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Abstract. We introduce a process, that we call shearing, which for any given normal
Loewner chain produces a normal Loewner chain made of shears automorphisms. As an
application, and in stringent contrast to the one-dimensional case, we prove the existence
of a starlike bounded function in the class S0 of the ball B2 (in fact the restriction of a
shear automorphism of C2) which is a support point for a linear continuous functional.

1. Introduction

Let Bn := {z ∈ Cn : ‖z‖ < 1}. Let S(Bn) denote the family of univalent holomorphic
maps from Bn to Cn such that f(0) = 0 and df0 = id. Such a class is known to be compact
for n = 1 (see, e.g. [10]) but it is not for n > 1.

A normalized Loewner chain on Bn is a family (ft)t≥0 of univalent maps from Bn to
Cn such that fs(Bn) ⊂ ft(Bn) for 0 ≤ s ≤ t, ft(0) = 0 and d(ft)0 = etid. A normalized
Loewner chain (ft) is said to be a normal Loewner chain if {e−tft}t≥0 is normal in Bn. Let
S0(Bn) be the subset of S(Bn) of maps which admit parametric representation, namely,
f ∈ S0(Bn) provided there exists a normal Loewner chain (ft) in Bn such that f0 = f .
It is known, that in D = B1, S0(D) = S(D) (see [10]), while S0(Bn) is strictly contained
in S(Bn) for n ≥ 2 (see, e.g. [2]). Nonetheless, the class S0(Bn) is compact and many
similar growth estimates as in the one-dimensional case can be pursued.

For studying extremal problems, it is important to determine the so called support
points. Endow Hol(Bn,Cn) with the topology of uniform convergence on compacta, which
makes it a Fréchet space. A function f ∈ S0(Bn) is called a support point if there exists
a bounded linear functional L : Hol(Bn,Cn) → C such that L is not constant on S0(Bn)
and ReL(f) = maxh∈S0(Bn) ReL(h).

In dimension one it was proved by Schaeffer (see, e.g. [13]) that support points are slit
functions. In particular they are unbounded.

In higher dimension, much work has been done to study support points in S0(Bn) and
many evidences that support points in S0(Bn) should be unbounded have been obtained,
see, e.g., [4], [5], [14], [6], [1], [8], [12].
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However, and very surprisingly, in this paper, we construct an example of a bounded
starlike map in S0(B2) which is a support point.

Such a map is quite simple and it is in fact the restriction to B2 of a shear of C2:

Φ(z1, z2) = (z1 +
3
√

3

2
z22 , z2), ∀(z1, z2) ∈ B2.

Let L1
0,2 : Hol(B2,C2) → C be defined as L1

0,2(f) := 1
2
∂2f1
∂z22

(0), where f = (f1, f2) ∈
Hol(B2,C2).

Theorem 1.1. The map Φ ∈ S0(B2) is starlike and maximizes ReL1
0,2.

The fact that Φ is starlike and belongs to S0(B2) is known from long (see [15, Example
3], [11, Example 5]), however, we give a proof of it in Lemma 2.3. The fact that Φ
maximizes ReL1

0,2 follows at once from the following result:

Theorem 1.2. Let f(z1, z2) = (z1 +
∑

α∈N2,|α|≥2 a
1
αz

α, z2 +
∑

α∈N2,|α|≥2 a
2
αz

α) ∈ S0(B2).

Then |a10,2| ≤ 3
√
3

2
, and the bound is reached by Φ.

The proof of Theorem 1.2 relies on a process that we call shearing process which has
no one-dimensional analogue and it seems to be interesting by itself. Let

HolD(B2,C2) := {h ∈ Hol(B2,C2) : h(0) = 0 and dh0 is diagonal and invertible}.
Definition 1.3. Let h ∈ HolD(B2,C2) and write the Taylor expansion at 0 as

h(z) = (λz1 + Az22 +O(|z1|2, |z1z2|, ‖z‖3), µz2 +O(‖z‖2)).
Then we define the shearing of h to be

h[c](z1, z2) := (λz1 + Az22 , µz2) ∀z ∈ B2.

The main result of the paper is the following

Theorem 1.4. Let (ft) be a normal Loewner chain in B2. Then (f
[c]
t ) is a normal Loewner

chain in B2. In particular, if f ∈ S0(B2) then f [c] ∈ S0(B2).

Such a theorem is proved in Section 2. Using such a result, in Section 3 we prove
Theorem 1.2.

We remark that our construction can be done in any dimension greater than one, but
for the sake of clearness, we give the results only in dimension 2. Also, Theorem 1.1 gives
an example of a function in S0(B2) which is bounded by a certain M > 1 but it is not
a “logM -time reachable function” in S0(B2) (see, e.g., [7] for definition), contrary to the
one-dimensional case where the set of functions in S0(D) which are bounded by M > 1
coincides with “logM -time reachable functions” in S0(D).

This work was done while the author was “Giovanni Prodi chair” in Nonlinear Analysis
in Winter 2013/14 at the Institut für Mathematik, Universität Würzburg. He wishes to
sincerely thank all the staff of the Chair of Complex Analysis for all the support and the
great atmosphere experienced there.
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2. The shearing process of Loewner chains

2.1. Shearing the class M−. Let

M− := {H ∈ Hol(B2,C2) : H(0) = 0, dH0 = −id,Re 〈H(z), z〉 ≤ 0 ∀z ∈ B2}.

We show that the shearing of a holomorphic vector field in the class M− is still in the
class M−:

Proposition 2.1. If H ∈M−, then H [c] ∈M−.

Proof. It is clear that H [c](0) = 0, dH
[c]
0 = −id, so we have to check that Re 〈H [c](z), z〉 ≤ 0

for all z ∈ B2. Write the Taylor expansion of H at 0 as

(2.1) H(z) = (−z1 +
∑

α∈N2:|α|≥2

q1αz
α,−z2 +

∑
α∈N2:|α|≥2

q2αz
α).

We know that for all z ∈ B2

(2.2) 0 ≥ Re 〈H(z), z〉 = −|z1|2 − |z2|2 +
∑

α∈N2,|α|≥2

Re
(
q1αz

αz1
)

+
∑

α∈N2,|α|≥2

Re
(
q2αz

αz2
)
.

Let η ∈ [0, 2π) be such that q10,2e
−iη = |q10,2|. Take z1 = xei(θ+η) and z2 = yei

θ
2 for

x, y ≥ 0, x2 + y2 < 1 and θ ∈ R. Substituting these expressions in (2.2) we obtain

0 ≥ −x2 − y2 + |q10,2|xy2 +
∑

α∈N2,|α|≥2,α 6=(0,2)

xα1+1yα2Re
(
q1αe

i(α1−1)ηei[α1+
α2
2
−1]θ
)

+
∑

α∈N2,|α|≥2

xα1yα2+1Re
(
q2αe

iα1ηei[α1+
α2
2
− 1

2
]θ
)
.

(2.3)

Now, notice that among all α ∈ N2 with |α| ≥ 2 the expression α1 + α2

2
− 1 = 0 has only

the solution α = (0, 2), while α1 + α2

2
− 1

2
= 0 has no solution for α ∈ N2 with |α| ≥ 2.

Therefore, all terms in the previous expression except the first three terms are of the form
a cos(mθ), a cos(m θ

2
) (or with sin instead of cos), for some a ∈ R and m ∈ N,m ≥ 1.

Thus, if we integrate (2.3) in θ for θ ∈ [0, 4π] and taking into account that the series
converges uniformly on compacta and thus we can exchange the series with the integral,
all the terms in (2.3) but the first three, become zero and we obtain:

(2.4) 0 ≥ −x2 − y2 + |q10,2|xy2 ∀x, y ≥ 0, x2 + y2 < 1.

From this it follows that

Re 〈H [c](z), z〉 = −|z1|2 − |z2|2 − Re
(
q10,2z

2
2z1
)
≤ −|z1|2 − |z2|2 + |q10,2||z1||z2|2 ≤ 0,

proving that H [c] ∈M−. �

Corollary 2.2. Let H ∈M− be given by (2.1). Then |q10,2| ≤ 3
√
3

2
.
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Proof. By Proposition 2.2 it is enough to prove the result for H(z) = (−z1 + az22 ,−z2).
By (2.4), we have

−x2 − y2 + |a|xy2 ≤ 0 ∀x, y ≥ 0, x2 + y2 < 1.

Studying such a function it is not hard to show that the equation holds only if |a| ≤
3
√
3

2
. �

The previous estimate is sharp, indeed we have the following result:

Lemma 2.3. Let H(z) = (−z1 + 3
√
3

2
z22 ,−z2). Then H ∈M−. Moreover,

ft(z) = et

(
z1 +

3
√

3

2
z22 , z2

)
is a normal Loewner chain which satisfies the Loewner PDE

∂ft(z)

∂t
= d(ft)zH(z).

In particular, Φ = f0 ∈ S0(B2) and Φ is starlike.

Proof. A simple computation shows thatH ∈M− and that (ft) satisfies the Loewner PDE
and the hypothesis of [2, Thm. 8.1.6], so it is a normal Loewner chain. Alternatively,

one can solve the Loewner ODE ∂ϕs,t(z)

∂t
= H(ϕs,t(z)), ϕs,s(z) = z (which is in fact a

semigroup equation) and check that fs = limt→∞ e
tϕs,t for s ∈ R+. Hence, by [2, Thm

8.1.6] it follows that (ft) is a normal Loewner chain. It is finally well known (see, e.g. [2,
Thm. 8.2.1]) that f is starlike if and only if (etf) is a normal Loewner chain. �

2.2. Shearing normal Loewner chains. We show that the shearing of a normal Loewner
chain is still a normal Loewner chain.

The first simple observation is the following lemma, which can be checked by Taylor
expansion at 0:

Lemma 2.4. Let h, g ∈ HolD(B2,C2) and suppose h ◦ g is well defined. Then for all
z ∈ B2 ∩ g[c](B2)

(2.5) (h ◦ g)[c](z) = h[c](g[c](z)).

In fact, (2.5) holds for all z ∈ C2 if one denotes by h[c] the corresponding shear and not
just its restriction to B2.

Now we can prove Theorem 1.4:

Proof of Theorem 1.4. A Herglotz vector field G(z, t) associated with the class M− is a
map G : R+ × B2 → C2 such that

(i) The mapping G(z, ·) is measurable on R+ for all z ∈ B2.
(ii) G(·, t) ∈M− for a.e. t ∈ [0,+∞).
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Let (ft) be a normal Loewner chain and set ϕs,t := f−1t ◦ fs for 0 ≤ s ≤ t. It is known
(see, e.g. [2, Chapter 8]) that (ft) is absolutely continuous in t locally uniformly in z and
that there exists a Herglotz vector field G(z, t) associated with the class M− such that
the following Loewner ODE is satisfied:

∂ϕs,t(z)

∂t
= G(ϕs,t(z), t) a.e. t ≥ 0, ∀z ∈ B2.

By Proposition 2.1, G[c](z, t) is a Herglotz vector field associated with the class M−. By
Lemma 2.4, it follows that

∂ϕ
[c]
s,t(z)

∂t
= G[c](ϕ

[c]
s,t(z), t) a.e. t ≥ s,∀z ∈ ϕ[c]

s,t(B2) ∩ B2.

In fact, the previous equation holds for all z ∈ C2 if considered at level of shears in C2.
Thus, since by [2, Theorem 8.1.3] the solution to the Loewner ODE is unique, in

particular, for all s, t ∈ R such that 0 ≤ s ≤ t, ϕ
[c]
s,t(B2) ⊂ B2. Hence, since again by

Lemma 2.4 we have f
[c]
s = f

[c]
t ◦ ϕ

[c]
s,t for all s, t such that 0 ≤ s ≤ t, it follows that

f
[c]
s (B2) ⊂ f

[c]
t (B2) for all s, t such that 0 ≤ s ≤ t. It is now easy to check that (f

[c]
t ) is a

normal Loewner chain. �

3. Sharp bound for the coefficient a10,2

Theorem 3.1. Let f = (z1 +
∑

α∈N2:|α|≥2 a
1
αz

α, z2 +
∑

α∈N2:|α|≥2 a
2
αz

α) ∈ S0(B2). Then

|a10,2| ≤ 3
√
3

2
. Such an estimate is sharp and it is reached by Φ.

Proof. Let (ft) be a normal Loewner chain such that f0 = f . By Theorem 1.4, f [c] ∈
S0(B2) and it has a parametric representation given by ft(z) = (etz1 +a(t)z22 , e

tz2), where
a : R+ → R is a bounded absolutely continuous function and a(0) = a10,2. Let ϕs,t :=

f−1t ◦ fs. As in the proof of Theorem 1.4, there exists a Herglotz vector field G(z, t)
associated with the class M− such that

(3.1)
∂ϕ

[c]
s,t(z)

∂t
= G[c](ϕ

[c]
s,t(z), t) a.e. t ≥ s,∀z ∈ B2.

Write G[c](z, t) = (−z1 + q(t)z22 ,−z2) and ϕ
[c]
s,t = (es−tz1 + a(s, t)z22 , e

s−tz2) for 0 ≤ s ≤ t.
Writing down explicitly (3.1), we obtain{

∂a(s,t)
∂t

= −a(s, t) + q(t)e2(s−t) a.e. t ≥ s,

a(s, s) = 0

from which it follows that for 0 ≤ s ≤ t

a(s, t) = es−t
∫ t

s

q(τ)es−τdτ.
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By Corollary 2.2 we get |a(s, t)| ≤ 3
√
3

2
es−t(1−es−t). By [2, Thm. 8.1.5] limt→∞ e

tϕ
[c]
s,t = f

[c]
s

(uniformly on compacta) for all s ∈ R+. Hence

|a(s)| = lim
t→∞
|eta(s, t)| ≤ lim

t→∞
et

3
√

3

2
es−t(1− es−t) =

3
√

3

2
es,

from which |a10,2| ≤ 3
√
3

2
. �

Remark 3.2. Let Φa(z1, z2) := (z1 + az22 , z2) for a ∈ C. It was known that Φa ∈ S0(B2)

for |a| ≤ 3
√
3

2
since such a map is starlike (see [15, Example 3]), while it was known that

Φa 6∈ S0(B2) for |a| ≥ 2
√

15 (see [3, Remark 3.5]) since it does not satisfy the growth

estimates for the class S0(B2). In fact, due to Theorem 3.1, Φa 6∈ S0(B2) for |a| > 3
√
3

2
.

Remark 3.3. The map Φa(z1, z2) := (z1 + az22 , z2) for a = 1
2

is a bounded support point
for the set K of normalized univalent maps from Bn to Cn whose image is convex (see [9,
Thm. 2.7]).
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