allows to well-define a first jet of holomorphic foliation associated
to f . The dynamics behavior of f is then read by the dynamics of this first jet of holomorphic
foliation. We proceed in formalizing this argument.

Let ω̂y,x,p be the saturated of the form ωy,x,p. That is, the form ω̂y,x,p is obtained from ωy,x,p

dividing its coefficients by their greatest common divisor in Op. Note that ω̂y,x,p = ωy,x,p if and
only if p is an isolated fixed point of f .

Let % := [a11x+ a12y + q1(x, y)]dx− [a21x+ a22y + q2(x, y)]dy be a holomorphic one form,
with aij ∈ C and qj(x, y) of order at least two in (0, 0). By definition, the linear part of %,
denoted by J1

(0,0)%, is given by the linear transformation (x, y) 7→ (a21x + a22y, a11x + a12y)

and its eigenvalues are called the eigenvalues of % at (0, 0).

Remark 1.1. Let U ⊂ M be a coordinate set and φ : U → C2 a local chart. Assume that
Fix(f) ∩ U = {l = 0} for a suitable l ∈ O(U). Then

(1.2) φ ◦ f ◦ φ−1 = Id + (l ◦ φ−1)T G,

for some germ G = (G1, G2) of holomorphic self-map of C2 at (0, 0), G 6≡ 0 on Fix(f) ∩ U
and T ≥ 1. As a matter of notations, we will omit to write explicitly the local chart φ when
not indispensable, e.g., we write simply f = Id + lT G instead of (1.2). Also, we denote by h′

the gradient of h ∈ Op in the given local chart, and by 〈H, K〉 the scalar product of two germs
H, K of holomorphic self-maps of C2. With these notations, for any H ∈ Op it holds

H ◦ f −H = 〈H ′, lT G〉+ O(lT+1),

where O(lT+1) denotes terms divisible by lT+1.

Lemma 1.2. Let z, w ∈ Op be such that dzp ∧ dwp = δdxp ∧ dyp 6= 0 for some δ 6= 0. Then

(1) ω̂w,z,p[p] = δω̂y,x,p[p].
(2) If ωy,x,p[p] = 0 then J1

p ω̂w,z,p = δJ1
p ω̂y,x,p.

Proof. We are going to prove the statement in local coordinates {U, (x, y)} such that p = (0, 0).
Write f = Id + hG with h ∈ O(0,0) of order ≥ 0 at (0, 0) and G = (G1, G2) a germ of
holomorphic self-map of C2 at (0, 0) with G1, G2 relatively prime in O(0,0). Note that h = 0 is
the fixed points set of f at (0, 0), thus its order at (0, 0) is 0 if and only if f has an isolated fixed
point at p. For H ∈ Op we denote by J jH the term of order j in its expansion at p = (0, 0).
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Indicating with R1 the terms of order ≥ 1 at (0, 0), we have

(w ◦ f − w)

h
dz − (z ◦ f − z)

h
dw

= (zx〈w′, G〉 − wx〈z′, G〉)dx + (zy〈w′, G〉 − wy〈z′, G〉)dy + R1

= [J0zx〈J0w′, J0G〉 − J0wx〈J0z′, J0G〉]dx

+ [J0zy〈J0w′, J0G〉 − J0wy〈J0z′, J0G〉]dy + R1

= J0(zxwy − zywx)(J
0G2dx− J0G1dy) + R1 = δ(J0G2dx− J0G1dy) + R1,

which proves the first statement. Now assume J0G = (0, 0). Then the first jet of ω̂w,z,p is given
by

[J0zx〈J0w′, J1G〉 − J0wx〈J0z′, J1G〉]dx

+ [J0zy〈J0w′, J1G〉 − J0wy〈J0z′, J1G〉]dy,

and a calculation similar to the previous one gives the second claimed result. ¤
Note that if ωy,x,p[p] 6= 0 then it might happen that J1

p ω̂y,x,p = 0 but J1
p ω̂w,z,p 6= 0 for some

z, w ∈ Op.

Definition 1.3. We say that p is a singularity of f if ω̂y,x,p[p] = 0 for some y, x ∈ Op such that
dxp ∧ dyp 6= 0.

By Lemma 1.2 a point is a singularity of f if and only if ω̂y,x,p[p] = 0 for all z, w ∈ Op.

Remark 1.4. Choose local coordinates (x, y) near p such that p = (0, 0) and f = Id + G, with
G a germ of holomorphic self-map of C2 at (0, 0). Let G = (G1, G2) = h(G◦

1, G
◦
2) with h the

greatest common divisor of G1, G2 and G◦
1 and G◦

2 coprime in Op. In [2] the pure order of f
at p is defined as the minimum of the order of vanishing of G◦

j , j = 1, 2, at p. In [2] a point
is a singularity for f if the pure order is at least one. Therefore a point is a singularity of f
according to Definition 1.3 if and only if it is a singularity according to [2].

Assume that p ∈ M is a singularity of f . By Lemma 1.2 all the forms ω̂y,x,p have the same
linear part up to nonzero multiples. Thus all the saturated of the foliations in Ωf,p coincides at
the first order at p. In particular one can define the “reduced singularities” for f according to
the type of singularities of the family of saturated of Ωf .

More precisely, let p be a singularity of f . Let λw,z,p
1 , λw,z,p

1 ∈ C denote the eigenvalues of
J1

p ω̂w,z,p. By Lemma 1.2 it follows that λw,z,p
1 = λw,z,p

1 = 0 if this is so for all z, w ∈ Op, and if
λw,z,p

1 6= 0 then the ratio λw,z,p
2 /λw,z,p

1 is independent of z, w.

Definition 1.5. Let p ∈ M be a singularity for f . We say that p is a reduced singularity for f
if p is a reduced singularity for ω̂w,z,p = 0 for some—and hence any—w, z. That is to say, if
λw,z,p

1 , λw,z,p
1 are the eigenvalues of J1

p ω̂w,z,p then
(?1) either the eigenvalues λw,z,p

1 , λw,z,p
1 6= 0 and λw,z,p

1 /λw,z,p
2 6∈ Q+ or
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(?2) λw,z,p
1 6= 0 and λw,z,p

2 = 0.

2. CURVES OF FIXED POINTS AND SINGULARITIES

Let M be a complex two dimensional manifold, S a (possibly singular) irreducible curve in
M , f : M → M holomorphic such that f |S = IdS , f 6= IdM . Let I(S)p ⊂ Op be the ideal of
germs vanishing on S.

If U ⊂ M is a coordinate set, l ∈ Op a defining function for S at p then f = Id + lT G for
some germ G = (G1, G2) of holomorphic self-map of C2 at (0, 0), G 6≡ 0 on S and T ≥ 1.
It is easy to see that T is independent of the chosen chart of the defining function l. We call
Tp(f, S) := T the order of f on S at p.

Note that if H ∈ Op then

H ◦ f −H

lT
≡ 〈H ′, G〉 mod I(S)p

Definition 2.1. We say that f is tangential on S at p if for a defining function l of S at p

l ◦ f − l

lT
≡ 0 mod I(S)p,

i.e., if 〈l′, G〉 ≡ 0 on S near p.

Remark 2.2. In [2] and [4], the word non-degenerate is used instead of tangential. However, as
it should be clear after Proposition 2.4, it seems preferable to adopt this terminology.

Note that if f is tangential on S at p for some defining function l then it is so for any defining
function. For the proof of this and for a detailed discussion of tangential conditions we refer the
reader to [4]. Here we content ourselves to state the following result from [4]:

Proposition 2.3. If the curve S is globally irreducible then f is non-tangential at p ∈ S if and
only if f is non-tangential at q ∈ S for every q ∈ S.

Let ΣS be the set of singular points of S. Let U ⊂ M be a coordinate set with coordinates
functions (x, y). Let l be a defining function of S on U , i.e., S ∩ U = {(x, y) : l(x, y) = 0}
with dlp 6= 0 for any p ∈ U ∩ (S − ΣS). Up to shrink U , we can assume that dlp 6= 0 for any
p ∈ U − ΣS . Let τ ∈ O(U) be such that dτq 6= 0 for any q ∈ U and dτp ∧ dlp 6= 0 for any
p ∈ (U − ΣS) ∩ S. We call such a τ a transverse to S.

Let T := Tp(f, S) be the order of f on S at p for some p ∈ U ∩ S. Using the coherence of
the ideals sheaf of S it is easy to see that Tq(f, S) = T for any q ∈ U ∩ S (see the proof of
Lemma 2 in [4]). Therefore the following is a well defined holomorphic one form on U :

(2.1) ωl,τ :=
τ ◦ f − τ

lT
dl − l ◦ f − l

lT
dτ.

We have the following proposition which justifies the name “tangential” given in Definition 2.1:
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Proposition 2.4. The map f is tangential on S ∩ U if and only if S is a leaf for the family of
holomorphic foliations on U given by {ωl,τ = 0} when varying l among the defining functions
of S and τ among the transverses to S.

Proof. The map f is tangential on S if and only if there exists h̃ ∈ O(U) such that

l ◦ f − l = lT+1h̃.

Thus ωl,τ |S ≡ 0 if and only if f is tangential on S. ¤
Note that, even if f is tangential on S, the foliations {ωl,τ = 0} on U really depend on l and

τ ; in particular, apart from S ∩ U , they generally do not share other leaves.
Assume p ∈ ΣS . Then dlp = 0 for any defining function of S. Therefore in this case

ωl,τ [p] = 0 for any defining function l of S and any transverse τ . In particular p is a singularity
for all the family of foliations ωl,τ = 0.

Now suppose p ∈ S\ΣS . Since dlp∧dτp 6= 0 then by Lemma 1.2 it follows that if Fix(f) = S
near p then p is a singularity for f if and only if ωl,τ [p] = 0, i.e., p is a singularity for f if and
only if it is a singularity for all the family of foliations ωl,τ = 0. Therefore if f is tangential on
S at p and Fix(f) = S near p, then p ∈ S \ ΣS is a singularity for f if and only if there exists
one—and hence any—transverse τ to S such that

τ ◦ f − τ

lT
[p] = 0.

On the other hand, in case Fix(f) is the union of S and another curve S ′ at p ∈ S \ ΣS , the
point p might be a singularity for the family of foliations ωl,τ = 0 but not a singularity for f
according to our definition.

It is easy to see that if Fix(f) at a point p contains two non singular curves S, S ′ intersecting
transversally at p and f is tangential on S and on S ′ then p is necessarily a singularity for f .

Singularities are the only relevant points for dynamics on tangential curves, indeed we have

Proposition 2.5 (Abate, [2]). Let M be a two dimensional manifold, S ⊂ M a non singular
curve and p ∈ S. Let f : M → M be holomorphic and such that Fix(f) = S near p. Assume
f is tangential on S. If p is not a singularity for f on S then p cannot be an attracting point for
f ; in particular there are no parabolic curves for f at p.

On the other hand, a reduced (?1) singularity on a tangential curve implies existence of
parabolic curves:

Theorem 2.6 (Abate, Hakim). Let M be a two dimensional complex manifold, f : M → M
holomorphic, S ⊂ M a curve such that f |S = Id|S . Let p ∈ S be a non singular point of S and
suppose f is tangential on S at p. If Fix(f) = S near p and p is a reduced (?1) singularity of f
then there exists at least one parabolic curve for f at p not contained in S.

For a proof of this result see [2], [12], where a more precise statement about the actual number
of parabolic curves is given.
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We end up this section with some remarks about the case of a non singular curve of fixed
points. Suppose thus S is non singular. Then one can choose local coordinates {(x, y), U}
around p such that p = (0, 0), S ∩ U = {y = 0} and, if we write f = (f1, f2),

(2.2)

{
f1(x, y) = x + yµg(x, y)

f2(x, y) = b(x)y + yνh(x, y)

for some holomorphic functions g, h such that g(x, 0) 6≡ 0, h(x, 0) 6≡ 0 and natural numbers
µ ≥ 1, ν ≥ 2. Note that if b(x) = 1 then Tp(f, S) = min{µ, ν} and if b(x) 6= 1 then
Tp(f, S) = 1. A straightforward computation shows

df(x,0) =

(
1 ∗
0 b(x)

)

where “∗” is certainly 0 on U ∩ S if µ ≥ 2.
Let NS := TM |S/TS be the normal bundle of S in M . In the local coordinates (U, (x, y))

the projection [ ∂
∂y

] of ∂
∂y

under the natural map TM |S → NS is a base frame for NS over U ∩S.
Therefore the action of f on NS over U ∩ S is given by

[
∂

∂y
] 7→ [df(

∂

∂y
)] = [b(x)

∂

∂y
].

Hence b(x) ≡ 1 if and only if the action of f over NS is the identity.
Since NS has rank one, if S is compact then the action of f on NS is constant and hence

b(x) ≡ b(f) is a constant. Therefore b(x) ≡ 1 if and only if f acts on NS as the identity.
That is to say, if S is non singular and compact the spectrum of dfp is {1} at some—and hence
any—point p ∈ S if and only if f acts as the identity on NS .

We remark that if b(x) 6= 1 at p ∈ S then Tp(f, S) = 1 and f is non-tangential on S at p
since (y ◦ f − y)/y = b(x)− 1 6≡ 0 on y = 0.

Remark 2.7. Suppose f is given by (2.2) and acts on NS as the identity (then b(x) = 1). Up
to a linear change of coordinates we can always assume that either Tp(f, S) = µ = ν if f is
non-tangential on S or Tp(f, S) = µ = ν − 1 if f is tangential on S. In particular if f is
non-tangential on S then µ ≥ 2 and df = Id along S.

3. REDUCTION OF SINGULARITIES

Let M be a two dimensional complex manifold and let f : M → M be holomorphic. Let
p ∈ M . A blow-up or quadratic transformation of p is a two dimensional complex manifold
M̃ together with a proper holomorphic map π : M̃ → M such that D := π−1(p), called the
exceptional divisor, is a projective complex line and π : M̃ −D → M − {p} is biholomorphic
(see, e.g., [13]). Suppose that p ∈ M is a singularity for f . By definition p is a singularity for
ω̂w,z,p for all ωw,z,p ∈ Ωf,p. The 1-forms π∗(ω̂w,z,p) are identically zero on D. However one
may “saturize” them dividing the coefficients of the forms by their greatest common divisor in
order to obtain 1-forms ω̃w,z,p with only isolated singularities on D. Once fixed w, z ∈ Op, the
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well known theorem of Seidenberg (see, e.g. [6]) assures that after a finite number of blow-ups
one obtains a complex two dimensional manifold, still denoted by M̃ , together with a proper
holomorphic map, still denoted by π : M̃ → M such that

(1) D := π−1(p) = ∪N
α=1Dα has only normal crossing singularities; namely Dα’s are

complex projective lines intersecting transversally each other and no three of them in-
tersecting at one point;

(2) π : M̃ −D → M − {p} is biholomorphic;
(3) The 1-form ω̃w,z,p has only isolated reduced singularities on D.

If π : M̃ → M is a quadratic transformation of p ∈ M , the map f induces a holomorphic
map f̃ : M̃ → M̃ such that π ◦ f = f̃ ◦ π and f̃ acts on the exceptional divisor D as dfp, if
dfp is invertible (see [1]). In particular if p is a singularity for f then dfp = Id and f̃ |D = Id|D.
The map f̃ has isolated singularities on D.

Remark 3.1. Assume f(p) = p and dfp = Id. A direct calculation shows that the action of
f̃ on the normal bundle ND of the exceptional divisor D = π−1(p) in M is the identity, i.e.,
b(f̃) = 1.

In [2] Abate proves directly an analogous of Seidenberg’s reduction theorem for the map f
(see Theorem 2.3 in [2]). Here we give another version of such a theorem, with a simpler proof
based on Seidenberg’s theorem. Before that, we need another definition:

Definition 3.2. Let p ∈ M be such that f(p) = p and dfp = Id. Let π : M̃ → M be the
blow-up at p such that D := π−1(p) is a complex projective line. We say that p is dicritical for
f if f̃ : M̃ → M̃ is non-tangential on D.

The point p is dicritical for f if and only if it is dicritical for any foliation ω̂w,z,p = 0. Indeed
f̃ is non-tangential on D if and only if D is not invariant for the saturated of π∗(ω̂w,z,p) = 0 for
any w, z, which is the definition of dicritical point for foliations (see, e.g., [6]).

Theorem 3.3 (Reduction Theorem). Let M be a two dimensional complex manifold. Let f :
M → M be holomorphic. Let p ∈ M be a singularity of f . Then there exists a two dimensional
complex manifold M̃ , a proper holomorphic map π : M̃ → M and a holomorphic map f̃ :
M̃ → M̃ such that

(1) D := π−1(p) = ∪N
α=1Dα has only normal crossing singularities.

(2) π : M̃ −D → M − {p} is biholomorphic.
(3) π ◦ f̃ = f ◦ π.
(4) f̃ |D = Id|D.
(5) f̃ has only isolated reduced or dicritical singularities on D.
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Proof. Let p be a non-dicritical singularity for f . Let {U, (x, y)} be local coordinates around p
so that p = (0, 0) and write f = (f1, f2) as

(3.1)

{
f1(x, y) = x + l(x, y)g(x, y)

f2(x, y) = y + l(x, y)h(x, y)

where g, h are coprime and l does not divide g and h in Op. Note that we may assume l ≡ 1 if
and only if Fix(f) = {p} near p. Moreover, since p is a singularity for f then g(0, 0) = 0 and
h(0, 0) = 0. Let µ(g) ≥ 1 (respect. µ(h) ≥ 1) be the order of vanishing of g (respect. of h) at
(0, 0). Write the homogeneous polynomials expansion of g and h as follows

g(x, y) = gµ(g)(x, y) + gµ(g)+1(x, y) + g•(x, y),

h(x, y) = hµ(h)(x, y) + hµ(h)+1(x, y) + h•(x, y).

Note that gµ(g) 6≡ 0, hµ(h) 6≡ 0. Let µ(l) ≥ 0 be the order of vanishing of l at (0, 0). Clearly
µ(l) + µ(g) ≥ 2, µ(l) + µ(h) ≥ 2. Let π : M̃ → M be the blow-up at p. Let (u, v) be
local coordinates on M̃ such that π(u, v) = (u, uv) and D := π−1(0, 0) = {u = 0}. Write
f̃ = (f̃1, f̃2) and let l(u, uv) = uµ(l)l̃, with l̃(0, v) 6≡ 0. Then

f̃1(u, v) =u + l(u, uv)g(u, uv) = u + l̃uµ(l)+µ(g)[gµ(g)(1, v) + O(|u|)],

f̃2(u, v) =
uv + l(u, uv)h(u, uv)

u + l(u, uv)g(u, uv)
= v + l̃uµ(l)−1[uµ(h)hµ(h)(1, v)

+ uµ(h)+1hµ(h)+1(1, v)− uµ(g)vgµ(g)(1, v)− uµ(g)+1vgµ(g)+1(1, v)

− uµ(l)+µ(g)+µ(h)−1l̃hµ(h)(1, v)gµ(g)(1, v) + O(|u|min(µ(g),µ(h))+2)]

where, as usual, O(|u|m) stands for terms of order at least m in u. From this expression follows
that p is dicritical for f if and only if µ(g) = µ(h) and ygµ(g)(x, y) = xhµ(h)(x, y).

Let p̃ := (0, v). Choose w = u, z = v.
First suppose µ(h) > µ(g). Then µ(h) + µ(l) ≥ 3 and

ω̂u,v,p̃ = [ugµ(g)(1, v) + O(|u|2)]dv

− [−vgµ(g)(1, v)− vugµ(g)+1(1, v) + uµ(h)−µ(g)hµ(h)(1, v) + O(|u|2)]du

On the other hand, a straightforward calculation shows that

π∗(ω̂x,y,p) = {ug(u, uv)dv − [h(u, uv)− vg(u, uv)]du},
that is, the saturated [π∗(ω̂x,y,p)]̂ is given by

(3.2) [π∗(ω̂x,y,p)]̂ = [ugµ(g)(1, v) + O(|u|2)]dv

− [−vgµ(g)(1, v)− vugµ(g)+1(1, v) + uµ(h)−µ(g)hµ(h)(1, v) + O(|u|2)]du.

Therefore p̃ is a singularity for f̃ if and only if it is a singularity for [π∗(ω̂x,y,p)]ˆand the part of
lowest degree of ω̂u,v,p̃ is equal to the part of lowest degree of [π∗(ω̂x,y,p)]̂ at p̃.
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If µ(h) < µ(g) then a similar reasoning leads to the same conclusion.
Suppose finally µ(g) = µ(h). This implies that µ(l) + µ(g) ≥ 2. As observed before, since

p is non-dicritical for f then hµ(h)(1, v)− vgµ(g)(1, v) 6= 0 and therefore

ω̂u,v,p̃ = [ugµ(g)(1, v) + O(|u|2)]dv

− [hµ(h)(1, v)− vgµ(g)(1, v) + u(hµ(h)+1(1, v)− vgµ(g)+1(1, v))

+ uµ(l)+µ(g)−1l̃hµ(h)(1, v)gµ(g)(1, v) + O(|u|2)]du

If µ(l)+µ(g) > 2 we can argue as before to find the same conclusion. So we are left to analyze
the case µ(l)+µ(g) = 2. The singularity for f̃ on the exceptional divisor D are given by (0, v0)
where v0 is such that

hµ(h)(1, v0)− v0gµ(g)(1, v0) = 0.

By (3.2), these are exactly the singularities of [π∗(ω̂x,y,p)]̂. But, unless hµ(h)(1, v0) = 0, the
linear part of [π∗(ω̂x,y,p)]̂ at (0, v0) is different to the linear part of ω̂u,v,p̃ at (0, v0). How-
ever a straightforward calculation shows that the eigenvalues of ω̂u,v,p̃ at (0, v0) are given
by gµ(g)(1, v0) and ∂

∂v
(−hµ(h)(1, v) + vgµ(g)(1, v))|v=v0 , which are exactly the eigenvalues of

[π∗(ω̂x,y,p)]̂ at (0, v0).
Summing up, we have shown that the singularities of ω̂u,v,p̃ on the chart (u, v) of D are

exactly the singularities of [π∗(ω̂x,y,p)]̂ on such a chart and also that the part of lowest degree
or, when this degree is one, the eigenvalues of ω̂u,v,p̃ are equal to the part of lowest degree or
to the eigenvalues of [π∗(ω̂x,y,p)]̂ at such singularities. The same holds for the other chart of
D and hence the result follows from the Seidenberg reduction theorem applied to the 1-form
ω̂x,y,p. ¤
Remark 3.4. Let f be given by (3.1). In the proof of Theorem 3.3 we saw that the point p is
dicritical for f if and only if µ(h) = µ(g) and ygµ(g)(x, y) ≡ xhµ(h)(x, y).

Remark 3.5. Note that, with the notations of the proof of Theorem 3.3, in general at a singularity
p̃ of f̃ we have J1

p̃ ω̂u,v,p̃ 6= J1
p̃ [π∗(ω̂x,y,p)]̂, even if the two linear parts have the same eigenvalues.

4. CONNECTIONS ON NON SINGULAR CURVES AND THE VANISHING THEOREM

Let M be a two dimensional complex manifold, S ⊂ M a non singular curve. Let l be a
defining function of S on U , i.e., S ∩ U = {(x, y) : l(x, y) = 0} with dlp 6= 0 for any p ∈ U .
Let τ ∈ O(U) be a transverse to S, i.e., dlp ∧ dτp 6= 0 for any p ∈ U .

Let L be the line bundle associated to the divisor S. That is to say, if Uj, Uk are coordinate
sets such that Uj ∩ Uk 6= ∅ and S is given by {lj = 0} on Uj and by {lk = 0} on Uk, then
ljk :=

lj
lk
∈ O∗(Uj ∩ Uk) are cocycle functions defining L. Then, since ljkdlk = dlj on

Uj ∩ Uk ∩ S, it follows that {dlj} is a vector bundle homomorphism between TM|S and L|S
whose kernel is TS. Therefore L|S ' NS , the normal bundle of S. We have the following exact
sequence:

(4.1) 0 −→ TS −→ TM |S dl−→ NS −→ 0.
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Remark 4.1. The morphism dl allows to define a natural holomorphic frame for NS on U ∩ S;
that is to say, if v is a holomorphic section of TM such that dl(v|S) ≡ 1 then dl(v|S) can be
thought of as a holomorphic frame for NS on U , which in the sequel we will always denote
by E.

Let f : M → M be holomorphic such that Fix(f) = S. Assume f is tangential on S and
moreover suppose that f has no singularities on S ∩ U . In the local coordinates {U, (x, y)}
write f = (f1, f2) and

(4.2)

{
f1(x, y) = x + lT g(x, y),

f2(x, y) = y + lT h(x, y).

Note that the map f is, by definition, tangential on S at p if and only if lxg + lyh ≡ 0 on S.
Let us define the following operator on TSp ×NS|U with value in NS:

θl,τ : TpS ×NS|U → NS,p

θl,τ : (X, s) 7→ θl,τ
X (s) := dlp([X̃, s̃]|S),

(4.3)

where s̃ is a section of TM near S ∩ U such that dl(s̃|S) = s and X̃ is a section of TM on U

such that X̃(p) = X and ωl,τ (X̃) = 0 on U .

Lemma 4.2. For any X ∈ TpS and s = v · E section of NS over S ∩ U it follows

(4.4) θl,τ
X (s) =

{
X · v − v

l ◦ f − l

l(τ ◦ f − τ)
[p]dτp(X)

}
E.

In particular θl,τ
X (s) as defined in (4.3) depends only on X and s and not on s̃, X̃ chosen to

define it.

Proof. Let s̃ = A ∂
∂x

+B ∂
∂y

be such that dl(s̃|S) = v. On U a basis for TS is given by ly
∂
∂x
−lx

∂
∂y

,
therefore X = λ(ly

∂
∂x
− lx

∂
∂y

)[p] for some λ ∈ C. For T = Tp(f, S) the order of f on S at p,
let us set

g̃ =
τ ◦ f − τ

lT
,

h̃ =
l ◦ f − l

lT+1
.

Since ωl,τ = (−h̃lτx + g̃lx)dx + (−h̃lτy + g̃ly)dy it follows that

X̃ = wk
{

(−h̃lτy + g̃ly)
∂
∂x

+ (−g̃lx + h̃lτx)
∂
∂y

}
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where k ∈ O∗(U) and w(p) = λ
k(p)g̃(p)

(note that g̃ 6= 0 on S by the previous discussion). Thus

[X̃, s̃] = {wk(−h̃lτy + g̃ly)Ax + wk(−g̃lx + h̃lτx)Ay

− A ∂
∂x

(wk(−h̃lτy + g̃ly))−B ∂
∂y

(wk(−h̃lτy + g̃ly))} ∂
∂x

+ {wk(−h̃lτy + g̃ly)Bx + wk(−g̃lx + h̃lτx)By

− A ∂
∂x

(wk(−g̃lx + h̃lτx))−B ∂
∂y

(wk(−g̃lx + h̃lτx))} ∂
∂y

Therefore, after a straightforward calculation we find

dlp([X̃, s̃]|l=0) = wkvh̃(lxτy − τxly)[p] + wkg̃(−Blxlyy + Blylxy

− Alxlxy + Alylxx + lxlyAx − l2xAy − lylxBy + l2yBx)[p]

= vλ
h̃

g̃
(lxτy − τxly)[p]− λ(ly

∂
∂x
− lx

∂
∂y

)[p](dlp(s̃))

= −v
h̃

g̃
[p]dτp(X) + X · v,

as wanted. ¤

Now we want to see how θl,τ varies when varying τ and l.

Lemma 4.3. Let τ̃ ∈ O(U) be such that dτ̃ ∧ dl 6= 0 on U . Let l̃ = ul for u ∈ O∗(U). Then for
any X ∈ TpS

(4.5)
l ◦ f − l

l(τ ◦ f − τ)
[p]dτp(X)− l̃ ◦ f − l̃

l̃(τ̃ ◦ f − τ̃)
[p]dτ̃p(X) = −{d(log u) ·X}.

Proof. Write f = (f1, f2) as in (4.2). Let T = Tp(f, S) be the order of f on S at p. Let
h̃ = l◦f−l

lT+1 . From (4.4) it follows that, if X = λ(ly
∂
∂x
− lx

∂
∂y

) ∈ TS|U ,

{
l ◦ f − l

l(τ ◦ f − τ)
|l=0dτ − l ◦ f − l

l(τ̃ ◦ f − τ̃)
|l=0dτ̃

}
·X

= h̃|l=0
τ̃xτy − τxτ̃y

(τxg + τyh)(τ̃xg + τ̃yh)
(−hdx + gdy) ·X

= −λh̃|l=0
τ̃xτy − τxτ̃y

(τxg + τyh)(τ̃xg + τ̃yh)
(lyh + lxg) = 0,
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since lyh + lxg = 0 on S by definition of non-tangentiality. Now we may assume τ = x. Then
{

l ◦ f − l

lT+1g
|l=0dx− ul ◦ f − ul

ulT+1g
|l=0dx

}
·X

=

{
h̃

g
|l=0dx− l

u ◦ f − u

lT+1ug
|l=0dx− (u ◦ f)

l ◦ f − l

ulT+1g
|l=0dx

}
·X

=

{
h̃

g
|l=0dx− uxg + uyh

ug
|l=0dx− h̃

g
|l=0dx

}
·X = −

{
ux

u
+

uy

u

h

g

}
dx ·X.

Since f is tangential on S, by definition, it follows that h
g

= − lx
ly

on {l = 0} and therefore

−
{

ux

u
+

uy

u

h

g

}
dx ·X =

{−uxly + uylx
uly

}
dx · λ(ly

∂
∂x
− lx

∂
∂y

)

= λ
−uxly + uylx

u
= −d(log u) ·X,

as wanted. ¤

Remark 4.4. Let χ be a (local) biholomorphism on U with values in U . Let V ⊆ U a open set
such that f(χ−1(V )) ⊆ U . Let τ̃ = τ ◦ χ−1, l̃ = l ◦ χ−1 and f̃ = χ ◦ f ◦ χ−1

|V . Then, since

l̃ ◦ f̃ − l̃

l̃(τ̃ ◦ f̃ − τ̃)
dτ̃ = χ∗

(
l ◦ f − l

l(τ ◦ f − τ)
dτ

)

it follows that θl̃,τ̃ is the expression of θl,τ in the local coordinates (χ1(x, y), χ2(x, y)).

Now let {Uj} be a covering of S made of coordinate sets with local coordinates (xj, yj). For
any j choose a defining function lj such that S ∩ Uj = {lj = 0}. By (4.5) we may define on
each Uj the operator

θj := θlj ,τj ,

where τj is any transverse to S on Uj . Note that since NS is a holomorphic line bundle and by
(4.4) the operators θj can be viewed as (1, 0)-connections on NS|Uj

. We want to show that they
indeed glue together to give a (1, 0)-connection for all of NS . This is the case if and only if the
1-forms

(4.6) ηj :=

{
− lj ◦ fj − lj

lj(τj ◦ fj − τj)
|lj=0

}
dτj

defined on the Uj’s are such that

(4.7) ηj = ηk +
dukj

ukj

,
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whenever Uk ∩ Uj 6= ∅ and {ujk} is the system of cocycles defining NS relative to {Uj}, and
this follows at once from Remark 4.4 and (4.5). We denote by ∇ such a (1, 0)-connection.
Summing up we have proved:

Proposition 4.5. Suppose M is a two dimensional complex manifold, S ⊂ M a non singular
curve. Let f : M → M be holomorphic and such that Fix(f) = S. Assume that f is tangential
on S and that f has no singularities on S. Then there exists a (1, 0)-connection ∇ for NS such
that, if U is a coordinate open set and (x, y) are local coordinates on U such that S ∩ U =
{y = 0} then the connection 1-form with respect to the frame [ ∂

∂y
] of NS on U is given by

(4.8)
{
− y ◦ f − y

y(x ◦ f − x)
|y=0

}
dx.

Proof. We have

∇ ∂
∂x

([
∂

∂y
]) = θy,x

∂
∂x

([
∂

∂y
]),

and
∇ ∂

∂x
([

∂

∂y
]) = 0.

From this and (4.4) the statement follows. ¤
Hence we have

Theorem 4.6 (Vanishing Theorem). Let M be a two dimensional complex manifold, S ⊂ M a
non singular curve, f : M → M holomorphic such that Fix(f) = S and f is tangential on S. If
f has no singularities on S then there exists a connection∇ (which we call the basic connection)
for NS such that its curvature K ≡ 0. In particular the first Chern class c1(NS) = 0.

Proof. Let ∇ be the connection for NS defined in Proposition 4.5. Locally ∇ is given by the
1-form η given by (4.8) in the natural frame E of NS . Since η has holomorphic coefficients and
K = dη − η ∧ η, it follows that K ≡ 0. Also c1(NS) = − 1

2πi
[c1(∇)] = 0. ¤

Remark 4.7. If S is non-compact then c1(L) = 0 for any line bundle L on S (this follows at
once from the long exact sequence associated to the exponential sequence). However if S is
compact then this is not generally true, and the result is not obvious.

5. RESIDUAL INDEX THEOREM IN THE NON SINGULAR CASE

We use the notations of the previous section. Suppose S is compact, connected and non
singular and f is tangential on S. Then f has only a finite number of singularities on S. Let
Σ := {p1, . . . , pr} be such singularities and V := S − Σ. For α = 1, . . . , r let {Uα} be a
coordinate set of M such that Tα := Uα ∩ S is non-empty and simply connected and {pα} =
Σ ∩ Tα. Let ∇ be a basic connection for NV as defined in the previous section. Let Wα be
a simply connected open set in S such that Wα ⊂ Tα. On each Tα let ∇α be a connection
for NS|Tα . Let ψ be a C∞ function on S such that ψ has support in ∪αTα and ψ|Wα ≡ 1 for
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α = 1, . . . , r. Let∇1 := ψ
∑∇α + (1−ψ)∇. Then∇1 is a connection for NS and, if K1 is its

curvature, it follows that
−1

2πi
[K1] = c1(NS) ∈ H2(S,C).

Note that K1 = K on S −∪αTα, where K is the curvature of ∇. Thus by Theorem 4.6, K1 has
compact support contained in ∪Tα.

In particular by the Poincaré duality it follows

H2(S,C) ' H0(S,C) ' C,

where the first isomorphism is given by integration on S. Therefore the first Chern number of
NS , which equals the self-intersection number of S denoted by S · S, is given by

(5.1) S · S =
−1

2πi

∫

S

K1 =
−1

2πi

∑
α

∫

Tα

K1.

Let us give the following definition:

Definition 5.1. The residual index of f on S at p ∈ S is given by

Ind(f, S, p) =
1

2πi

∫

Vp

K1,

where Vp is a simply connected open set in S containing p such that Vp ∩ ∪αTα = ∅ if p 6∈ Σ
and Vp = Tα if p = pα ∈ Σ.

Note that Ind(f, S, p) = 0 for any p ∈ S which is not a singularity for f .
The index theorem (due to Abate, who first proved it by other methods, see [2]) follows now

directly from (5.1):

Theorem 5.2 (Index Theorem in the non singular case). Let M be a complex two dimensional
manifold, S ⊂ M a non singular compact connected curve and f : M → M holomorphic such
that Fix(f) = S and f is tangential on S. Then

∑
p∈S

Ind(f, S, p) = S · S.

Now we are going to show that Ind(f, S, p), for p a singularity of f , is in fact independent of
the ∇1 chosen to define it. To do so, we compute Ind(f, S, p) explicitly.

Let p ∈ S be a singularity for f , {(x, y), U} local coordinates for M such that p = (0, 0) and
S ∩U = {y = 0}. Let T := Tp(f, S) be the order of f on S at p. Suppose f = (f1, f2) is given
by

(5.2)

{
f1(x, y) = x + yT g(x, y)

f2(x, y) = y + yT+1h(x, y)

where g(x, 0) 6≡ 0. Suppose V, W are simply connected open sets with smooth boundary in S
such that p ∈ V ⊂ V ⊂ W ⊂ W ⊂ U ∩ S and ψ ≡ 1 on V and ψ has compact support in
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W . Let η1 be the connection 1-form of ∇1 on U , η the connection 1-form of ∇ on U −{p} and
ηα the connection 1-form of ∇α (where ∇α is a connection for NS on W ). Then, in the natural
frame [ ∂

∂y
], by (4.8) we have

η1 = ψηα + (1− ψ)η = ψηα − (1− ψ)
h(x, 0)

g(x, 0)
dx.

Since K1 = dη1 − η1 ∧ η1 = dη1 then Stokes’ theorem implies (recall that ψ|∂W ≡ 0)

Ind(f, S, p) =
−1

2πi

∫

W

K1 =
−1

2πi

∫

W

dη1 =
−1

2πi

∫

∂W

η1

=
−1

2πi

∫

∂W

−h(x, 0)

g(x, 0)
dx = Res(

h(x, 0)

g(x, 0)
dx; x = 0).

Thus in the case S is non singular we have

Ind(f, S, p) = Res(
h(x, 0)

g(x, 0)
dx; x = 0),

which is exactly the index defined in [2].

Remark 5.3. 1. The index Ind(f, S, p) is exactly the Camacho-Sad index at the point p for the
family of holomorphic foliations defined by ωl,τ = 0, where ωl,τ is given by (2.1).
2. In the hypotheses of Theorem 5.2 we assume that Fix(f) = S. This hypothesis can be easily
relaxed by simply asking for f |S = Id|S . As explained in section 2, if there is another curve
S ′ of fixed points of f , intersecting S at a point p, then the foliation ωl,τ = 0 defined by (2.1)
has a singularity at p, no matter whether p is a singularity for f or not. Therefore one cannot
define the basic connection at p (see section 4). However one can add the point p to the set Σ
and argue as before. Note that, even in this case, if p is not a singularity for f it follows from
the formula above that Ind(f, S, p) = 0.

6. RESIDUAL INDEX THEOREM IN THE SINGULAR CASE

In this section we let S have some isolated singularity. Then the setting is the following: M
is a two dimensional complex manifold, S ⊂ M is a compact (globally) irreducible connected
compact curve and f : M → M holomorphic such that Fix(f) = S and f is tangential on S.

Let Σ := Σf ∪ ΣS , where Σf is the set of singularities of f on S and ΣS is the set of
singularities of S. Let {Uj, (xj, yj)} be local coordinates such that S∩Uj = {lj = 0}. Let L be
the line bundle associated to the divisor S, whose cocycles are given by lj/lk ∈ O∗(Uj ∩ Uk).
Let V be a open neighborhood of Σ, such that V = ∪Vα and the Vα’s are pairwise disjoint,
simply connected and so that each one contains only one point of Σ, say pα. Moreover, if
T := V ∩ S and Tα := Vα ∩ S we require that ∂Tα is a smooth regular curve for any α. We
are going to define a C∞ connection ∇̃ for L such that ∇̃ restricted to S − V coincides with
the basic connection for NS−V defined by the lj’s. To do this, let W be a tubular neighborhood
of S − Σ and ρ : W → S − Σ be the projection. Since ρ∗(L|S−Σ) equals L once restricted to
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S−Σ, then ρ∗(L|S−Σ) is C∞ isomorphic to L over W . On L|W we put the pull back connection
∇̃0 := ρ∗(∇0) where ∇0 is the basic connection for L|S−Σ defined as in section 4. On each Vα

let ∇̃α be any connection for L|Vα . For any α let Ṽα ⊂ Vα be a simply connected open set such
that pα ∈ Ṽα. Let ψ be a C∞ function on M such that ψ ≡ 1 on Ṽα for any α and supp(ψ) ⊂ V .
Finally let ∇̃ := ψ

∑ ∇̃α + (1 − ψ)∇̃0. Then ∇̃ is a connection for L over a neighborhood
of S. Therefore, if K̃ is the curvature of ∇̃, we have

(6.1) S · S =

∫

[S]

c1(L) =
−1

2πi

∫

[S]

K̃

where [S] ∈ H2(M,C) is the homology class of S. Since K̃ = K = 0 on S − T , where K is
the curvature of ∇0 on S − Σ, then it follows that

(6.2)
−1

2πi

∫

[S]

K̃ =
1

2πi

∑
α

∫

Tα

K̃.

We are now in the position to define the residual index at singular points of S:

Definition 6.1. The residual index of f on S at pα ∈ ΣS is given by

Ind(f, S, pα) =
−1

2πi

∫

Tα

K̃.

From (6.1) and (6.2) it follows the index theorem in the singular case, already proved in [4]
with a different technique:

Theorem 6.2 (Index Theorem in the singular case). Let M be a two dimensional complex
manifold, S ⊂ M a globally irreducible compact connected curve (possibly with singularities)
and f : M → M holomorphic such that Fix(f) = S and f is tangential on S. Then

∑
p∈S

Ind(f, S, p) = S · S.

Now we want to calculate the index in the case p ∈ ΣS . Therefore we have to evaluate
−1

2πi

∫

Tα

K̃.

We may suppose that on Vα the curve S is given by l = 0. By (4.4) the 1-form of the connection
∇̃ on S ∩ Vα with respect to the natural frame E associated to l is given by

η̃ = ψηα + (1− ψ)

{
− l ◦ f − l

l(τ ◦ f − τ)
|l=0

}
dτ,

where τ is any transverse to S outside p and ηα is the connection 1-form of ∇α (where ∇α is a
connection for L on Vα). Then K̃ = dη̃ − η̃ ∧ η̃ = dη̃ on Tα and by Stokes’ theorem we have

Ind(f, S, p) =
−1

2πi

∫

Tα

K̃ =
−1

2πi

∫

Tα

dη̃ =
−1

2πi

∫

∂Tα

η̃ =
1

2πi

∫

∂Tα

{
l ◦ f − l

l(τ ◦ f − τ)

}
dτ,
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as in [4].

Remark 6.3. Note that if ∂Tα is not connected, the integral is a sum of integrals each of which
gives the index of f at p of the irreducible component of S intersecting such component of ∂Tα.

Remark 6.4. As in the non singular case, the index at a point p ∈ S is exactly the Suwa-
Camacho-Sad index for the family of holomorphic foliations ωl,τ = 0 given by (2.1). Also,
Theorem 6.2 holds with the hypothesis that f |S = Id|S instead of Fix(f) = S, see Remark 5.3.

7. DYNAMICS NEAR CURVES OF FIXED POINTS

In his paper, Abate [2] proves that if f is a (germ of) holomorphic diffeomorphism of C2 with
an isolated fixed point p ∈ C2 and such that dfp = Id then there exists at least one parabolic
curve for f at p. In this section we are going to investigate what happens in the case f : M → M
has a curve of fixed points and f acts as the identity on the normal bundle of the regular part
of S.

In what follows we need these results about indices and blow-ups (see [2] and [4]):

Lemma 7.1. Let M be a two dimensional complex manifold. Let f : M → M be holomorphic
and S ⊂ M a curve such that f |S = IdS and f is tangential on S. Let p ∈ S be such that S

is irreducible at p. Let π : M̃ → M be the blow-up of M at p, and f̃ : M̃ → M̃ be the map
induced by f . Let D := π−1(p) and let S̃ := π−1(S − {p}) be the strict transform of S. Then

(1) The map f̃ is tangential on S̃.
(2) Let {p̃} = D∩S̃. Then Ind(f̃ , S̃, p̃) = Ind(f, S, p)−m2, where m ≥ 1 is the multiplicity

of S at p (in particular m = 1 if and only if S is non singular at p).

Now we can start our study of dynamics. First, we need some calculations for the indices:

Lemma 7.2. Let M be a two dimensional complex manifold, S ⊂ M a curve. Let f : M → M
be holomorphic such that f |S = IdS and f is tangential on each component of S.

(1) If p ∈ S is a non singular point of S dicritical for f then Ind(f, S, p) = 1.
(2) If p ∈ S belongs to two non singular irreducible branches S1, S2 of S intersecting

transversally at p and p is a non-dicritical reduced singularity (?2) for f on S then
either Ind(f, S1, p) = 0 or Ind(f, S2, p) = 0.

(3) If p ∈ S belongs to two non singular irreducible branches of S intersecting transversally
at p and p is a non-dicritical reduced singularity (?1) for f on S, then

Ind(f, S1, p) · Ind(f, S2, p) = 1.

(4) If p ∈ S is a non singular point of S which is a non-dicritical reduced singularity (?2)
of f on S
• either Ind(f, S, p) = 0,
• or, after one blow-up, the induced map f̃ has a reduced singularity (?2) at the

intersection of the strict transform of S with the exceptional divisor and a reduced
singularity (?1) on a non singular point of the exceptional divisor.
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The statement (2), (3) and (4) of Lemma 7.2 are in [2]. Note also that by Remarks 5.3 and 6.4
the previous Lemmas 7.1 and 7.2 follow from the same properties for foliations. We give here
the proof of Lemma 7.2.(1) for it seems not to be written anywhere else.

Proof of Lemma 7.2.(1). By Remark 2.7 we may choose local coordinates (x, y) around p in
such a way that p = (0, 0), S = {y = 0} and f is given by (5.2), where T ≥ 1 and g(x, 0) 6≡ 0,
h(x, 0) 6≡ 0. Since p is dicritical it follows from Remark 3.4 that gµ(g)(x, y) = xhµ(h)(x, y),
where gµ(g) and hµ(h) are the first non-zero terms in the homogeneous expansion of g and h
respectively, and µ(g) = µ(h) + 1. Then, setting Γ = (e2πiθ, 0) for θ ∈ (0, 1), g(x, y) =
gµ(g)(x, y) + g•(x, y) and h(x, y) = hµ(h)(x, y) + h•(x, y) we have

2πi Ind(f, S, p) =

∫

Γ

y ◦ f − y

y(x ◦ f − x)
dx =

∫

Γ

hµ(h)(x, y) + h•(x, y)

gµ(g)(x, y) + g•(x, y)
dx

=

∫

Γ

hµ(h)(x, 0)

gµ(g)(x, 0) + g•(x, 0)
dx +

∫

Γ

h•(x, 0)

gµ(g)(x, 0) + g•(x, 0)
dx.

Now the second integral is the residue at x = 0 of the ratio of two holomorphic functions with
numerator of order ≥ µ(h) + 1 at 0 and denominator of order µ(g) = µ(h) + 1 at 0, therefore
the ratio is holomorphic at x = 0 and the integral is zero. As for the first integral

∫

Γ

hµ(h)(x, 0)

gµ(g)(x, 0) + g•(x, 0)
dx =

∫

Γ

hµ(h)(x, 0)

hµ(h)(x, 0)x + g•(x, 0)
dx

=

∫

Γ

1

x + g•(x,0)
hµ(h)(x,0)

dx = 2πi,

since g•(x, 0)/hµ(h)(x, 0) has order ≥ µ(g) + 1 − µ(h) = µ(g) + 1 − µ(g) + 1 = 2 at x = 0.
Therefore Ind(f, S, p) = 1 as wanted. ¤

Now we are going to somehow mimic the work of Cano [8] for the continuous dynamics
in order to find out an algorithm for producing parabolic curves. However, contrarily to the
continuous case, we have to worry about dicritical points and non-tangential curves, since it is
by no means obvious that there must exist infinitely many parabolic curves in such situations.
This is actually true as we show later, but the proof is based on the algorithm itself.

Definition 7.3. Let M be a two dimensional complex manifold, f : M → M holomorphic. Let
Fix(f) = S, for S a curve in M . Assume that f is tangential on each component of S.

• We say that a point p ∈ S is of type (C1) if S is nonsingular at p and

Ind(f, S, p) 6∈ Q+ ∪ {0}.
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• We say that a point p ∈ S is of type (C2) if S has two nonsingular branches S0, S1 at p,
intersecting transversally at p and there exists a real number r > 0 such that

Ind(f, S0, p) 6∈ Q(≥−1/r) = {a ∈ Q : a ≥ −1/r}
Ind(f, S1, p) ∈ Q(≤−r) = {a ∈ Q : a ≤ −r}.

Remark 7.4. If q ∈ S is of type (C2) then by Lemma 7.2.(2) and (3) the point q cannot be a
reduced singularity for f on the branches of S at q. Note also that by Lemma 7.2 a point of type
(C1) or (C2) cannot be dicritical.

We start with the following lemma whose proof goes exactly as in [8] (we only note that
blowing up a (C1) or (C2) point produces a divisor on which the blow up map is tangential by
the previous note):

Lemma 7.5. Let M be a two dimensional complex manifold, f : M → M be holomorphic and
such that Fix(f) = S, for a curve S. Let q ∈ S be a point of type (C1), (C2). Let π : M̃ → M

be the blow-up at q and E := π−1(S) the total transform of S. Let f̃ be the holomorphic map
induced by f on M̃ . Then there exists a point q̃ ∈ E of type (C1) or (C2).

Definition 7.6. Let S be a curve in a complex two dimensional manifold M . Let f : M → M
be holomorphic and assume Fix(f) = S. Let p ∈ S. We say that p is an appropriate singularity
for f if after a finite number of blow ups there exists a point of type (C1) or (C2) on the total
transform of S.

The importance of appropriate singularities comes from the following result:

Proposition 7.7. Let M be a two dimensional complex manifold, S ⊂ M a curve. Let f : M →
M be holomorphic such that Fix(f) = S. Let p ∈ S be an appropriate singularity for f . Then
there exists at least one parabolic curve for f at p.

Proof. By definition, after a finite number of blow ups we obtain a (C1) or (C2) point. By
the theorem of resolution of singularities for curves, (see, e.g., [13]) we may assume the total
transform of S has only normal crossing singularities. By Lemma 7.5 and by Theorem 3.3, after
a finite number of blow-ups at (C1) or (C2) points, we find either a nonsingular point of the total
transform or a corner which is a reduced singularity for the induced map of type, respectively,
(C1) or (C2). However by Remark 7.4 it cannot be of type (C2). Thus there must be a reduced
singularity of type (C1) which is a non singular point of the total transform, say q. By Lemma
7.2.(4) we may assume (up to blow up once more if necessary) that the point q is a reduced
singularity of type (?1). Thus Theorem 2.6 applies producing (at least) a parabolic curve not
contained in the total transform of S, which projects down to a parabolic curve for f at p. ¤

By definition, a nonsingular point p ∈ S of a curve S such that Fix(f) = S near p, f is
tangential on S and Ind(f, S, p) 6∈ Q+ ∪{0}, is an appropriate singularity for f . However there
are some more interesting examples, as the following results show:
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Proposition 7.8. Let M be a two dimensional complex manifold, S ⊂ M be a (possibly singular
and non-compact) curve. Let f : M → M be holomorphic such that Fix(f) = S.

(1) If f acts on the normal bundle of the regular part of S as the identity and f is non-
tangential on S then every p ∈ S, except at most a discrete subset of S, is an appropriate
singularity for f .

(2) Let p ∈ S be such that Sp is a generalized irreducible cusp, i.e., there exist local coordi-
nates (x, y) such that p = (0, 0), S = {ym = xn}, m < n and S is irreducible at (0, 0).
If f is tangential on S and Ind(f, S, p) 6∈ Q+∪{0} then p is an appropriate singularity.

Proof. 1. Let

Sf := {p ∈ S :
l ◦ f − l

lTp(f,S)
[p] = 0,∀ l ∈ Op : (l)p = I(S)p}.

Note that Sf is a discrete set which contains the set of singularities of f on S. Let SS be the
(discrete) set of singular points of S. Let S := Sf ∪ SS . Let p ∈ S \ S . We can choose local
coordinates (x, y) around p in such a way that p = (0, 0), S = {y = 0} and f = (f1, f2) is
given by {

f1(x, y) = x + yT g(x, y)

f2(x, y) = y + yT h(x, y)

where T ≥ 2 (by Remark 2.7) and h(0, 0) 6= 0. Write g(x, y) = a0 + g1(x, y) where a0 ∈ C,
g1(0, 0) = 0 and h(x, y) = b0 + h1(0, 0) with b0 ∈ C, b0 6= 0 and h1(0, 0) = 0. Now
let π : M̃ → M be the blow-up of M at p and f̃ the map induced on M̃ by f . If (u, v)
are local coordinates around π−1(p) such that π(u, v) = (u, uv), then the exceptional divisor
D := π−1(p) is given by {u = 0} and the strict transform S̃ of S is given by {v = 0}. The
point p̃ = (u = 0, v = 0) is the only intersection between S̃ and D. Writing f̃ = (f̃1, f̃2) we
have {

f̃1(u, v) = u + uT vT a0 + vT o(|u|T )

f̃2(u, v) = v + uT−1vT [b0 − va0] + vT o(|uT−1|)
Therefore the order of f̃ on D at (0, 0) is T − 1, and f̃ is tangential on D. Now we calculate
the index of f̃ at (0, 0) on D. Let Γ be the cycle given by u = 0, v = re2πiθ for θ ∈ [0, 1],
0 < r << 1. Then

2πi Ind(f̃ , D, (0, 0)) =

∫

Γ

u ◦ f̃ − u

u(v ◦ f̃ − v)
dv =

∫

Γ

a0 + O(u)

b0 − va0 + O(u)
dv = 0.

Since D ·D = −1 then there exists q ∈ D − S̃ such that <eInd(f̃ , D, q) < 0, and then a (C1)
point as wanted.

2. If p is a dicritical point for f then we blow it up and find that the blow up map f̃ is non-
tangential on the exceptional divisor and acting as the identity on its normal bundle. Then p is
an appropriate singularity by point 1.
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Suppose p is not dicritical and m > 2 (otherwise p is (C1)). We assume that S = {(x, y) :
ym − xn = 0} near p = (0, 0). Blowing up the point p, in the coordinates x = u, y = uv it
follows that the strict transform S̃ of S is given by {vm−un−m = 0} and the exceptional divisor
D = {u = 0}. Thus p̃ = S̃∩D is p̃ = (0, 0). By Lemma 7.1 it follows Ind(f̃ , S̃, p̃) 6∈ Q(≥−m2),
where f̃ is the blow up of f . If there are no (C1) points on the exceptional divisor D \ {p̃}
then by Theorem 5.2 it follows that Ind(f̃ , D, p̃) ∈ Q(≤−1) (and in particular p̃ is not dicritical).
Since S is irreducible then m 6= n − m. Suppose first n − m > m. Blow up the point p̃
and denote by S0 the strict transform of S̃, by D0 the strict transform of D and by D1 the new
exceptional divisor. Also denote by f1 the blow up of f̃ . It follows that if D0 ∩ D1 = {q1}
and S0 ∩ D1 = {q0} then q0 6= q1. By Lemma 7.1 we have Ind(f1, S0, q0) 6∈ Q(≥−2m2) and
Ind(f1, D0, q1) ∈ Q(≤−2). Thus, if there are no (C1) points on D1 \ {q0, q1} and q1 is not
(C2) then again by Theorem 5.2 we have Ind(f1, D1, q0) ∈ Q(≤−1/2). Note that S0 is given by
{ym − xn−2m = 0}. Again, if n − 2m > m we blow up the point and argue as before. We
continue this way until finding k ∈ N such that n − km < m. At this point, if there are no
(C1) or (C2) points on the total transform, arguing as before, denoting by q the intersection
between the exceptional divisor D and the strict transform S̃ of S, and by f̃ the blow up of f ,
we have Ind(f̃ , S̃, q) 6∈ Q(≥−km2) and Ind(f̃ , D, q) ∈ Q(≤−1/k). Now, blowing up at q we obtain
a triple intersection at one point, say q0. Arguing as before, if there are no (C1) points on the
exceptional divisor D1 and f0 denote the blow up of f̃ , D0 the strict transform of D, S0 the strict
transform of S̃, we have Ind(f0, S0, q0) 6∈ Q(≥−km2−(n−km)2), Ind(f0, D0, q0) ∈ Q(≤−(k+1)/k)

and Ind(f0, D1, q0) ∈ Q(≤−1). From this point on, each time we blow up the singular point of the
strict transform of S we obtain a triple intersection until the strict transform is nonsingular and
intersecting the other two lines transversally. Also, if at each step there are no (C1), (C2) points,
we end up with a triple S0, D0, D1 of nonsingular curves intersecting transversally at one point q
and such that Ind(f, S0, q) 6∈ Q(≥−M), Ind(f, D0, q) ∈ Q(≤−(1+1/r)) and Ind(f, D1, q) ∈ Q(≤−1),
with r > 0 and M > 2r + 1 (this can be seen by an induction argument). Then, blowing up
once more and arguing in the usual way, if there are no (C1) points, we certainly obtain a (C2)
point. ¤

More generally one might ask whether all the locally irreducible singularities which are the
tangential fixed points set of a holomorphic map are appropriate if the index is not a positive
rational number nor zero. Refining a bit the previous argument one can show that this is the
case if the index is not rational nor zero. However, while this paper was under reviewing, the
question has been affirmatively solved by F. degli Innocenti [9] by means of a careful study of
the variation of indices with respect to the resolution process of the singularity. We state here
the following theorem, referring the reader to [9] or to a forthcoming paper by the same author,
for the proof.

Theorem 7.9 (degli Innocenti). Let M be a two dimensional complex manifold, S ⊂ M be
a (possibly singular and non-compact) curve. Let f : M → M be holomorphic such that
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Fix(f) = S. Let p ∈ S be such that Sp is irreducible. If f is tangential on S and Ind(f, S, p) 6∈
Q+ ∪ {0} then p is an appropriate singularity for f .

In particular by Propositions 7.7 and 7.8 we have

Theorem 7.10. Let M be a two dimensional complex manifold, S ⊂ M be a (possibly singular
and non-compact) curve. Let f : M → M be holomorphic such that Fix(f) = S. Suppose that
f acts on the normal bundle of the regular part of S as the identity and that f is non-tangential
on S. Then for every p ∈ S, except at most a discrete subset of S, there exists at least one
parabolic curve for f at p. In particular if S is compact then f has parabolic curves at every
point of S but at most a finite set.

Remark 7.11. In the situation of Theorem 7.10 it would be interesting to know whether the
parabolic curves fill an open set around S. Some results in this directions are obtained in
Theorem 5.3 in [5] for the case of the blow up of a dicritical point.

Note that also the converse is true:

Proposition 7.12. Let M be a two dimensional complex manifold, let S ⊂ M be a (possibly
non compact and singular) curve. Let f : M → M be holomorphic such that Fix(f) = S.
Suppose that f acts on the normal bundle of the regular part of S as the identity. If there
exists a non-discrete subset A ⊂ S such that f has parabolic curves at every p ∈ A then f is
non-tangential on S.

Proof. If f were tangential on S then the union of the singularities of f on S and the singular
points of S would form a discrete set B. By Proposition 2.5 then A ⊆ B, which contradicts the
hypothesis. ¤

Another application is to dicritical points (cfr. Theorem 3.1.(ii) in [2], where part of the
following result is achieved by direct methods):

Proposition 7.13. Let M be a two dimensional complex manifold, p ∈ M . Let f : M → M
be holomorphic and such that f(p) = p, dfp = Id. Then p is dicritical for f if and only if for
every direction but a finite number, there exists a parabolic curve for f at p tangent to such a
direction at p.

Proof. Let π : M̃ → M be the blow-up of M at p, D := π−1(p) be the exceptional divisor
and f̃ : M̃ → M̃ be the holomorphic blow-up of f . Recall that by Remark 3.1 the map f̃
acts as the identity on the normal bundle ND of D in M̃ . Suppose p is dicritical for f . Thus
by Theorem 7.10 every point but a finite number of D has parabolic curves for f̃ which blow
down to parabolic curves for f tangent to all directions but a finite number. Viceversa if each
direction but a finite number is a tangent for a parabolic curve for f at p then f̃ has parabolic
curves at every point of D but a finite number. Since f̃ acts as the identity on the normal bundle
of D then it must be non-tangential on D by Proposition 7.12 and hence p is dicritical. ¤

We also have the following global result:
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Theorem 7.14. Let M be a two dimensional complex manifold, S ⊂ M a compact, globally
and locally irreducible curve with S · S < 0. Let f : M → M be holomorphic such that
Fix(f) = S and f is tangential on S. Then there exists a point p ∈ S such that f has at least
one parabolic curve at p.

Proof. By Theorem 6.2 there exists p ∈ S such that <eInd(f, S, p) < 0. If such a point is
nonsingular for S then it is (C1) and we are done. Same if it is a singularity satisfying one of
the hypothesis of Proposition 7.8. In general however one can argue following the same lines
of [17] (see also p.40 in [6]) for the holomorphic foliations case to prove the existence of an
appropriate singularity for f on S and then apply Proposition 7.7. ¤

Note that Theorem 7.14 and Theorem 7.10 imply that: if M is a two dimensional complex
manifold, f : M → M holomorphic, S ⊂ M a compact, globally and locally irreducible curve
such that S · S < 0, Fix(f) = S and f acts as the identity on the normal bundle of the regular
part of S then there exists at least one point p ∈ S such that f has parabolic curves at p.

Also we recover Abate’s flowers theorem, [2]:

Corollary 7.15 (Abate). Let f be a (germ of) biholomorphism of C2 such that 0 is a isolated
fixed point for f and df0 = Id. Then there exists a parabolic curve for f at 0.

Proof. If 0 is dicritical then apply Proposition 7.13. If 0 is non-dicritical then blowing up 0
we find a holomorphic map f̃ which has the exceptional divisor D as fixed points set and is
tangential on it. Since D ·D = −1 then we can apply Theorem 7.14. ¤
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11. R. C. Gunning and H. Rossi, Analytic functions of several complex variables. Prentice-Hall 1965.



26 FILIPPO BRACCI

12. M. Hakim, Analytic transformations of (Cp, 0) tangent to the identity, Duke Math. J. 92 (1998), 403-
428.

13. H. B. Laufer, Normal two dimensional singularities. Ann. Math. Stud. 71 (1971).
14. D. Lehmann, Résidus des sous-variétés invariants d’un feuilletage singulier. Ann. Inst. Fourier, Greno-

ble, 41, 1 (1991), 211-258.
15. D. Lehmann and T. Suwa, Residues of holomorphic vector fields relative to singular invariant subvari-

eties. J. Diff. Geom. 42, 1, (1995), 165-192.
16. Y. Nishimura, Automorphisms analytiques admettant des sous-variétés de points fixés attractives dans

la direction transversale J. Math. Kyoto Univ. 23-2 (1983), 289-299.
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