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FIXED POINTS OF COMMUTING HOLOMORPHIC MAPPINGS
OTHER THAN THE WOLFF POINT

FILIPPO BRACCI

Abstract. Let ∆ be the unit disc of C and let f, g ∈ Hol(∆,∆) be such
that f ◦ g = g ◦ f . For A > 1, let FixA(f) := {p ∈ ∂∆ | limr→1 f(rp) =

p, limr→1 |f ′(rp)| ≤ A}. We study the behavior of g on FixA(f). In particular,
we prove that g(FixA(f)) ⊆ FixA(f). As a consequence, besides conditions
for FixA(f)∩FixA(g) 6= ∅, we prove a conjecture of C. Cowen in case f and g
are univalent mappings.

1. Introduction

Let ∆ := {z ∈ C : |z| < 1}. Let h : ∆→ C be holomorphic and x ∈ ∂∆. We say
that h has non-tangential limit L ∈ C at x if limk→∞ h(zk) = L for any sequence
{zk} ⊂ ∆ such that zk → x non-tangentially. For short we write either

K- lim
z→x

h(z) = L

or h(x) = L. The use of this notation should not be confusing, since we do not
assume the maps to be continuous up to the boundary.

By the Wolff-Denjoy Theorem, if f ∈ Hol(∆,∆), f 6= Id, there exists one distin-
guished point τf ∈ ∆, the Wolff point of f , such that f(τf ) = τf and |f ′(τf )| ≤ 1.
Moreover, if τf ∈ ∂∆, then 0 < f ′(τf ) ≤ 1.

If g ∈ Hol(∆,∆), g 6= Id, and f ◦ g = g ◦ f , then Behan [Be]—generalizing a
previous result of Shields [Shi] for the case f, g continuous up to ∂∆—proved that
f and g have the same Wolff point unless they are two hyperbolic automorphisms.
A consequence of this is that whenever f, g ∈ Hol(∆,∆) commute, then they must
share a fixed point (in the sense of non-tangential limit if this point is on the
boundary). This result has been generalized to domains in several variables by
the author (see [Br1], [Br2]), proving that a generic characteristic of commuting
holomorphic mappings is that of sharing a “fixed point” in the closure of the domain.

By the Schwarz Lemma f has at most one fixed point in ∆ (provided f 6= Id).
However, f could have more than one fixed point (as non-tangential limit) at the
boundary. Let us denote by Fix(f) the set of fixed points of f , i.e.,

Fix(f) := {p ∈ ∂∆ : f(p) = p} ∪ {τf}.
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A natural question posed by C. Cowen [Co2] in 1984 was whether g must have these
points fixed as well. Simple examples show that this is not the case:

Example 1.1. Let f(z) = (z)2 and g(z) = (z)3 (here (z)2 = z · z, (z)3 = z · z · z).
Then the point −1 is fixed for g but f(−1) = 1. Note however that f(−1) is a fixed
point for g.

The conclusion of the previous example is not surprising, since, for g, f contin-
uous up to ∂∆, it follows easily that g(Fix(f)) ⊂ Fix(f). Cowen himself provided
an even worse example in which there exists a point p ∈ Fix(f) (with f ′(p) < ∞)
such that g(p) is the Wolff point of f (see Example 4.12 in [Co2], see also Example
4.3 below).

Notwithstanding such examples, Cowen conjectured the following:
(1) if the Wolff point τf of f is on the boundary and f ′(τf ) < 1, then for any

g ∈ Hol(∆,∆) such that f ◦ g = g ◦ f we have Fix(f) = Fix(g);
(2) if the Wolff point of f belongs to ∆, f 6∈ Aut(∆), and f ′(τf ) 6= 0, then there

exists m ∈ N such that for any g ∈ Hol(∆,∆), g 6∈ Aut(∆) and f ◦g = g◦f ,
if we set gm := gm−1 ◦ g, g1 = g, it follows that Fix(f) = Fix(gm);

(3) if f ′(τf ) 6= 0, then for any g ∈ Hol(∆,∆) such that f ◦ g = g ◦ f and f, g
have two fixed points in common we have Fix(f) = Fix(g).

Aside from a lack of counterexamples, some geometrical intuitions and analogies
with the continuous semigroup case (see Theorem 5.2 in [Co1]), Cowen was able to
support his idea with the following result, whose proof is based on the properties
of linear fractional models (see [Co1]):

Proposition 1.2 (Cowen [Co2]). Suppose f, g ∈ Hol(∆,∆), f◦g = g◦f . Moreover,
suppose that f ′ is continuous on ∆, τf ∈ ∂∆, f ′(τf ) < 1, and there exists p ∈
Fix(f), p 6= τf , such that f(∆− {τf , p}) ⊂ ∆. Then g(p) = p.

After that we had no knowledge of any further step toward the (dis)proving of
Cowen’s conjecture(s). We became acquainted with some counterexamples to such
conjectures constructed by means of Blaschke products due to Chalendar and Mor-
tini [ChMo] only after a version of this work was under reviewing. The author
thanks R. Tauraso for bringing the paper [ChMo] to his attention.

In this paper we restrict our attention to repelling boundary fixed points, giving
some positive results in the direction of Cowen’s conjectures. According to Poggi
Corradini [PC2], borrowing a word from discrete dynamics, we give the following
definition.

Definition 1.3. Let f ∈ Hol(∆,∆) and x ∈ ∂∆. We say that x is a boundary
repelling fixed point, abbreviated BRFP, for f if f(x) = x and 1 < f ′(x) < +∞.
For A > 1 we let

FixA(f) := {x ∈ ∂∆ : f(x) = x and f ′(x) ≤ A}.
Note that, by the Julia-Wolff-Carathéodory Theorem (see Theorem 2.1), if x ∈

∂∆ is a fixed point for f ∈ Hol(∆,∆), then f ′(x) ∈ (0,+∞].
By definition the Wolff point τf of f belongs to FixA(f) only if τf ∈ ∂∆.
Our main result is the following.

Theorem 1.4. Let f ∈ Hol(∆,∆) (not the identity). Let g ∈ Hol(∆,∆) be non-
constant and such that f ◦ g = g ◦ f . Let A > 1. Then g(FixA(f)) ⊆ FixA(f), i.e.,
for any p ∈ FixA(f) the map g has non-tangential limit g(p) ∈ FixA(f).
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The proof is based on the existence of backward iteration sequences for f at each
p ∈ FixA(f) due to Poggi Corradini (see Section 2), and some fine properties of
“abstract backward iteration sequences”, which we are going to prove.

After that we study the behavior of g on FixA(f). If this set if finite—which is
always the case if, e.g., τf ∈ ∆ or τf ∈ ∂∆ and f ′(τf ) < 1—then g has repelling
cycles made of BRFP’s for f . More explicitly:

Definition 1.5. Let g ∈ Hol(∆,∆), m ≥ 1 and p0, . . . , pm−1 ∈ ∂∆, pj 6= pl for
l 6= j. We say that {p0, . . . , pm−1} is a cycle for g if g(pj) = pj+1 for j = 0, . . . ,m−2
and g(pm−1) = p0. The number m is called the length of the cycle. If in addition
1 < |g′(pj)| < ∞ for j = 0, . . . ,m − 1, we say that {p0, . . . , pm−1} is a repelling
cycle for g.

Then the result is

Theorem 1.6. Let f ∈ Hol(∆,∆), not the identity. Let g ∈ Hol(∆,∆) be non-
constant and such that f ◦ g = g ◦ f . Let A > 1 and suppose that FixA(f) is
non-empty and finite. Then one and only one of the following may happen:

(1) either there exist m ≥ 1, p0, . . . , pm−1 ∈ FixA(f), pl 6= pj for l 6= j,
and 1 < A′ ≤ A such that {p0, . . . , pm−1} is a repelling cycle for g and
f ′(pj) = A′ for j = 0, . . . ,m− 1,

(2) or there exists m ≥ 1 such that for any p ∈ FixA(f) it follows that gm(p) =
τf , where τf ∈ ∂∆ is the Wolff point of f . In this case (gm)′(p) = ∞ for
any p ∈ FixA(f)− {τf}.

Starting from Theorem 1.6, adding some extra hypotheses to f and g, we get
conditions for the existence of common fixed points other than the Wolff point
(see Section 4). We also apply our results to the study of composition operators,
giving a criterion for (non-)compactness of commuting composition operators (see
Proposition 4.7). Finally, we prove Cowen’s conjectures (1) and (2) and partially
(3) in case f, g are univalent on ∆ and f ′, g′ are continuous up to ∂∆.

Let us denote by Hol1u(∆,∆) the class of maps that are univalent on ∆ and
whose derivatives extend continuously up to the boundary, i.e.,

Hol1u(∆,∆) := {h ∈ Hol(∆,∆) | h is univalent and h′ is continuous on ∆}.
Note that if f ∈ Hol1u(∆,∆), then f ′(a) 6= 0 for any a ∈ ∆. Then:

Theorem 1.7. Suppose f, g ∈ Hol1u(∆,∆) and the Wolff point τf of f is such that
τf ∈ ∂∆ and f ′(τf ) < 1. If f ◦ g = g ◦ f , then Fix(f) = Fix(g).

Theorem 1.8. Suppose f ∈ Hol1u(∆,∆) and the Wolff point τf of f is such that
τf ∈ ∆. Then there exists m ∈ N such that for any g ∈ Hol1u(∆,∆), g 6∈ Aut(∆),
if f ◦ g = g ◦ f , then Fix(f) = Fix(gm).

Proposition 1.9. Suppose f, g ∈ Hol1u(∆,∆) and f ◦ g = g ◦ f . Suppose τf ∈ ∆
and Fix(f) ∩ Fix(g) contains two points. Then Fix(f) = Fix(g).

The author wants to warmly thank Pietro Poggi Corradini for many stimulating
electronic discussions about topics related to this paper.

2. Preliminary results on backward iteration sequences

We start by recalling the fundamental Julia-Wolff-Carathéodory Theorem (for a
proof see, e.g., [Ab] or [Sha]).
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Theorem 2.1. Let h ∈ Hol(∆,∆) and x ∈ ∂∆. Let

αx(f) := lim inf
z→x

1− |f(z)|
1− |z| .

If αf (x) < ∞, then there exists y ∈ ∂∆ such that f(x) = y and f ′(x) = xyαf (x).
Moreover,

(2.1) f ′(x) = lim inf
z→x

1− |f(z)|
1− |z| = K- lim

z→x

y − f(z)
x− z .

For the reader’s convenience we also report here some straightforward conse-
quences of Theorem 4.1 and Lemma 8.2 of [CoPo], which we are going to use later.

Theorem 2.2 (Cowen and Pommerenke [CoPo]). Let f ∈ Hol(∆,∆) and let τf ∈ ∆
be its Wolff point. Then

(1) If either τf ∈ ∆ or τf ∈ ∂∆ and f ′(τf ) < 1, then for any A > 1 the set
FixA(f) is finite.

(2) If τf ∈ ∂∆ and f ′(τf ) = 1, then for any A > 1 the set FixA(f) can
accumulate only at τf .

(3) If f is univalent, p ∈ ∂∆ and |f ′(p)| < ∞, then for any point q ∈ ∂∆,
q 6= p, such that f(q) = f(p), we have |f ′(q)| =∞.

Remark 2.3. If {wn} ⊂ ∆ converges to x radially, i.e., limn→∞
1−|wn|
|1−wn| = 1, and

f ∈ Hol(∆,∆) is such that f(x) = x, then

(2.2) lim
n→1

1− |f(wn)|
1− |wn|

= f ′(x).

Indeed, f ′(x) ≤ lim infn→1
1−|f(wn)|

1−|wn| by Theorem 2.1. Conversely,

1− |f(wn)|
1− |wn|

≤ |1− f(wn)|
|1− wn|

· |1− wn|
1− |wn|

,

and again by Theorem 2.1 and the hypothesis on {wn}, the right-hand side of the
above equation tends to f ′(x), giving the reverse inequality.

Let us indicate by ω(z, w) the hyperbolic distance on ∆ (we refer the reader
to, e.g., [Ab] for the definition and the properties of ω). For a ∈ ∆ the map
Ta(z) := a−z

1−az is an automorphism of ∆, and Ta(a) = 0. Then, for z, w ∈ ∆,

ω(z, w) =
1
2

log
1 + |Tz(w)|
1− |Tz(w)| .

By the Schwarz-Pick Lemma, ω(f(z), f(w)) ≤ ω(z, w) for any f ∈ Hol(∆,∆), with
equality at z 6= w if and only if f is an automorphism of ∆.

Paraphrasing Poggi Corradini (see [PC2]), we define a class of sequences associ-
ated to a holomorphic self-map of ∆, which are going to be the main tool in the
proof of our result.

Definition 2.4. Let f ∈ Hol(∆,∆). A sequence {wn} ⊂ ∆ is a backward iteration
sequence if f(wn+1) = wn and there exists a constant C > 0 such that for all n ∈ N,

ω(wn+1, wn) < C.
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Remark 2.5. We want to stress that in our definition a backward iteration sequence
is a sequence whose steps are bounded in the hyperbolic metric (whereas in [PC2]
this is not required).

Note that, by Lemma 2.1 in [PC2], if f ∈ Hol(∆,∆) and x ∈ ∂∆ is a BRFP
for f , then a backward iteration sequence {wn} converging to x such that for any
n ∈ N,

ω(wn, wn+1) ≤ 1
2 log f ′(x),

actually converges radially to x.

The existence of backward iteration sequences at boundary repelling fixed points
is guaranteed by the following theorem.

Theorem 2.6 (Poggi Corradini [PC2]). Let f ∈ Hol(∆,∆). Suppose x ∈ ∂∆ is a
BRFP for f . Then there exists a backward iteration sequence {wn} for f converging
to x and such that for any n ∈ N,

ω(wn, wn+1) ≤ 1
2 log f ′(x).

Before going ahead we need an insight on abstract backward iteration sequences.

Lemma 2.7. Let f ∈ Hol(∆,∆). Let {wn} be a backward iteration sequence for f .
Then one and only one of the following cases is possible:

(1) The map f has Wolff point τf ∈ ∆, and wn = τf for any n ∈ N.
(2) There exists a unique point x ∈ ∂∆ such that limn→∞wn = x. Moreover,

the point x is a BRFP for f .
(3) The map f has Wolff point τf ∈ ∂∆, and the sequence {wn} is converging

tangentially to τf .

Proof. Suppose first that {wn} has an accumulation point p ∈ ∆. Let τf ∈ ∆
be the Wolff point of f . We claim that there exists a subsequence of {wn} that
accumulates at τf . If p = τf , this is tautological. Suppose then that p 6= τf . Let

K := {fm(wn)}m≤n = {wn−m}m≤n
and

d := inf
q∈K
{|q − τf |}.

Clearly τf is in the cluster set of {wn} if and only if d = 0. Suppose d > 0.
Since p ∈ ∆ and τf is the Wolff point of f , then there exists t ∈ N such that
|f t(p) − τf | < d. But if wnk → p, then f t(wnk) → f t(p), and therefore f t(p) ∈ K,
against the definition of d. Therefore there exists a subsequence {wl} of {wn}
that converges to τf . First suppose τf ∈ ∂∆. Clearly in this case f cannot be
an automorphism of ∆. Therefore, if we let E0 be the horocycle (i.e., an open
Euclidean disc contained in ∆ and tangent to τf at ∂∆) such that p ∈ ∂E0, let
E1 be the horocycle such that f(p) ∈ ∂E1 and let E2 be the horocycle such that
f2(p) ∈ ∂E2, then by the Wolff Lemma (see, e.g., [Ab] or [Sha]) it follows that

E2 ⊂ E1 ⊂ E1 ⊂ E0.

Hence there exist a neighborhood U of p and a neighborhood V of f2(p) such that
U ∩ E1 = ∅ and V ⊂ E1. Since wnk → p, then wnk−2 → f2(p). Therefore there
exist l0 < lk such that wl0 ∈ U and wlk ∈ V . By the Wolff Lemma, f(E1) ⊂ E1.
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But then wl0 = f lk−l0(wlk) ∈ E1, a contradiction. Hence τf ∈ ∆. Therefore for
any fixed r ∈ N,

ω(τf , wr) = ω(f(τf ), f(wr+1)) ≤ ω(τf , wr+1) ≤ . . . ≤ ω(τf , wm),

for any m > r. Since wl → τf , this is possible if and only if wn = τf for any n.
Suppose now that the cluster set of {wn} is contained in ∂∆. Using the definition

of ω, it is easy to see (or see, e.g., [Ab]) that

(2.3)
1
2

log f ′(x) = lim inf
z→x

[ω(0, z)− ω(0, f(z))].

Suppose that {wnk} converges to x ∈ ∂∆. Then

(2.4) [ω(0, wnk)− ω(0, f(wnk))] ≤ ω(wnk , f(wnk)) = ω(wnk , wnk−1) < C <∞.
Therefore by Theorem 2.1 f has non-tangential limit at x, which is given by y =
limk→∞ f(wnk) (this last assertion actually follows from a “metric version” of the
Julia Lemma stated in more general domains than the disc, see [Br2]). Now

(2.5) ω(wnk , f(wnk)) = ω(wnk , wnk−1) < C,

and therefore lim supk→∞ ω(wnk , f(wnk)) < C, which is possible only if x = y.
Hence any point in the cluster set of {wn} is either a BRFP for f or the Wolff
point of f . Moreover, if x is in the cluster set of {wn}, then f ′(x) ≤ A where
A := exp(2C), by (2.4). Suppose that x is an isolated point in the cluster set of
{wn}. We claim that actually limn→∞ wn = x. If not, there exist ε > 0 and a
subsequence {wnl} such that if we set Uε := {z ∈ ∆ : |z−x| < ε}, then {wnl} ⊂ Uε
but wnl+1 6∈ Uε for any nl. But this contradicts (2.5). Hence either {wn} converges
to a unique point, or the cluster set is a dense subset of an arc in ∂∆. In the last
case there exist a point x ∈ FixA(f) and a sequence {xn} ⊂ FixA(f) such that x is
not the Wolff point of f and xn → x. This is impossible by Theorem 2.2.

Now suppose τf ∈ ∂∆ is the limit of {wn}. If f is an automorphism, then
clearly f must be a parabolic automorphism, wn = f−n(w0) for some w0 ∈ ∆,
and wn → τf tangentially. Suppose f is not an automorphism. Transfer to the
right half-plane H := {w ∈ C | Re(w) > 0} by means of the Cayley transform
C : ∆ → H given by C(z) := τf+z

τf−z . Let F := C ◦ f ◦ C−1 and zn := C ◦ wn.
Then {zn} is a backward iteration sequence for F and zn →∞, the Wolff point of
F . By the (right half-plane) Wolff lemma, Re(zn) = Re(f(zn+1)) > Re(zn+1), and
hence {Re(zn)} is a strictly decreasing sequence and thus has a limit r ≥ 0. Hence
{zn} ⊂ {w ∈ C|Re(w) > r} and limn→∞Re(zn) = r. Interpreting this in the unit
disc, we see that wn → τf tangentially either to ∂E(1, 1

r ) if r > 0 or to ∂∆ if r = 0.
In both cases wn → τf tangentially. �

As the following examples show, a backward iteration sequence can converge to
the Wolff point.

Example 2.8. If f ∈ Hol(∆,∆) is a parabolic automorphism, then {f−n(0)} is a
backward iteration sequence for f converging to its Wolff point.

Example 2.9. Let H := {w ∈ C : Re(w) > 0}. Let V := {x + iy ∈ H : 1 ≤ x ≤
2, y ≤ 0}. Let σ : ∆→ H − V be a Riemann mapping. Let f(z) := σ−1(σ(z) + i).
Then f ∈ Hol(∆,∆) has Wolff point τf = limr→+∞ σ

−1(1 + ri) ∈ ∂∆, f is not
an automorphism, and wn := σ−1(3− ni) is easily seen to be a backward iteration
sequence converging to the Wolff point of f . Note however that f ′(τf ) = 1.
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It is not fortuitous that in the previous examples f ′(τf ) = 1. Indeed, the follow-
ing result holds.

Proposition 2.10. Let f ∈ Hol(∆,∆) and let τf ∈ ∂∆ be its Wolff point. If
f ′(τf ) < 1 , then there are no backward iteration sequences for f converging to τf .

The previous proposition was first proved by the author for univalent mappings
in a preliminary version of this paper. After that, Prof. Poggi Corradini pursued
a deep study of backward iteration sequences (see [PC3]), finding a completely
different proof of such a result that worked for general mappings. Here we present
our original proof, referring the reader to [PC3] for the general case.

Proof of Proposition 2.10 for f univalent. Suppose {wn} is a backward iteration
sequence converging to τf . Let λ := f ′(τf ). By Theorem 3.2 in [Co1] and subse-
quent remarks, there exists a holomorphic map σ : ∆→ H := {w ∈ C : Re(w) > 0}
such that σ is univalent on ∆ and σ ◦ f(z) = λσ(z). Let Φ(w) := λw and
zn := σ(wn). Then it is easy to see that Φ is a hyperbolic automorphism of H
and {zn} is a backward iteration sequence for Φ. Indeed,

Φ(zn) = Φ(σ(wn)) = σ(f(wn)) = σ(wn−1) = zn−1.

Therefore zn := Φ−n(z0) (from this it follows easily that {zn} has bounded hy-
perbolic steps, but we do not need this here). Note that limn→∞ zn = ∞ and
limn→∞Φn(z0) = 0. Now

lim
n→∞

σ−1(zn) = lim
n→∞

wn = τf ,

lim
n→∞

σ−1(Φn(z0)) = lim
n→∞

fn(w0) = τf .
(2.6)

Let γ : (0, 1)→ H be a continuous curve joining 0 to∞ and passing through zn and
Φn(z0) for any n. By Proposition 2.14 in [Po], then σ−1(γ(t)) has distinct limits
for t→ 0 and t→ 1. But this contradicts (2.6). �

Theorem 2.11 (Poggi Corradini [PC2]). Let f ∈ Hol(∆,∆). Suppose 1 is a BRFP
for f , and let a := (f ′(1)− 1)/(f ′(1) + 1) and Φ(z) := (z− a)/(1− az). Then there
exists σ ∈ Hol(∆,∆) such that

(1) K-limz→1 σ(z) = 1,
(2) σ ◦ Φ(z) = f ◦ σ(z) for any z ∈ ∆, and
(3) σ is isogonal at 1, i.e. K-limz→1 arg 1−σ(z)

1−z = 0.

Moreover, σ is unique up to precomposition with a Möbius transformation Ψ such
that Ψ ◦ Φ = Φ ◦Ψ.

We denote by (f,Φ, σ) the triple of functions as in Theorem 2.11, and call it a
pre-model for f .

Remark 2.12. Let (f,Φ, σ) be a pre-model for f . If we set ak := Φ−k(r) for
r ∈ (−1, 1), then {ak} is a backward iteration sequence for Φ converging to 1.
Indeed, a simple computation shows that Φ is a hyperbolic automorphism of ∆
with Wolff point −1 and repelling fixed point 1—hence Φ−1 has Wolff point 1.
Moreover, since the automorphism Tr(z) := (z − r)/(1− rz) commutes with Φ, we
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have

ω(ak, ak+1) = ω(Φ−k(r),Φ−(k+1)(r)) = ω(r,Φ−1(r))

= ω(Tr(r), Tr ◦ Φ−1(r)) = ω(Tr(r),Φ−1 ◦ Tr(r))

= ω(0,Φ−1(0)) = ω(0, a) =
1
2

log f ′(1),

(2.7)

and therefore the steps are bounded. Let zk := σ(ak). Then

f(zk) = f ◦ σ(ak) = σ ◦ Φ(ak) = σ(ak−1) = zk−1

and

(2.8) ω(zk, zk+1) = ω(σ(ak), σ(ak+1)) ≤ ω(ak, ak+1) =
1
2

log f ′(1) <∞.

Therefore {zk} is a backward iteration sequence for f converging to 1.

What is really interesting for us is a converse of Remark 2.12:

Proposition 2.13. Let f ∈ Hol(∆,∆) be such that 1 is a BRFP for f , and let
(f,Φ, σ) be a pre-model for f given by Theorem 2.11. Then, for any backward
iteration sequence {wk} for f converging to 1 such that for any k ∈ N,

(2.9) ω(wk, wk+1) ≤ 1
2 log f ′(1),

there exists a backward iteration sequence {zk} for Φ converging to 1 such that
σ(zk) = wk for any k ∈ N. Moreover, there exists r ∈ (−1, 1) such that zk =
Φ−k(r).

Proof. The proof of Theorem 2.11 (see [PC2]) is based on the existence of a back-
ward iteration sequence for f—say {pk}—such that ω(pk, pk+1) ≤ 1

2 log f ′(1) for
any k ∈ N. Once one has such a sequence, then σ turns out to be a limit of the
sequence {fn◦Tn} where Tn is an automorphism of ∆ such that Tn(0) = pn for any
n and σ(ak) = pk for ak = Φ−k(0). Therefore, given a backward iteration sequence
{wn} satisfying (2.9), arguing as in the proof of Theorem 2.11, we can find another
pre-model (f,Φ, σ̃) for f at 1 such that σ̃(ak) = wk. By the uniqueness statement
in Theorem 2.11 it follows that there exists Ψ ∈ Aut(∆) commuting with Φ such
that σ̃ = σ ◦ Ψ. Let zk := Ψ(ak) = Φ−k(Ψ(0)). The sequence {zk} is a backward
iteration sequence for Φ converging to 1. Indeed, zk = Ψ(ak) → 1 for Φ−1 is a
hyperbolic automorphism with Wolff point 1. Moreover,

Φ(zk) = Φ ◦Ψ(ak) = Ψ ◦ Φ(ak) = Ψ(ak−1) = zk−1,

and by (2.7)

ω(zk, zk+1) = ω(Ψ(ak),Ψ(ak+1)) = ω(ak, ak+1) = 1
2 log f ′(1) <∞.

Also
σ(zk) = σ̃ ◦Ψ−1(Ψ(ak)) = σ̃(ak) = wk,

as desired. �

Remark 2.14. Equations (2.3), (2.8) and Remark 2.3 imply that if x ∈ ∂∆ is a
BRFP for f and {wn} is a backward iteration sequence for f converging to x ∈ ∂∆
with ω(wn, wn+1) ≤ 1

2 log f ′(x) for any n ∈ N, then

1
2

log f ′(x) = lim
n→∞

[ω(0, wn)− ω(0, f(wn))] ≤ lim
n→∞

ω(wn, wn+1) ≤ 1
2

log f ′(x),
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and therefore,
1
2 log f ′(x) = lim

n→∞
ω(wn, wn+1).

Corollary 2.15. Let f ∈ Hol(∆,∆) and let x ∈ ∂∆ be a BRFP for f . If {wk}
and {zk} are two backward iteration sequences for f converging to 1 such that for
any k ∈ N,

ω(wk, wk+1) ≤ 1
2 log f ′(x)

and
ω(zk, zk+1) ≤ 1

2 log f ′(x),
then there exists C > 0 such that for any k ∈ N,

ω(wk, zk) ≤ C.

Proof. Up to conjugation we can suppose that x = 1. Let (f,Φ, σ) be a pre-model
for f as given by Theorem 2.11. By Proposition 2.13 there exist two backward itera-
tion sequences for Φ—say {ak} and {bk}—converging to 1 and such that σ(ak) = zk
and σ(bk) = wk. Therefore

(2.10) ω(zk, wk) = ω(σ(ak), σ(bk)) ≤ ω(ak, bk).

Now Φ(ak) = ak−1 implies that ak = Φ−1(ak−1). Therefore

(2.11) ω(ak, bk) = ω(Φ−k(a0),Φ−k(b0)) = ω(a0, b0).

Combining (2.10) and (2.11), we get the result. �

3. Boundary repelling fixed points

In this section we prove Theorem 1.4 and, as a corollary, Theorem 1.6. The main
idea is that if x ∈ ∂∆ is a BRFP for f and {wn} is a backward iteration sequence
converging to x, then {g(wn)} is a backward iteration sequence for f , which must
converge either to a BRFP for f or to the Wolff point of f . Then, using the Lindelöf
theorem applied to a suitable curve, we show that g has non-tangential limit at such
a point. The results of the previous section then allow us to evaluate f ′ at such a
point and to get the result.

Proof of Theorem 1.4. Up to conjugation we can suppose 1 is a BRFP for f . Let
{wn} be a backward iteration sequence for f converging to 1 (the existence is
assured by Theorem 2.6) such that ω(wn, wn+1) ≤ 1

2 log f ′(1). Let τf ∈ ∆ be the
Wolff point of f . If τf ∈ ∆, we can choose w0 in such a way that g(w0) 6= τf . Indeed,
let (f,Φ, σ) be a pre-model for f given by Theorem 2.11. Since σ is non-constant,
the image σ((0, 1/2)) is a non-trivial curve in ∆. The map g being non-constant,
there exists w0 ∈ σ((0, 1/2)) such that g(w0) 6= τf . Let z0 ∈ (0, 1/2) be such that
σ(z0) = w0. The sequence

wn := σ(Φ−n(z0))
is easily seen to be a backward iteration sequence for f converging to 1—just arguing
as in the proof of Proposition 2.13—and (as in (2.7))

ω(wn, wn+1) = ω(σ(Φ−n(z0)), σ(Φ−(n+1)(z0)))

≤ ω(Φ−n(z0),Φ−(n+1)(z0)) = 1
2 log f ′(1).

Moreover g(w0) 6= τf by construction. Let

w1
n := g(wn).



2578 F. BRACCI

We claim that {w1
n} is a backward iteration sequence for f with steps bounded by

1
2 log f ′(1). Indeed,

f(w1
n) = f ◦ g(wn) = g ◦ f(wn) = g(wn−1) = w1

n−1

and

ω(w1
n, w

1
n+1) = ω(g(wn), g(wn+1)) ≤ ω(wn, wn+1) ≤ 1

2
log f ′(1).

By Lemma 2.7, either {w1
n} converges to a point p ∈ ∂∆ that is a BRFP for f

(or the Wolff point τf ) or w1
n = τf ∈ ∆ for any n ∈ N. But w1

0 = g(w0) 6= τf ,
and therefore the last possibility cannot occur. The sequence {w1

n} is a backward
iteration sequence converging to p ∈ ∂∆. Moreover by (2.3),

1
2

log f ′(p) ≤ lim
n→∞

[ω(0, w1
n)− ω(0, f(w1

n))] ≤ lim
n→∞

ω(w1
n, f(w1

n))

= lim
n→∞

ω(g(wn), g(f(wn))) ≤ lim
n→∞

ω(wn, f(wn)) ≤ 1
2

log f ′(1).
(3.1)

Therefore f ′(p) ≤ f ′(1). We have to show that g has non-tangential limit p at 1. Let
(f,Φ, σ) be a pre-model for f at 1 given by Theorem 2.11, such that σ(Φ−n(0)) = wn
(this is possible by Proposition 2.13). We are going to show that

lim
t→1

g(σ(t)) = p.

Once we have this, the Lindelöf Theorem (see, e.g., [Ab]) implies that g has non-
tangential limit p at 1 (recall that limt→1 σ(t) = 1). Now

(3.2) [0, 1] =
⋃
k∈N

Φ−k([0, a]).

Let {tm} ⊂ (0, 1) be such that g(σ(tm)) → q ∈ ∆. By (3.2), for any m there exist
sm ∈ [0, a) and km ∈ N such that tm = Φ−km(sm). Therefore

ω(g(σ(tm)), g(wkm)) ≤ ω(σ(tm), wkm) = ω(σ(Φ−km(sm)), σ(Φ−km (0)))

≤ ω(Φ−km(sm),Φ−km(0)) = ω(sm, 0) ≤ ω(a, 0) <∞.

Hence, since {g(wn)} converges to p,

q = lim
m→∞

g(σ(tm)) = lim
m→∞

g(wmk) = p.

This means that limt→1 g(σ(t)) = p, as desired. �

Remark 3.1. Suppose f, g are as in the hypotheses of Theorem 1.4. If there are no
backward iteration sequences converging to the Wolff point τf of f , then the proof
of Theorem 1.6 shows that g(FixA(f)−{τf}) ⊂ FixA(f)−{τf}. This is always the
case if either τf ∈ ∆, or τf ∈ ∂∆ and f ′(τf ) < 1, by Proposition 2.10.

Remark 3.2. Let f, g be as in the hypotheses of Theorem 1.4 and let τf ∈ ∂∆
be the Wolff point of f . Note that if p ∈ ∂∆ is a BRFP for f and g(p) = τf ,
then g′(p) = ∞. Indeed, if {wn} is a backward iteration sequence for f given by
Theorem 2.6 converging to p, then wn → p radially, by Remark 2.5. If |g′(p)| <∞,
then g would be isogonal at p and hence {g(wn)} would be a backward iteration
sequence for f converging to τf non-tangentially, in contradiction to Lemma 2.7.

Theorem 1.6 will follow from the next result:
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Lemma 3.3. Let f ∈ Hol(∆,∆), not the identity. Let g ∈ Hol(∆,∆), not constant,
be such that f ◦ g = g ◦ f . If there exist l ∈ N and p ∈ ∂∆ such that p is a BRFP
of f and gl(p) = p, then there exists a repelling cycle {p0, . . . , pm−1} for g such
that m ≤ l, p0 = p, the points pj for j = 0, . . . ,m − 1 are BRFP’s for f , and
f ′(pj) = f ′(p) for j = 0, . . . ,m− 1.

Proof. Let p0 := p. By Theorem 1.4 the map g has non-tangential limit p1 ∈ ∂∆ at
p0, for some BRFP p1 of f and f ′(p1) ≤ f ′(p0) (the point p1 cannot be the Wolff
point of f , for otherwise it would be the Wolff point of g as well and gl(p1) = p1

for any l ∈ N, or f, g would be hyperbolic automorphisms and still this would
result in a contradiction). By induction define pj := g(pj−1) for j = 1, . . . , l (note
that pl = p0). Let m ≤ l be the smallest positive integer such that gm(p0) = p0.
Therefore {p0, . . . , pm−1} are (different) BRFP’s for f such that g(pj) = pj+1 for
j = 0, . . . ,m − 1 (here pm = p0). By Theorem 1.4 we get f ′(pj) ≥ f ′(pj+1) for
j = 0, . . . ,m − 1; therefore f ′(pj) = f ′(p0) for j = 1, . . . ,m − 1, as claimed. We
want to show now that p0 is a BRFP for gm. Let {wn} be a backward iteration
sequence for f at p0 such that ω(wn, wn+1) ≤ 1

2 log f ′(p0). Then, arguing as in the
proof of Theorem 1.4, it follows that {gm(wn)} is a backward iteration sequence
for f converging to p0 (since gm has non-tangential limit p0 at p0 and, by Remark
2.3, wn → p0 non-tangentially) and

ω(gm(wn), gm(wn+1)) ≤ ω(wn, wn+1) ≤ 1
2 log f ′(p0).

Then, by (2.3) and Corollary 2.15,
1
2

log(gm)′(p0) ≤ lim
n→∞

[ω(0, wn)− ω(0, gm(wn))] ≤ lim
n→∞

ω(wn, gm(wn)) ≤ C.

Therefore gm has non-tangential limit p0 at p0 and (gm)′(p0) < ∞, i.e., p0 is a
BRFP for gm. By Theorem 2.1 this implies that

lim
r→1

1− |gm(rp0)|
1− r = (gm)′(p0) <∞.

Therefore there exists K > 0 such that for any r ∈ (0, 1),

K >
1− |gm(rp0)|

1− r =
1− |gm(rp0)|
1− |g(rp0)|

1− |g(rp0)|
1− r

=
1− |gm−1(g(rp0))|

1− |g(rp0)|
1− |g(rp0)|

1− r .

Since by the Schwarz Lemma the two factors in the right-hand side of the above
equation are bounded away from zero (see, e.g., Lemma 1.2.4 of [Ab]), then Theorem
2.1 implies that

|g′(p0)| ≤ lim inf
r→1

1− |g(rp0)|
1− r <∞.

By the same token and since g(p0) = p1, |(gm−1)′(p1)| < ∞. Repeating the above
argument, we find that |g′(pj)| <∞ for j = 1, . . . ,m− 1, as desired. �

Now we come to the proof of Theorem 1.6:

Proof of Theorem 1.6. By Theorem 1.4, if q0 ∈ FixA(f), then g has non-tangential
limit q1 := g(q0) at q0 and q1 ∈ FixA(f). Let q2 = g(q1) = g2(q0). Then q2 ∈
FixA(f). Proceeding in this way, since FixA(f) is finite, we eventually either reach
the Wolff point of f or find s < t ∈ N such that qt = qs.
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In the last case we can choose t in such a way that qs+j 6= qs for j = 1, . . . , t−s−1.
Let m := t − s and pj := qs+j for j = 0, . . . ,m − 1. Therefore g is a permutation
of {p0, . . . , pm−1}, and the assertion comes from Lemma 3.3.

If every p ∈ FixA(f) is such that gmp(p) = τf for some mp ∈ N, since FixA(f)
is finite, there exists m ∈ N such that gm(p) = τf for any p ∈ FixA(f). Also
(gm)′(p) =∞ for any p ∈ FixA(f) by Remark 3.2. �

4. Examples, consequences and applications

We start with the following:

Proposition 4.1. Let f, g ∈ Hol(∆,∆) with g non-constant and f ◦ g = g ◦ f . If
the Wolff point τf of f is contained in ∆ and there exists A > 1 such that FixA(f)
contains only one point, say p, then p is a BRFP for g.

Proof. By Theorem 1.6 there exists a repelling cycle {p0, . . . , pm−1} for g made of
elements of FixA(f). The only possibility is that pj ≡ p for j = 0, . . . ,m− 1, i.e.,
m = 1, and therefore p is a BRFP for g. �

More generally, with the same proof (see also Remarks 3.1 and 3.2),

Proposition 4.2. Let f, g ∈ Hol(∆,∆) with g non-constant and f ◦ g = g ◦ f . Let
τf ∈ ∆ be the Wolff point of f . Suppose that FixA(f) − {τf} contains only one
point, say p, for some A > 1. If either there are no backward iteration sequences
for f converging to its Wolff point τf or g′(p) <∞, then p is a BRFP for g.

The following example shows that the condition on the non-existence of backward
iteration sequences converging to the Wolff point of f cannot be deleted (see also
Example 4.12 in [Co2]):

Example 4.3. Let f and σ be as in Example 2.9. Let g(z) := σ−1(σ(z)+2). Then
f ◦g = g◦f and g(τf ) = τf . However, f fixes the point x := limr→−∞ σ

−1(1/2+ri)
and f ′(x) <∞, but g(x) = τf . Note that g′(x) =∞.

Another consequence is the following:

Proposition 4.4. Let f ∈ Hol(∆,∆), not the identity, be such that its Wolff point
τf belongs either to ∆ or to ∂∆ and f ′(τf ) < 1. Let g ∈ Hol(∆,∆) be such that
f ◦g = g ◦f and g is non-constant. Suppose there exists A > 1 such that FixA(f) is
non-empty. Then there exists m ≥ 1 such that f and gm have (at least) m common
BRFP’s.

Proof. By Theorem 2.2 FixA(f) has a finite number of points. Therefore we can
apply Theorem 1.6 to get a repelling cycle {p0, . . . , pm−1} for g made of BRFP’s
for f (see Remark 3.1). Then gm fixes each point of such a cycle. �

The positive integer m in Proposition 4.4 could be > 1, as the following example
shows:

Example 4.5. Let pj := e2jπi/3 for j = 0, 1, 2. For j = 0, 1, 2 let Ej ⊂ ∆ be the
open disc of radius 1/2 tangent to ∂∆ at pj . Let G :=

⋃3
j=0 Ej . The region G is

simply connected. Let f : ∆ → G be the Riemann mapping that fixes p0, p1, p2

(see Theorem 6 on p. 46 in [Go]). Let g(z) := e2πi/3z. Clearly f ◦ g = g ◦ f , the
map g has a repelling cycle made of {p0, p1, p2}, and g3 = Id.



FIXED POINTS OTHER THAN THE WOLFF POINT 2581

In a sense the previous example shows that Cowen’s conjecture (2) would not
hold if g is allowed to be an automorphism of ∆.

Next we show that Theorem 1.6 does not hold if FixA(f) is infinite (and this
may happen only if f has Wolff point τf on the boundary and f ′(τf ) = 1).

Example 4.6. Let H := {w ∈ C : Re(w) > 0}. Let

V := {x+ iy ∈ H : (x− 1/2)2 + y2 < 1/4}
∪ {x+ iy ∈ H : x > 1/2,−1/2 < y < 1/2}.

Let σ : {x + iy ∈ H : −1/2 < y < 1/2} → V be a Riemann mapping such that
σ(0) = 0. Extend σ by reflection to all of H. Let G :=

⋃
k∈Z(V + ik). Therefore

σ : H → G is univalent, σ(ki) = ki and σ′(ki) = σ′(0) < ∞ for any k ∈ Z. Let
C : ∆ → H be a Riemann mapping such that C(1) = ∞ and set xk := C−1(ki).
Let f(z) := C−1(σ(C(z))) and g(z) := C−1(C(z)+i). By construction f ◦g = g◦f .
Moreover, f(xk) = xk, f ′(xk) = f ′(x0) = A < ∞ for any k ∈ Z. Also g, f have
Wolff point at 1, and f ′(1) = g′(1) = 1. Since g(xk) = xk+1, it follows that there
is no m ∈ N such that gm(p) = τf = 1 for any p ∈ FixA(f), and g has no (finite)
repelling cycle made of points of FixA(f).

An application of the previous results is about compactness of commuting com-
position operators. If f ∈ Hol(∆,∆) and H2(∆) is the Hardy space of square sum-
mable holomorphic functions, then f induces an operator Cf : H2(∆) → H2(∆)
given by Cf (G) := G◦ f for any G ∈ H2(∆) (see, e.g., [Sha]). Given g ∈ Hol(∆,∆)
such that f ◦ g = g ◦ f , it is clear that Cf ◦ Cg = Cg ◦ Cf . A natural question is
whether Cf compact implies Cg compact. The answer is generally negative; just
consider f(z) = 1

2z and g(z) = z and apply the Compactness Criterion on p. 43 in
[Sha]. However, we have the following:

Proposition 4.7. Let f, g ∈ Hol(∆,∆) be such that f ◦ g = g ◦ f . Suppose that
FixA(f) is non-empty for some A > 1. Then Cf and Cg are not compact.

Proof. If f has Wolff point τf ∈ ∂∆, then by Behan’s Theorem (see [Be]) g has
Wolff point τg ∈ ∂∆. Since f ′(τf ) ≤ 1 and g′(τg) ≤ 1, then Theorem 2.1 and
the Compactness Criterion (see the theorem on p. 43 of [Sha]) imply that Cf , Cg
are not compact. Suppose τf ∈ ∆. By Theorem 2.2, FixA(f) is finite. Hence by
Theorem 1.6 there exists a point p ∈ FixA(f) ⊂ ∂∆ such that |f ′(p)| < ∞ and
|g′(p)| < ∞. By Theorem 2.1 and the theorem on p. 43 of [Sha], this implies that
Cf and Cg are not compact. �

5. The case of univalent functions

In this section we restrict ourselves to the case when f and g are two univalent
holomorphic self-maps of ∆. If f ◦ g = g ◦ f and f is univalent, it is not true in
general that g is also univalent. However, whenever f ′(τf ) < 1, then g is univalent
by Corollary 4.9 in [Co2]. The main point is to understand how a repelling cycle
could be for univalent maps. For this we first need to introduce some notation.
Let {p0, . . . , pm−1} be a cycle for g ∈ Hol(∆,∆). We give p0 the number 0. Then,
moving counterclockwise on ∂∆ starting from p0, we label with 1 the very next
point pj1 of the cycle. We proceed counterclockwise to the next point pj2 of the
cycle and number it with 2, and so on. After introducing this labelling we have a
way of seeing g as a permutation of {0, . . . ,m − 1}. For l, k ∈ {0, . . . ,m − 1} we
write g : l 7→ k if g(pjl) = pjk .
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Lemma 5.1. Let g ∈ Hol(∆,∆) be univalent. Let {p0, . . . , pm−1} be a cycle (not
necessarily a repelling cycle) for g with length m > 1. Then there exists k ∈
{1, . . . ,m− 1} such that g acts on the cycle {p0, . . . , pm−1} as the permutation

j 7→ j + k mod (m)

for j ∈ {0, . . . ,m− 1}.

Lemma 5.1 says that a univalent map has only a few ways of acting on its cycles.
Moreover, it is not difficult to see that the k in the lemma cannot be a divisor of
m. Taking iterates, it is possible to construct examples with k > 1. We wish to
thank C. de Fabritiis for pointing out this fact.

Proof of Lemma 5.1. If m = 2, 3 the assertion is clear. Suppose m > 3 and that
the conclusion of the lemma is false. Up to relabelling the cycle we can suppose
that g : 0 7→ k and g : 1 7→ k′ with k′ 6= k + 1. First suppose k = 1. Let V be the
arc on ∂∆ with end points p1 and p2 and which does not contain p0. By hypothesis
p1 is associated to 1 and p2 to some l > 2. Therefore there exists some pjs ∈ V
with js 6= 1, 2. Let s, r ∈ {3, . . . ,m − 1} be respectively the maximum and the
minimum integer such that ps, pr ∈ V (possibly ps = pr). Let γ be the segment
contained in ∆ and joining p0 to p1, and let σ be the segment in ∆ that joins pr−1

to ps. By construction γ ∩ σ = ∅. Now g(γ) is a Jordan curve that joins p1 to p2

and whose closure disconnects V from ∂∆ − V . But g(σ) is a Jordan curve that
connects pr ∈ V to ps+1 6∈ V , and therefore g(γ) must intersect g(σ) somewhere in
∆, contradicting the fact that g is univalent. Suppose now k > 1. We are in the
situation where g : 0 7→ k but g does not map 1 to k+ 1. Let l ∈ {0, . . . ,m− 1} be
such that g : 1 7→ k − 1, g : 2 7→ k − 2, . . ., g : l 7→ k − l and g : l + 1 67→ k − l − 1.
Certainly l < k, because otherwise, if k < m − 1, then g would map k to 0, i.e.,
the cycle would contain k < m− 1 elements; or, if k = m − 1, then g : 0 7→ k − 1
and g : k − 1 7→ 0. Then l < k. Note that g cannot map l + 1 to k − l + 1, since
k − (l − 1) was to be mapped there. We can relabel the cycle in such a way that
0 corresponds to pjl . In this case g : 0 7→ k′ = k − l, g : 1 7→ k1 with k1 6= k′ − 1
and k1 6= k′ + 1. If k′ = 1, we can proceed as before. If k′ > 1, we argue as
follows. Let q0 be the point of the cycle in position 0 and qj1 the one in position 1.
Let γ be the segment in ∆ joining q0 to qj1 , and V the arc on ∂∆ with extremes
q1 := g(q0) and qj1+1 := g(qj1) and which does not contain q0. The arc V minus
the extremes contains more than one point of the cycle. If q2 := g(q1) ∈ V , let
r ∈ {3, . . . ,m − 1} be the maximum such that qr ∈ V − {q1, qj1+1}. Then the
segment σ in ∆ between q1 and qr is such that γ ∩ σ = ∅. But g(γ) ∩ g(σ) 6= ∅
for g(γ) has extremes q1, qj1+1, and g(σ) has extremes q2 ∈ V and qr+1 6∈ V . This
contradicts the univalency of g. If q2 6∈ V , then we choose r ∈ {3, . . . ,m− 1} to be
the minimum such that qr ∈ V − {q1, qj1+1}. The segment σ ⊂ ∆ that joins pr−1

and p1 is such that σ ∩ γ = ∅ but g(σ) ∩ g(γ) 6= ∅, again a contradiction. �

Proposition 5.2. Let g ∈ Hol(∆,∆) be univalent and let {p0, . . . , pm−1} be a cycle
for g. Let τg be the Wolff point of g. If m > 1, then Fix(g) = {τg} and τg ∈ ∆.

Proof. Suppose first m > 2. By Lemma 5.1 the map g can only act on the cycle as
the permutation j 7→ j + k mod (m), for some fixed k ∈ {0, . . . ,m− 1}. Suppose
p ∈ ∂∆ is such that g(p) = p. Up to relabelling we can suppose that p0 is the
closest point of the cycle to p, moving from p on ∂∆ counterclockwise. Let γ be
the segment in ∆ joining p to p0, and σ the segment between pj1—the point in
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position 1—and pm−1. Note that pm−1 is in position −k, i.e., in position k moving
clockwise from p0. By construction γ∩σ = ∅. The closure of the Jordan curve g(γ)
connects p to p1. Let V be the arc on ∂∆ with end points p and p1 that contains
p0. The closure of the curve g(σ) joins p0 with pj1+1. Since p0 ∈ V (and it is not an
extreme of V ) and pj1+1 6∈ V , it follows that g(γ)∩g(σ) 6= ∅, contradicting the fact
that g is univalent. Therefore g cannot have any fixed point on ∂∆. This implies
that the only fixed point of g is its Wolff point τg, and it must belong to ∆.

We are left to consider the case m = 2. Assume for a contradiction that τg ∈ ∂∆.
Let γj be the segment between τg and pj , j = 0, 1. Then g(γj) is a curve joining
τg to pj . Since g is isogonal at τg, this implies that g(γ0) ∩ g(γ1) ∩∆ 6= ∅, which
is impossible for g is univalent. Therefore τg ∈ ∆. Suppose p ∈ ∂∆ is such that
g(p) = p. Let σ be the segment between τg and p oriented by declaring p − τg
a positive direction. Let γ be a smooth oriented curve in ∆ such that τg ∈ γ,
γ ∩ σ = {τg}. We also require that p0, p1 are the end points of γ and γ is non-
tangential to ∂∆ at p0, p1. Since g preserves the orientation at τg (for g′(τg) 6= 0),
then the curves g(γ) and g(σ) must intersect at τg with the same orientation as
γ∩σ. But this clearly implies that g(γ) intersects g(σ) at some point q ∈ ∆−{τg},
contradicting the fact that g is univalent. �

This is enough to prove Cowen’s conjectures for univalent mappings, C1 up to
the boundary.

Proof of Theorem 1.7. If Fix(f) = {τf} or f—and hence g—is a hyperbolic auto-
morphism of ∆, then the result follows from the Behan Theorem (see [Be]).

Suppose Fix(f) contains more than one point and f is not an automorphism.
Then τf = τg, and there exists A > 1 such that FixA(f) is non-empty. Let

(5.1) A := max
p∈∂∆

|f ′(p)|.

Certainly 1 < A < ∞. By Theorem 2.2 the set FixA(f) is finite and FixA(f) =
Fix(f). By Proposition 5.2, g may have only repelling cycles of length 1. Therefore
if we take any p ∈ FixA(f) and argue as in the proof of Lemma 3.3, we eventually
find a finite sequence p, g(p), . . . , gm(p) such that gm(p) is a fixed point of g (note
that if p 6= τf , then gm(p) 6= τf by Remark 3.1). We claim thatm = 1, i.e., g(p) = p.
Suppose not. Let q0 := gm−1(p) and q1 := gm(p). Then g(q0) = g(q1) = q1 and
|g′(q0)| <∞, |g′(q1)| <∞. But this contradicts point (3) of Theorem 2.2. �

Proof of Theorem 1.8. Suppose Fix(f) contains more than one point (otherwise the
result is trivial). Define A as in equation (5.1). Then FixA(f) = Fix(f)−{τf} is a
non-empty finite set, by Theorem 2.2. We partition FixA(f), giving the following
equivalence relation: for p, q ∈ FixA(f) set p ∼ q if f ′(p) = f ′(q). The number
N ∈ N of equivalence classes is finite, and each class contains only a finite number
of elements, say aj ∈ N for j = 1, . . . , N . Let

m :=
N∏
j=1

aj ! =
N∏
j=1

(aj − 1)(aj − 2) · · · 1.

We claim that if g is as in the hypotheses, then Fix(gm) = Fix(f). Clearly τf = τg.
Let p ∈ FixA(f). Arguing as in the proof of Lemma 3.3, we can find a repelling
cycle {gl(p), . . . , gl+mp(p)} for g of length mp + 1 ≥ 1 made of BRFP’s for f such
that f ′(gl+j(p)) = f ′(gl(p)) for any j = 0, . . . ,mp. If l > 0, let q0 := gl−1(p) and
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q1 = gl+mp(p). Then q0 6= q1 and g(q0) = g(q1), which contradicts point (3) of
Theorem 2.2 since |g′(q0)| < ∞, |g′(q1)| < ∞. Therefore l = 0, i.e., each BRFP
for f is contained in a (unique) repelling cycle for g, and such a cycle is made of
BRFP’s where f ′ attains the same value. Hence the length of each cycle divides m,
and so gm fixes every BRFP for f , as desired. �

Finally:

Proof of Proposition 1.9. In case τf ∈ ∆, then τg = τf and there exists p ∈ ∂∆,
a BRFP for f and g. Therefore by Proposition 5.2 the map g may have only
a repelling cycle of length 1. The reasoning now goes exactly as in the proof of
Theorem 1.7. �
Remark 5.3. The previous proofs show that actually Theorems 1.7, 1.8 and Propo-
sition 1.9 hold for a bigger class than Hol1u(∆,∆). Namely, they hold in the class of
univalent maps on ∆ whose derivatives are bounded on ∆. We thank M. Landucci
for making this remark to us.
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