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Abstract. We present a new geometric construction of Loewner chains in one and
several complex variables which holds on complete hyperbolic complex manifolds and
prove that there is essentially a one-to-one correspondence between evolution families
of order d and Loewner chains of the same order. As a consequence we obtain an
univalent solution (ft : M → N) for any Loewner-Kufarev PDE. The problem of finding
solutions given by univalent mappings (ft : M → Cn) is reduced to investigating whether
the complex manifold ∪t≥0ft(M) is biholomorphic to a domain in Cn. We apply such
results to the study of univalent mappings from the unit ball Bn to Cn.

1. Introduction

Loewner’s partial differential equation

∂fs
∂s

(z) = −(dfs)zG(z, s), a.e. s ≥ 0,

received much attention from mathematicians since Charles Loewner [23] introduced it
in 1923 to study extremal problems in the unit disc D ⊂ C and, later, P.P. Kufarev [20]
and C. Pommerenke [27], [28] fully developed the original theory. Such an equation was a
cornerstone in the de Branges’ proof of the Bieberbach conjecture. In 1999 O. Schramm
[33] introduced a stochastic version of the original differential equation, nowadays known
as SLE, which, among other things, was a basic tool to prove Mandelbrot’s conjecture by
himself, G. Lawler and W. Werner.
Loewner’s original theory has been extended (see [25], [26], [14], [15], [17], [29]) to

higher dimensional balls in Cn and successfully used to study distortion, star-likeness,
spiral-likeness and other geometric properties of univalent mappings in higher dimensions.
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Very recently, the second named author with M. Contreras and S. Dı́az-Madrigal [4],
[5] and Contreras, Dı́az-Madrigal and P. Gumenyuk [7] proposed a general setting for the
Loewner theory, which works also on complete hyperbolic complex manifolds. While the
classical theory deals with normalized objects, this general theory does not, and encloses
the classical theory as a special case.
The aim of this paper is to present a general geometric construction of Loewner chains

on complete hyperbolic complex manifolds which does not use any limit process (and thus
it is new also for the unit disc case) but relies on the apparently new interpretation of
Loewner chains as the direct limit of evolution families, and to give applications of such a
theory to geometric properties of univalent mappings on the unit ball. To be more precise,
we need some definitions. In the following, M is a complete hyperbolic complex manifold
of dimension n, and d ∈ [1,+∞]. An Ld-evolution family on M is a family (φs,t)0≤s≤t of
holomorphic self-mappings of M satisfying the evolution property

φs,s = id, φs,t = φu,t ◦ φs,u, 0 ≤ s ≤ u ≤ t,

and t 7→ φs,t(z) has some Ld
loc-type regularity locally uniformly with respect to z ∈ M

(see Definition 2.1).
Ld-evolution families are trajectories of certain time-dependent holomorphic vector

fields on M , called Herglotz vector fields. An Ld-Herglotz vector field G(z, t) on M
is a weak holomorphic vector field in the sense of Carathéodory which satisfies a suitable
Ld
loc-bound in t uniformly on compacta of M and such that for almost every t ≥ 0 the

vector field z 7→ G(z, t) is semicomplete (see Definition 2.4).
The main result in [5] states that there is a one-to-one correspondence between evolution

families and Herglotz vector fields. The bridge for such a correspondence is given by the
following Loewner-Kufarev ODE:

(1.1)
∂φs,t

∂t
(z) = G(φs,t(z), t), a.e. t ∈ [s,∞).

Both classical radial and chordal Loewner ODE in the unit disc are just particular cases
of such an equation (see [4]).
Ld-Evolution families are strictly related to Ld-Loewner chains. Such chains are defined

in the unit disc D in [7] as families of univalent mappings (ft : D → C)t≥0 such that
fs(D) ⊆ ft(D) for all 0 ≤ s ≤ t and satisfying an Ld

loc bound in t uniformly on compacta
of D. The classical Loewner chains in the unit disc are particular cases of such chains.
The correspondence between evolution families and Loewner chains is provided by a

functional equation: an Ld-evolution family and an Ld-Loewner chain are associated if

(1.2) fs = ft ◦ φs,t, 0 ≤ s ≤ t.

In [7] it is proved that given an Ld-Loewner chain (ft) in the unit disc D, the family

(φs,t := f−1
t ◦ fs)
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is an associated Ld-evolution family and, conversely, any Ld-evolution family admits a
unique (up to biholomorphisms) associated Ld-Loewner chain. Such a result, as already
in the classical theory, is based on a scaling limit process.
Similar results, in the case of L∞-evolution families in the unit ball Bn ⊂ Cn fixing

the origin and having a normalized differential at the origin, have been obtained in [14],
[17]. In such works Loewner chains are defined as image-increasing sequences of univalent
mappings on the ball with image in Cn fixing the origin and having the differential sub-
jected to some normalization at the origin. Again, Loewner chains are defined starting
from normalized evolution families by means of a scaling limit process.
In this paper we propose a definition of Ld-Loewner chains on complete hyperbolic

complex manifolds and prove that equation (1.2) provides a one-to-one correspondence
(up to biholomorphisms) between Ld-Loewner chains and Ld-evolution families. Since
there exist complete hyperbolic complex manifolds (even non-compact ones) which are
not biholomorphic to domains in Cn, requiring each ft to be a univalent mapping fromM
to Cn would be unnecessarily restrictive. Hence we give the following definition: let N be
a complex manifold of the same dimension of M and let dN denote the distance induced
on N by some Hermitian metric. A family (ft :M → N)t≥0 is an Ld-Loewner chain if

LC1. For each t ≥ 0 fixed, the mapping ft :M → N is univalent,
LC2. fs(M) ⊂ ft(M) for all 0 ≤ s ≤ t < +∞,
LC3. For any compact set K ⊂⊂M and any T > 0 there exists a kK,T ∈ Ld([0, T ],R+)

such that for all z ∈ K and for all 0 ≤ s ≤ t ≤ T

dN(fs(z), ft(z)) ≤
∫ t

s

kK,T (ξ)dξ.

The main results of the present paper can be summarized as follows.

Theorem 1.1. Let M be a complete hyperbolic complex manifold of dimension n. Let
(φs,t) be an Ld-evolution family on M . Then there exists an associated Ld-Loewner chain
(ft : M → N). If (gt : M → Q) is another Ld-Loewner chain associated with (φs,t), then
there exists a biholomorphism

Λ:
∪
t≥0

ft(M) →
∪
t≥0

gt(M)

such that
gt = Λ ◦ ft, t ≥ 0.

Conversely, if (ft : M → N) is an Ld-Loewner chain, then (φs,t := f−1
t ◦ fs) is an

associated Ld-evolution family.

The first part of the result holds more generally on taut manifolds (see Theorems 4.7
and 4.10). The second part is proved in Theorem 4.6. In order to prove the result we
exploit a kernel convergence theorem on complete hyperbolic complex manifolds which
we prove in Theorem 3.5.
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The Ld-Loewner chain (ft : M → N) associated with the Ld-evolution family (φs,t) is
constructed as its direct limit. From a categorical point of view, we consider complex
manifolds as objects and holomorphic mappings as morphisms. Define Mt = M for all
t ≥ 0. The pair ((Mt), (φs,t)) is a direct system indexed by R+, and the chain (ft) is defined
as the family of canonical morphisms given by the direct limit (N, (ft)) of ((Mt), (φs,t)).
To be more precise, we define an equivalence relation on the product M × R+:

(x, s) ∼ (y, t) iff φs,u(x) = φt,u(y) for u large enough,

and define N := (M × R+)/∼. Let π : M × R+ → N be the projection on the quotient,
and let it : M → M × R+ be the injection it(x) = (x, t). The canonical morphisms are
the mappings

ft := π ◦ it, t ≥ 0,

which are injective since the mapping φs,t is injective for all 0 ≤ s ≤ t. Equation (1.2)
holds and is the universal property of the direct limit (N, (ft)). We endowN =

∪
t≥0 ft(M)

with a complex manifold structure which makes the mapping ft holomorphic for all t ≥ 0,
and we prove the Ld-estimate.
As a consequence of Theorem 1.1, we can define the Loewner range Lr(φs,t) of (φs,t)

as the biholomorphism class of
∪

t≥0 ft(M), where (ft) is any associated Ld-Loewner
chain. The Loewner range can be seen as an analogue of the abstract basin of attraction
defined by Fornaess and Stensønes in the setting of discrete holomorphic dynamics with
an attractive fixed point [12].
If (φs,t) is an Ld-evolution family on the unit disc D the Loewner range has to be

simply connected and cannot be compact, thus by the uniformization theorem it has
to be biholomorphic to D or C, and, as noticed also in [7], the choice depends on the
dynamics of (φs,t). Generalizing this result we prove the following formula: if (ft) and
(φs,t) are associated, then

f ∗
s κLr(φs,t) = lim

t→∞
φ∗
s,tκM , s ≥ 0,

where we recall that, if g : X → Y is an holomorphic mapping between to complex
manifolds, the pull-back of the Kobayashi pseudometric κY of Y is given by

g∗κY (x; v)
.
= κY (g(x); (dg)x(v)), x ∈ X, v ∈ TxX.

Using results from Fornaess and Sibony [11] we provide in Theorem 4.18 some conditions
on the corank of the Kobayashi pseudometric in order to determine the Loewner range of
an Ld-evolution family.
In dimension one, Theorem 1.1 and the uniformization theorem allow to recover both

the classical results of Loewner, Kufarev, Pommerenke and the new results by Contreras,
Dı́az-Madrigal and Gumenyuk. In higher dimensions these results are new.
Let now G(z, t) be an Ld-Herglotz vector field whose flow is given by an Ld-evolution

family as in (1.1), and let N be a complex manifold of dimension n. Theorem 1.1 yields



ABSTRACT APPROACH TO LOEWNER CHAINS 5

that a family of univalent mappings (ft : M → N) solves the Loewner-Kufarev PDE

∂fs
∂s

(z) = −(dfs)zG(z, s), a.e. s ≥ 0, z ∈M

if and only if it is an Ld-Loewner chain associated with (φs,t). A solution given by univalent
mappings (ft : M → Cn) exists if and only if the Loewner range Lr (φt,s) is biholomorphic
to a domain in Cn.
In Section 6 we introduce a notion of conjugacy for Ld-evolution families which preserves

the Loewner range. In Section 7 we give examples of Ld-Loewner chains in the unit ball
generated by the Roper-Suffridge extension operator. In Section 8 we consider spiral-
shaped and star-shaped mappings and give a characterization of such mappings.

We thank the referee for some useful comments.

2. Evolution families and Herglotz vector fields

In the rest of this paper, unless differently stated, all manifolds are assumed to be
connected. Let M be a complex manifold and let dM denote the distance associated
with a given Hermitian metric on M . In the sequel we will also use the Kobayashi
pseudodistance kM on M and the associated Kobayashi pseudometric κM on M . For
definitions and properties we refer the reader to the books [1], [21].

Definition 2.1. Let M be a taut manifold. A family (φs,t)0≤s≤t of holomorphic self-
mappings of M is an evolution family of order d ∈ [1,∞] (or Ld-evolution family) if it
satisfies the evolution property

(2.1) φs,s = id, φs,t = φu,t ◦ φs,u, 0 ≤ s ≤ u ≤ t,

and if for any T > 0 and for any compact set K ⊂⊂ M there exists a function cT,K ∈
Ld([0, T ],R+) such that

(2.2) dM(φs,t(z), φs,u(z)) ≤
∫ t

u

cT,K(ξ)dξ, z ∈ K, 0 ≤ s ≤ u ≤ t ≤ T.

The following lemma is proved in [5, Lemma 2].

Lemma 2.2. Let d ∈ [1,+∞]. Let (φs,t) be an Ld-evolution family. Let ∆ := {(s, t) :
0 ≤ s ≤ t}. Then the mapping

(s, t) 7→ φs,t

from ∆ to hol(M,M) endowed with the topology of uniform convergence on compacta is
jointly continuous. Hence the mapping Φ(z, s, t) := φs,t(z) from M × ∆ to M is jointly
continuous.

Proposition 2.3. Let d ∈ [1,+∞]. Let (φs,t) be an Ld-evolution family. Then for all
0 ≤ s ≤ t the mapping (φs,t) is univalent.



6 L. AROSIO, F. BRACCI, H. HAMADA, AND G. KOHR

Proof. We proceed by contradiction. Suppose there exists 0 < s < t and z ̸= w in M
such that φs,t(z) = φs,t(w). Set r := inf{u ∈ [s, t] : φs,u(z) = φs,u(w)}. Since by Lemma
2.2 limu→s+ φs,u = id uniformly on compacta, we have r > s. If u ∈ (s, r),

φu,r(φs,u(z)) = φu,r(φs,u(w)),

and since φs,u(z) ̸= φs,u(w), the mappings φu,r, u ∈ (s, r), are not univalent on a fixed
relatively compact subset of M . But by Lemma 2.2 limu→r− φu,r = id uniformly on
compacta, which is a contradiction since the identity mapping is univalent. �

Definition 2.4. A weak holomorphic vector field of order d ∈ [1,∞] on M is a mapping
G :M × R+ → TM with the following properties:

(i) The mapping G(z, ·) is measurable on R+ for all z ∈M .
(ii) The mapping G(·, t) is a holomorphic vector field on M for all t ∈ R+.
(iii) For any compact set K ⊂⊂ M and all T > 0, there exists a function CK,T ∈

Ld([0, T ],R+) such that

∥G(z, t)∥ ≤ CK,T (t), z ∈ K, a.e. t ∈ [0, T ].

We recall that a holomorphic vector field G on M is called an infinitesimal generator
provided the Cauchy problem {•

z(t) = G(z(t)),

z(0) = z0

has a solution z : R+ →M for all z0 ∈M .
A Herglotz vector field of order d ∈ [1,∞] on a complete hyperbolic manifold M is a

weak holomorphic vector field of order d such that the holomorphic vector field z 7→ G(z, t)
is an infinitesimal generator for a.e. fixed t ∈ R+.

In the sequel we will use the following result which was proved in [5] with some ad-
ditional assumptions (smoothness of the Kobayashi distance of M and d = ∞) and was
proved in [3] in its generality.

Theorem 2.5. Let M be a complete hyperbolic complex manifold. Then for any Herglotz
vector field G of order d ∈ [1,+∞] there exists a unique Ld-evolution family (φs,t) over
M such that for all z ∈M

(2.3)
∂φs,t

∂t
(z) = G(φs,t(z), t) a.e. t ∈ [s,+∞).

Conversely for any Ld-evolution family (φs,t) over M there exists a Herglotz vector field G
of order d such that (2.3) is satisfied. Moreover, if H is another weak holomorphic vector
field which satisfies (2.3) then G(z, t) = H(z, t) for all z ∈M and almost every t ∈ R+.
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3. Kernel convergence on complex manifolds

Let B(z0, r) ⊂ Cn denote the Euclidean open ball of center z0 and radius r > 0 (as
customary, we denote by Bn := B(0, 1) the Euclidean open ball centered at the origin and
radius 1).

Proposition 3.1. Let U ⊂ Cn be an open set. Let fk : U → Cn be a sequence of univalent
mappings. Assume that fk → f uniformly on compacta and that f is univalent. Then for
all z0 ∈ U and 0 < s < r such that B(z0, s) ⊂⊂ B(z0, r) ⊂⊂ U there exists m = m(z0, s, r)
such that if k > m then

f(B(z0, s)) ⊂ fk(B(z0, r)).

Proof. Let K = f
(
B(z0, s)

)
, γ = ∂B(z0, r) and Γ = f(γ). Then K ∩ Γ = ∅ since f is

univalent on U .
Let η be the Euclidean distance between Γ and K. Then η > 0 and

η = min{∥f(z)− w∥ : w ∈ K, ∥z − z0∥ = r}.

If u0 ∈ K then ∥f(z)− u0∥ ≥ η for z ∈ γ, and since fk → f uniformly on γ there exists
m > 0 such that if k ≥ m and z ∈ γ then

∥f(z)− fk(z)∥ < ∥f(z)− u0∥.

Rouché theorem in several complex variables (see [24, Theorem 9.3.4]) yields then that
fk(z)−u0 and f(z)−u0 have the same number of zeros on B(z0, r) counting multiplicities.
But f(z)− u0 has a zero in B(z0, r) since u0 ∈ K, and thus u0 ∈ fk(B(z0, r)) for k ≥ m.
The constant m > 0 does not depend on u0 ∈ K, hence we have the result. �
Corollary 3.2. Let U ⊂ Cn be an open set. Let (fk) be a sequence of univalent mappings
fk : U → Cn converging uniformly on compacta to a univalent mapping f . Then any
compact set K ⊂ f(U) is eventually contained in fk(U).

Proof. All the balls B(z, s) ⊂⊂ U give an open covering of U . Since K is compact there is
a finite number of balls B(zi, si) ⊂⊂ U such that K ⊂

∪
i f(B(zi, si)), hence Proposition

3.1 yields the result. �
Definition 3.3. Let (Ωk) be a sequence of open subsets of a manifold M . The kernel
Ω is the biggest open set such that for all compact sets K ⊂ Ω there exists m = m(K)
such that if k ≥ m then K ⊂ Ωk. We say that the sequence (Ωk) kernel converges to Ω
(denoted Ωk → Ω) if every subsequence of (Ωk) has the same kernel Ω.

Note that by the very definition the kernel is an open set, possibly empty. It might be
empty as the following example shows:

Example 3.4. Let M = C and fk : D → C defined by fk(z) = 1
k
z. Then (fk) is a

sequence of univalent mappings converging uniformly on compacta to 0, and fk(D) → ∅.
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We have the following result. Another version of the kernel convergence theorem in Cn

may be found in [8].

Theorem 3.5. [Kernel convergence] Let (fk) be a sequence of univalent mappings from
a complete hyperbolic complex manifold M to a complex manifold N of the same di-
mension. Suppose that (fk) converges uniformly on compacta to a univalent mapping
f . Then f(M) is a connected component of the kernel Ω of the sequence (fk(M)), and
(f−1

k |f(M)) converges uniformly on compacta to f−1|f(M). In particular if Ω is connected
then (fk(M)) → Ω.

Proof. Let K ⊂ f(M) be a compact set. We want to prove that eventually K ⊂ fk(M).
Let U = {Uα} be an open covering of M such that any Uα is biholomorphic to Bn, and
let H be the open covering of M given by all open subsets H satisfying the following
property: there exists Uα ∈ U such that H ⊂⊂ Uα (notice that f(H) is then relatively
compact in some coordinate chart of N). Note that f is an open mapping since M and
N have the same dimension, thus f∗U = {f(Uα)}Uα∈U is an open covering of f(M).
Since K is compact there exist a finite number of open subsets Hi ∈ H such that

K ⊂
∪

i f(Hi). Note that on Hi the sequence fk takes eventually values in some f(Uαi
)

thanks to uniform convergence on compacta. By using a partition of unity it is easy to see
that there exist a finite number of compact sets Ki such that Ki ⊂ f(Hi) and K =

∪
iKi.

Thus we can assume M ⊂ Cn and N = Cn, and the claim follows from Corollary 3.2.
Thus f(M) is a subset of the kernel Ω of the sequence (fk(M)). This implies that on

any compact set K ⊂ f(M) the sequence f−1
k : K → M is eventually defined. Let Ω0

be the connected component of the kernel which contains f(M). We want to prove that
(f−1

k |Ω0) admits a subsequence converging uniformly on compacta. Assume that (f−1
k |Ω0)

is compactly divergent. Since M is complete hyperbolic, this is equivalent to assume that
for all fixed z0 ∈M and compact sets K ⊂ Ω0 we have

(3.1) lim inf
k→∞

(
min
w∈K

kM(f−1
k (w), z0)

)
= +∞.

Let j ≥ 0 and let

K(j) := {f(z0)} ∪
∪
k≥j

{fk(z0)}.

Since fk(z0) → f(z0), the set K(j) is compact. Since f(M) is open there exists m > 0
such that K(m) ⊂ f(M) ⊂ Ω0. But

kM
(
f−1
k (fk(z0)), z0

)
= 0,

in contradiction with (3.1).
Let (f−1

ki
|Ω0) be a converging subsequence and let g : Ω0 →M be its limit. Let w0 ∈ Ω0.

The sequence (f−1
ki

(w0)) is eventually defined and converging to some z = g(w0). Thus

w0 = fki(f
−1
ki

(w0)) → f(z), which implies that Ω0 = f(M) and that g(w0) = f−1(w0),

hence (f−1
k |Ω0) converges to f

−1|Ω0 uniformly on compacta. �
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The condition that the sets are open is important, as the following example shows:

Example 3.6. Let D := {ζ ∈ C : |ζ| < 1}. Let fk : D → C2 be defined by fk(ζ) := (ζ, 1
k
ζ).

Then (fk) is a sequence of univalent discs which converges uniformly on compacta to the
injective disc ζ 7→ (ζ, 0). The only compact set in C2 which is eventually contained in
fk(D) is {0}.

4. Loewner chains on complex manifolds

As we will show in what follows, some properties of Loewner chains are related only to
the algebraic properties of evolution family and not to Ld regularity. Hence, it is natural
to introduce the following:

Definition 4.1. Let M be a complex manifold. An algebraic evolution family is a family
(φs,t)0≤s≤t of univalent self-mappings of M satisfying the evolution property (2.1).

Thanks to Proposition 2.3, an Ld-evolution family is an algebraic evolution family (i.e.,
it is univalent).

Definition 4.2. Let M,N be two complex manifolds of the same dimension. A family
of holomorphic mappings (ft : M → N)t≥0 is a subordination chain if for each 0 ≤ s ≤ t
there exists a holomorphic mapping vs,t :M →M such that fs = ft◦vs,t. A subordination
chain (ft) and an algebraic evolution family (φs,t) are associated if

fs = ft ◦ φs,t, 0 ≤ s ≤ t.

An algebraic Loewner chain is a subordination chain such that each mapping ft :
M → N is univalent. The range of an algebraic Loewner chain is defined as rg (ft) :=∪

t≥0 ft(M). An algebraic Loewner chain (ft : M → N) is surjective if rg (ft) = N .

Remark 4.3. Equivalently an algebraic Loewner chain can be defined as a family of uni-
valent mappings (ft :M → N)t≥0 such that

fs(M) ⊂ ft(M), 0 ≤ s ≤ t.

Definition 4.4. Let d ∈ [1,+∞]. Let M,N be two complex manifolds of the same
dimension. Let dN be the distance induced by a Hermitian metric on N . An algebraic
Loewner chain (ft : M → N) is a Loewner chain of order d ∈ [1,+∞] (or Ld-Loewner
chain) if for any compact set K ⊂⊂M and any T > 0 there exists a kK,T ∈ Ld([0, T ],R+)
such that

(4.1) dN(fs(z), ft(z)) ≤
∫ t

s

kK,T (ξ)dξ

for all z ∈ K and for all 0 ≤ s ≤ t ≤ T .

Remark 4.5. By (4.1) the mapping t 7→ ft is continuous from R+ to hol(M,N). Hence
the mapping Ψ: M × R+ → N defined as Ψ(z, t) = ft(z) is jointly continuous.
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Theorem 4.6. Let d ∈ [1,+∞]. Let (ft : M → N) be an Ld-Loewner chain. Assume that
M is complete hyperbolic. Let

φs,t := f−1
t ◦ fs, 0 ≤ s ≤ t.

Then for any Hermitian metric on M , the family (φs,t) is an Ld-evolution family on M
associated with (ft).

Proof. It is clear that (φs,t) is an algebraic evolution family, so that we only need to prove
the Ld-estimate.
Let H be a compact subset of ft(M). Set

L(H, t) := sup
η,ζ∈H,η ̸=ζ

dM(f−1
t (ζ), f−1

t (η))

dN(ζ, η)
.

Then L(H, t) < +∞, since w 7→ f−1
t (w) is locally Lipschitz.

Given a compact subset K ⊂M define

Kt :=
∪

s∈[0,t]

fs(K).

The set Kt is a compact subset of ft(M) by Remark 4.5 since Kt = Ψ(K × [0, t]). Let
T > 0 be fixed. We claim that the function L(Kt, t) on 0 ≤ t ≤ T is bounded by
a constant C(K,T ) < +∞. Assume that L(Kt, t) is unbounded. Then there exists a
sequence (tn) ⊂ [0, T ], which we might assume converging to some t ∈ [0, T ], such that

L(Ktn , tn) ≥ n+ 1, ∀n ≥ 0.

Hence for any n ≥ 0 there exist ζn, ηn ∈ Ktn such that ζn ̸= ηn and

(4.2)
dM(f−1

tn (ζn), f
−1
tn (ηn))

dN(ζn, ηn)
≥ n.

By passing to a subsequence we may assume that ζn → ζ ∈ Kt and ηn → η ∈ Kt. By
Theorem 3.5, f−1

tn → f−1
t uniformly on a neighborhood of Kt. By (4.2) we have η = ζ,

since otherwise
dM(f−1

tn (ζn), f
−1
tn (ηn))

dN(ζn, ηn)
→ dM(f−1

t (ζ), f−1
t (η))

dN(ζ, η)
.

Let U, V be two open subsets of ft(M), both biholomorphic to Bn such that ζ ∈ U ⊂⊂
V ⊂⊂ ft(M). Since by Theorem 3.5 the sequence (f−1

tn ) converges to f−1
t uniformly on

V , we have that eventually f−1
tn (U) ⊂ f−1

t (V ). The sequence (f−1
tn |U) is thus equibounded

and by Cauchy estimates it is equi-Lipschitz in a neighborhood of ζ, which contradicts
(4.2) and thus proves the claim.
Let ∆T := {(s, t) : 0 ≤ s ≤ t ≤ T}. Then the mapping (s, t) 7→ f−1

t ◦ fs from ∆T to
hol(M,M) endowed with the topology of uniform convergence on compacta is continuous.
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Indeed, let (sn, tn) → (s, t). Let K ⊂M be a compact set. By Remark 4.5 the set

K(j) := fs(K) ∪
∪
n≥j

fsn(K) = Ψ(K, {s} ∪
∪
n≥j

{sn})

is compact. There exists m > 0 such that K(m) ⊂ ft(M). By Theorem 3.5 the sequence
(f−1

tn ) converges to f−1
t uniformly onK(m). This proves that (s, t) 7→ f−1

t ◦fs is continuous.
This implies that the mapping Φ: M×∆T →M defined as Φ(z, s, t) := φs,t(z) is jointly

continuous. Hence if K ⊂M is a compact set,

K̂ :=
∪

0≤a≤b≤T

φa,b(K) =
∪

0≤a≤b≤T

f−1
b (fa(K))

is compact in M . Therefore, since

dM(φs,u(z), φs,t(z)) = dM(φs,u(z), φu,t(φs,u(z))),

in order to estimate dM(φs,u(z), φs,t(z)) for z ∈ K and 0 ≤ s ≤ u ≤ t ≤ T it is enough to

estimate dM(ζ, φu,t(ζ)) for ζ ∈ K̂.
Since

dM(ζ, φu,t(ζ)) = dM(f−1
t (ft(ζ)), f

−1
t (fu(ζ))) ≤ L(K̂t, t)dN(ft(ζ), fu(ζ))

≤ C(K̂, T )dN(ft(ζ), fu(ζ)) ≤ C(K̂, T )

∫ t

u

kK̂,T (ξ)dξ,

we are done. �
Theorem 4.7. Any algebraic evolution family (φs,t) admits an associated algebraic Loewner
chain (ft : M → N). Moreover if (gt : M → Q) is a subordination chain associated with
(φs,t) then there exist a holomorphic mapping Λ: rg (ft) → Q such that

gt = Λ ◦ ft, ∀t ≥ 0.

The mapping Λ is univalent if and only if (gt) is an algebraic Loewner chain, and in that
case rg (gt) = Λ(rg (ft)).

Proof. Define an equivalence relation on the product M × R+:

(x, s) ∼ (y, t) iff φs,u(x) = φt,u(y) for u large enough.

and define N := (M × R+)/∼. Let π : M × R+ → N be the projection on the quotient,
and let it : M → M × R+ be the injection it(x) = (x, t). Define a family of mappings
(ft : M → N) as

ft := π ◦ it, t ≥ 0.

Each mapping ft is injective since π|M×{t} is injective, and by construction the family (ft)
satisfies

fs = ft ◦ φs,t, 0 ≤ s ≤ t.

Thus we have fs(M) ⊂ ft(M) for 0 ≤ s ≤ t and N =
∪

t≥0 ft(M).
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Endow the product M ×R+ with the product topology, considering on R+ the discrete
topology. Endow N with the quotient topology. Each mapping ft is continuous and
open, hence it is an homeomorphism onto its image. This shows that N is arcwise-
connected and Hausdorff since each ft(M) is arcwise-connected and Hausdorff. Moreover
N is second countable since N =

∪
k∈N fk(M). Now define a complex structure on N by

considering the M -valued charts (f−1
t , ft(M)) for all t ≥ 0. This charts are compatible

since f−1
t ◦ fs = φs,t which is holomorphic. Hence the family (ft) is an algebraic Loewner

chain associate with (φs,t).
If (gt : M → Q) is a subordination chain associated with (φs,t), then the map Ψ: M ×

R+ → Q

(z, t) 7→ gt(z)

is compatible with the equivalence relation ∼. The map Ψ passes thus to the quotient
defining a holomorphic mapping Λ: N → Q such that

gt = Λ ◦ ft, t ≥ 0.

The last statement is easy to check. �
As a corollary we have the following.

Corollary 4.8. Let (φs,t) be an algebraic evolution family on a complex manifold M .
Also let (ft : M → N) and (gt : M → Q) be two algebraic Loewner chains associated with
(φs,t). Then there exists a biholomorphism Λ: rg (ft) → rg (gt) such that gt = Λ ◦ ft for
all t ≥ 0.

Thus there exists essentially one algebraic Loewner chain associated with an algebraic
evolution family.

Definition 4.9. Let (φs,t) be an algebraic evolution family. By Corollary 4.8 the bi-
holomorphism class of the range of an associated algebraic Loewner chain is uniquely
determined. We call this class the Loewner range of (φs,t) and we denote it by Lr (φs,t).

Theorem 4.10. Let d ∈ [1,+∞]. Let (φs,t) be an Ld-evolution family on a taut manifold
M , and let (ft : M → N) be an associated algebraic Loewner chain. Then (ft) is an
Ld-Loewner chain for any Hermitian metric on N .

Proof. Let K ⊂ M be a compact set. Let T > 0 be fixed. By Lemma 2.2 the subset of
M defined as

K̂ :=
∪

0≤s≤t≤T

φs,t(K)

is compact. Indeed K̂ = Ψ(K ×∆T ), where ∆T = {(s, t) : 0 ≤ s ≤ t ≤ T}.
Since fT is locally Lipschitz there exists C = C(K̂) > 0 such that

dN(fT (z), fT (w)) ≤ CdM(z, w), z, w ∈ K̂.
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The family (φt,T )0≤t≤T is equi-Lipschitz on K̂, that is there exists L(K̂, T ) > 0 such that

(4.3) dM(φt,T (z), φt,T (w)) ≤ L(K̂, T )dM(z, w), z, w ∈ K̂, t ∈ [0, T ].

Indeed assume by contradiction that there exist sequences (zn), (wn) in K̂, and (tn) in
[0, T ] such that

(4.4)
dM(φtn,T (zn), φtn,T (wn))

dM(zn, wn)
≥ n.

By passing to subsequences we can assume tn → t, zn → z and wn → w, and by (4.4) it
is easy to see that z = w.
Let U, V be two open subsets of M , both biholomorphic to Bn such that z ∈ V ⊂⊂

U ⊂⊂M. Since the sequence (φtn,T ) converges to φt,T uniformly on U we have that even-
tually φtn,T (V ) ⊂ φt,T (U). The sequence (φtn,T |V ) is thus equibounded and by Cauchy
estimates it is equi-Lipschitz in a neighborhood of z, which contradicts (4.4).
Hence, for all z ∈ K and 0 ≤ s ≤ t ≤ T we have

dN(fs(z), ft(z)) = dN(fT (φs,T (z)), fT (φt,T (z))) ≤ CdM(φs,T (z), φt,T (z))

= CdM(φt,T (φs,t(z)), φt,T (z)) ≤ CL(K̂, T )dM(φs,t(z), z)

= CL(K̂, T )dM(φs,t(z), φs,s(z)) ≤ CL(K̂, T )

∫ t

s

cK,T (ξ)dξ,

by (2.2). This concludes the proof. �

Corollary 4.11. Assume that the algebraic evolution family (φs,t) on a complete hyper-
bolic complex manifold M is associated with the algebraic Loewner chain (ft : M → N).
Then (φs,t) is an L

d-evolution family if and only if (fs) is an L
d-Loewner chain.

Proof. It follows from Theorems 4.10 and 4.6. �

When dealing with evolution families defined on a domain D of a complex manifold
N , a natural question is whether there exists an associated Loewner chain whose range
is contained in N , or, in other terms, whether the Loewner range is biholomorphic to a
domain of N . This question makes particularly sense if D = Bn and N = Cn. In other
words:

Open question: Given an Ld-evolution family on the unit ball Bn does there exist an
associated Ld-Loewner chain with range in Cn?

Remark 4.12. There exists an algebraic evolution family (φs,t) on B3 which does not admit
any associated algebraic Loewner chain with range in C3. This follows from [2, Section
9.4].
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There are several works in this direction, answering such a question in some normalized
class of evolution families (see [2], [14], [15], [16], [17], [29], [35]) but in its generality the
question is still open. Here we give some answers based on the asymptotic behavior of
the Kobayashi pseudometric under the corresponding evolution family.

Definition 4.13. Let (φs,t) be an algebraic evolution family on a complex manifold M .
Let κM : TM → R+ be the Kobayashi pseudometric of M . For v ∈ TzM and s ≥ 0 we
define

(4.5) βs
v(z) := lim

t→∞
κM(φs,t(z); (dφs,t)z(v)).

Remark 4.14. Let 0 ≤ s ≤ u ≤ t. Since the Kobayashi pseudometric is contracted by
holomorphic mappings it follows

κM(φs,t(z); (dφs,t)z(v)) = κM(φu,t(φs,u(z)); (dφu,t)φs,u(z)(dφs,u)z(v))

≤ κM(φs,u(z); (dφs,u)z(v)),

hence the limit in (4.5) is well defined.

Proposition 4.15. Let (φs,t) be an algebraic evolution family on a complex manifold M .
Let (ft : M → N) be an associated surjective algebraic Loewner chain. Then for all z ∈M
and v ∈ TzM it follows

f ∗
s κN(z; v) = βs

v(z).

Proof. Since the chain (ft : M → N) is surjective, the range N is the union of the growing
sequence of complex manifolds (fj(M))j∈N, thus

κN(fs(z); (dfs)z)(v)) = lim
j→∞

κfj(M)(fs(z); (dfs)z(v)).

The result follows from

lim
j→∞

κfj(M)(fs(z); (dfs)z)(v)) = lim
j→∞

κM(f−1
j (fs(z)); (df

−1
j )fs(z) ◦ (dfs)z(v))(4.6)

= lim
j→∞

κM(φs,j(z); (dφs,j)z(v)).

�
As corollaries we find (cf. [7, Theorem 1.6])

Corollary 4.16. Let (φs,t) be an algebraic evolution family on the unit disc D. If there
exist z ∈ D, v ∈ TzD, s ≥ 0, such that βs

v(z) = 0 then

i) Lr (φs,t) is biholomorphic to C,
ii) βs

v(z) = 0 for all z ∈ D, v ∈ TzD, s ≥ 0.

If there exist z ∈ D, v ∈ TzD, s ≥ 0, such that βs
v(z) ̸= 0 then

i) Lr (φs,t) is biholomorphic to D,
ii) βs

v(z) ̸= 0 for all z ∈ D, v ∈ TzD, s ≥ 0.
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Proof. Since the Loewner range Lr (φs,t) is non-compact and simply connected, by the
uniformization theorem it has to be biholomorphic to D or C. Since

κC(z; v) = 0, z ∈ C, v ∈ TzC,
κD(z; v) ̸= 0, z ∈ D, v ∈ TzD,

the result follows from Proposition 4.15. �
Corollary 4.17. Let d ∈ [1,+∞]. Let (φs,t) be an Ld-evolution family on the unit disc
D. Then there exists an Ld-Loewner chain (ft) associated with (φs,t) such that rg (ft) is
either the unit disc D or the complex plane C.

Proof. It follows from Corollary 4.16 and Theorem 4.10. �
Such a result can be generalized in higher dimension as follows. As customary, let us

denote by aut(M) the group of holomorphic automorphisms of a complex manifold M .
Notice that condition M hyperbolic and M/aut(M) compact implies that M is complete
hyperbolic (see [11]).

Theorem 4.18. Let M be a hyperbolic complex manifold and assume that M/aut(M) is
compact. Let (φs,t) be an algebraic evolution family on M . Then

(1) If there exists z ∈ M , s ≥ 0 such that βs
v(z) ̸= 0 for all v ∈ TzM with v ̸= 0 then

Lr (φs,t) is biholomorphic to M .
(2) If there exists z ∈ M , s ≥ 0 such that dimC{v ∈ TzM : βs

v(z) = 0} = 1 then
Lr (φs,t) is a fiber bundle with fiber C over a closed complex submanifold of M .

Proof. It follows at once from Proposition 4.15 and [11, Theorem 3.2, Main Theorem]. �
In particular the previous result applies to M = Bn (or even to the polydiscs in Cn)

and we obtain

Corollary 4.19. Let (φs,t) be an algebraic evolution family on the unit ball Bn. If for
some z ∈ Bn, s ≥ 0 it follows that dimC{v ∈ Cn : βs

v(z) = 0} ≤ 1, then there exists an
algebraic Loewner chain (ft : M → Cn) associated with (φs,t).

Proof. If the dimension is zero, then by Theorem 4.18 the Loewner range is biholomorphic
to Bn ⊂ Cn. If the dimension is one, then by Theorem 4.18 the Loewner range is a fiber
bundle with fiber C over a closed complex submanifold of Bn and by [11, Corollary 4.8]
it is actually biholomorphic to Bn−1 × C ⊂ Cn. �
If dimC{v ∈ Cn : βs

v(z) = 0} ≥ 2 the complex structure of the Loewner range can be
more complicated: the Loewner range of the algebraic evolution family recalled in Remark
4.12 has dimC{v ∈ Cn : βs

v(z) = 0} = 2 and is not biholomorphic to a domain of C3.

Example 4.20. Let (φs,t) be an algebraic evolution family of B2 such that φs,t(0) = 0
for all 0 ≤ s ≤ t and (dφs,t)0 = eA(t−s) where A is a diagonal matrix with eigenvalues iθ,
θ ∈ R and λ ∈ C for some Reλ ≤ 0. Then dimC ker β

s
v(0) ≤ 1 (it is either 1 if Reλ < 0 or
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0 if Reλ = 0 which is the case if and only if φs,t are automorphisms). Therefore in such
a case there exists an algebraic Loewner chain with range in C2.

The previous example can be generalized as follows:

Example 4.21. Let G(z, t) be an L∞-Herglotz vector field in Bn such that G(0, t) ≡ 0 and
(dzG)z=0(·, t) = A(t) where A(t) is a diagonal n×nmatrix with eigenvalues λ1(t), . . . , λn(t)
where λj : R+ → C are functions of class L∞ such that Reλj(t) ≤ 0 for almost every
t ≥ 0 and j = 1, . . . , n. Assume that there exists C > 0 such that∫ t

0

Reλj(τ)dτ ≥ −C, t ≥ 0, j = 1, . . . , n− 1.

Let (φs,t) be the associated L
∞-evolution family in Bn. Then φs,t(0) = 0 and (dφs,t)0 is the

diagonal matrix with eigenvalues exp
(∫ t

s
λj(τ)dτ

)
for j = 1, . . . , n. Hence dimC ker β

s
v(0) ≤

1 and there exists an associated L∞-Loewner chain with range in Cn.

5. Loewner-Kufarev PDE

In this section we prove that Ld-Loewner chains on complete hyperbolic complex man-
ifolds are the univalent solutions of the Loewner-Kufarev partial differential equation, as
in the classical theory of Loewner chains on the unit ball Bn in Cn (see [14], [17]). Other
results related to the solutions of the Loewner-Kufarev PDE on Bn may be found in [8].

Proposition 5.1. Let M be a complete hyperbolic complex manifold, and let (ft : M →
N) be a Loewner chain of order d ∈ [1,+∞] on M . Then there exists a set E ⊂ R+

(independent of z) of zero measure such that for every s ∈ (0,+∞) \ E, the mapping

M ∋ z 7→ ∂fs
∂s

(z) ∈ Tfs(z)N

is well-defined and holomorphic on M .

Proof. The manifold M × (0,+∞) has a countable basis B given by products of the type
B × I, where B ⊂ M is an open subset biholomorphic to a ball, and I ⊂ (0,+∞) is a
bounded open interval. Let V be a countable covering of N by charts. By Remark 4.5
the mapping Ψ: M × (0,+∞) → N is continuous, hence there exists a covering U ⊂ B
of M × (0,+∞) such that for any U ∈ U there exists V ∈ V such that U ⊂ Ψ−1(V ).
We will prove that for each U = B×I ∈ U there exists a set of full measure I ′ ⊆ I such

that B ∋ z 7→ ∂fs
∂s

(z) is well defined and holomorphic for all s ∈ I ′. HenceM ∋ z 7→ ∂fs
∂s

(z)
will be well defined and holomorphic for s ∈ R+ \

∪
U(I \ I ′) which is a set of full measure

in R+.
We can assume that M = Bn, N = Cn, and that the distance dN is the Euclidean

distance. Since t 7→ ft(z) is locally absolutely continuous on R+ locally uniformly with
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respect to z ∈ Bn, we deduce that for each z ∈ Bn, there is a null set E1(z) ⊂ I such that
for each t ∈ I \ E1(z), there exists the limit

∂ft
∂t

(z) = lim
h→0

ft+h(z)− ft(z)

h
.

By definition there exists a function pk ∈ Ld(I,R+) such that

(5.1) ∥fs(z)− ft(z)∥ ≤
∫ t

s

pk(ξ)dξ, z ∈ Bn
1−1/k, s ≤ t ∈ I.

Also, since pk ∈ Ld(I,R+), we may find a null set E2(k) ⊂ I such that for each t ∈
I \ E2(k), there exists the limit

(5.2) pk(t) = lim
h→0

1

h

∫ t+h

t

pk(ξ)dξ, k ∈ N.

Next, let Q be a countable set of uniqueness for the holomorphic functions on Bn and let

E =

( ∪
q∈Q

E1 (q)

)∪( ∞∪
k=1

E2(k)

)
.

Then E is a null subset of R+, which does not depend on z ∈ Bn. Arguing as in the proof
of [7, Theorem 4.1(1)(a)], it is not difficult to see that (5.1) and (5.2) imply that for each
s ∈ I \ E, the family

{(fs+h(z)− fs(z))/h, 0 < |h| < dist(s, ∂I)}
is relatively compact and has a unique accumulation point for |h| → 0 by Vitali Theorem
in several complex variables, proving the result. �
Theorem 5.2. Let M be a complete hyperbolic complex manifold and let N be a complex
manifold of the same dimension. Let G : M × R+ → TM be a Herglotz vector field
of order d ∈ [1,+∞] associated with the Ld-evolution family (φs,t). Then a family of
univalent mappings (ft : M → N) is an Ld-Loewner chain associated with (φs,t) if and
only if it is locally absolutely continuous on R+ locally uniformly with respect to z ∈ M
and solves the Loewner-Kufarev PDE

(5.3)
∂fs
∂s

(z) = −(dfs)zG(z, s), a.e. s ≥ 0, z ∈M.

Proof. Since G(z, t) and (φs,t) are associated there exists a null set E1 ⊂ R+ such that
for all s ≥ 0, for all t ∈ [s,+∞) \ E1 and for all z ∈M ,

∂φs,t

∂t
(z) = G(φs,t(z), t).

Let now (ft) be an Ld-Loewner chain associated with (φs,t). By Proposition 5.1, there

is a null set E2 ⊂ R+ such that z 7→ ∂fs
∂s

(z) is well defined and holomorphic for all
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s ∈ (0,+∞) \ E2. The set E = E1 ∪ E2 has also zero measure. It is clear that the
mapping

t 7→ Lt(z) := ft(φ0,t(z))

is locally absolutely continuous on R+ locally uniformly with respect to z ∈ M , in view
of the conditions (4.1) and (2.2). Also Lt(z) = f0(z) for z ∈ M . Differentiating the last
equality with respect to t ∈ (0,+∞) \ E we obtain

0 = (dft)φ0,t(z)
∂φ0,t

∂t
(z) +

∂ft
∂t

(φ0,t(z))

= (dft)φ0,t(z)G(φ0,t(z), t) +
∂ft
∂t

(φ0,t(z)),

for all t ∈ (0,+∞) \ E and for all z ∈M . Hence

∂ft
∂t

(w) = −(dft)wG(w, t),

for all w in the open set φ0,t(M) and for all t ∈ (0,+∞) \ E. The identity theorem for
holomorphic mappings provides the result.
To prove the converse, fix s ≥ 0 and let

Lt(z) := ft(φs,t(z))

for t ∈ [s,+∞) and z ∈M . In view of the hypothesis, it is not difficult to deduce that

∂Lt

∂t
(z) = 0, a.e. t ≥ 0, ∀z ∈M.

Hence Lt(z) ≡ Ls(z), i.e. ft(φs,t(z)) = fs(z) for all z ∈ M and 0 ≤ s ≤ t, which means
that (ft) is an algebraic Loewner chain associated with (φs,t). Hence (ft) is an L

d-Loewner
chain by Theorem 4.10. �
The following result has been proved with different method also in [19].

Corollary 5.3. Let d ∈ [1,∞]. Let M be a complete hyperbolic complex manifold and let
N be a complex manifold of the same dimension. Every Ld-Loewner chain (ft : M → N)
solves a Loewner-Kufarev PDE.

Proof. By Theorem 4.6 there exists an Ld-evolution family (φs,t) associated with (ft). By
Theorem 2.5 there exists a Herglotz vector field G(z, t) of order d associated with (φs,t).
Theorem 5.2 yields then that the family (ft : M → N) satisfies

∂fs
∂s

(z) = −(dfs)zG(z, s), a.e. s ≥ 0, z ∈M.

�
From Theorems 4.7 and 4.10 we easily obtain the following corollary. Let G(z, t) be an

Ld-Herglotz vector field associated with the Ld-evolution family (φs,t).
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Corollary 5.4. Let M be a complete hyperbolic complex manifold of dimension n. The
Loewner-Kufarev PDE (5.3) admits a solution given by univalent mappings (ft : M → N)
where N is a complex manifold N of dimension n. Any other solution with values in a
complex manifold Q is of the form (Λ ◦ ft) where Λ: rg (ft) → Q is holomorphic. Hence
a solution given by univalent mappings (ht : M → Cn) exists if and only if the Loewner
range Lr (φs,t) is biholomorphic to a domain in Cn.

6. Conjugacy

We introduce a notion of conjugacy for Ld-evolution families which preserves the Loewner
range. This can be used to put an Ld-evolution family in some normal form without
changing its Loewner range (cf. [7, Proposition 2.9]).

Definition 6.1. Let d ∈ [1,+∞]. Let (ht : M → Q) be an Ld-Loewner chain such that
each ht : M → Q is a biholomorphism. We call (ht : M → Q) a family of intertwining
mappings of order d. If (φs,t), (ψs,t) are L

d-evolution families on M,Q respectively and

ψs,t ◦ hs = ht ◦ φs,t, 0 ≤ s ≤ t,

then we say that (φs,t) and (ψs,t) are conjugate. It is easy to see that conjugacy is an
equivalence relation.

Lemma 6.2. Let (ht : M → Q) be a family of intertwining mappings of order d and let
(ft : Q→ N) an Ld-Loewner chain. Then (ft ◦ ht : M → N) is an Ld-Loewner chain.

Proof. It is clear that (ft ◦ht : M → N) is an algebraic Loewner chain. Let T > 0 and let

K ⊂ M be a compact set. The set K̂ :=
∪

0≤t≤T ht(K) ⊂ Q is compact by Remark 4.5,

and the family (ft)0≤t≤T is equi-Lipschitz on K̂ (see (4.3)). Thus if 0 ≤ s ≤ t ≤ T and
z ∈ K,

dN(ft(ht(z)), fs(hs(z))) ≤ dN(ft(ht(z)), ft(hs(z))) + dN(ft(hs(z)), fs(hs(z)))(6.1)

≤ L(K̂, T )dQ(ht(z), hs(z)) +

∫ t

s

kK̂,T (ξ)dξ

≤ L(K̂, T )

∫ t

s

hK,T (ξ)dξ +

∫ t

s

kK̂,T (ξ)dξ.

�

Remark 6.3. Two conjugated Ld-evolution families have essentially the same associated
Ld-Loewner chains. Namely, if (gt : Q → N) is an Ld-Loewner chain associated with
(ψs,t) which is conjugate to (φs,t) on M via (ht : M → Q), then (gt ◦ ht : M → N) is
an Ld-Loewner chain associated with (φs,t). In particular, Lr (φs,t) is biholomorphic to
Lr (ψs,t).
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Proposition 6.4. Let (ψs,t) be an Ld-evolution family on a complete hyperbolic complex
manifold Q and let (ht : M → Q) be a family of intertwining mappings of order d. Then
the family (h−1

t ◦ ψs,t ◦ hs) is an Ld-evolution family on M .

Proof. By Theorem 4.10, there exists an Ld-Loewner chain (ft : Q → N) associated with
(ψs,t). By Lemma 6.2 the family (ft ◦ ht) defines an Ld-Loewner chain (gt : M → N).
Then

h−1
t ◦ ψs,t ◦ hs = h−1

t ◦ f−1
t ◦ fs ◦ hs = g−1

t ◦ gs,
which by Theorem 4.6 is an Ld-evolution family on M . �

Let now M be the unit ball Bn.

Definition 6.5. Take a ∈ Bn. Let Pa(z) :=
⟨z,a⟩
∥a∥2 a for a ̸= 0, P0 = 0, Qa(z) := z − Pa(z)

and sa := (1− ∥a∥2)1/2. Then

φa(z) :=
a− Pa(z)− saQa(z)

1− ⟨z, a⟩

is an automorphism of the ball Bn (see, e.g., [1] or [32]).

We can now show that in order to study the Loewner range of an Ld-evolution family
on Bn one can assume that it fixes the origin.

Corollary 6.6. Let (ψs,t) be an Ld-evolution family on Bn. There exists a conjugate
Ld-evolution family (φs,t) such that

φs,t(0) = 0, 0 ≤ s ≤ t.

Proof. Set a(t) := ψ0,t(0). Since

∥φa(t)(w)− φa(s)(w)∥ ≤ C(K,T )∥a(t)− a(s)∥, w ∈ K, 0 ≤ s ≤ t ≤ T,

the family (φa(t)) is a family of intertwining mappings of order d. Define

φs,t := φ−1
a(t) ◦ ψs,t ◦ φa(s),

which is an Ld-evolution family by Proposition 6.4. Since φa(t)(0) = a(t), we have φ0,t(0) =
0 for all t ≥ 0, and by the evolution property φs,t(0) = 0 for all 0 ≤ s ≤ t. �

7. Extension of Loewner chains from lower dimensional balls

The following result provides examples of Ld-Loewner chains on the Euclidean unit ball
Bn in Cn, which are generated by the Roper-Suffridge extension operator [31]. This opera-
tor preserves convexity (see [31]), starlikeness and the notion of parametric representation
(see e.g. [17] and the references therein).
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Theorem 7.1. Let d ∈ [1,+∞] and (ft : D → C) be an Ld-Loewner chain on the unit
disc D such that | arg f ′

t(0)| < π/2 and | arg(f ′
s(0)/f

′
t(f

−1
t ◦ fs(0)))| < π/2 for t ≥ s ≥ 0.

Also let (Ft : Bn → Cn) be given by

(7.1) Ft(z) =
(
ft(z1), z̃e

t/2
√
f ′
t(z1)

)
, z = (z1, z̃) ∈ Bn, t ≥ 0.

Then (Ft) is an L
d-Loewner chain.

Proof. It is easy to see that Ft is univalent on Bn for t ≥ 0. Let (φs,t) be the L
d-evolution

family associated with (ft) (see Theorem 4.6 or [4]). Also let Φs,t : Bn → Cn be given by

Φs,t(z) =
(
φs,t(z1), z̃e

(s−t)/2
√
φ′
s,t(z1)

)
, z = (z1, z̃) ∈ Bn, t ≥ s ≥ 0.

Then Φs,t is a univalent mapping on Bn and in view of the Schwarz-Pick lemma, we have

∥Φs,t(z)∥2 = |φs,t(z1)|2 + ∥z̃∥2es−t|φ′
s,t(z1)|

< |φs,t(z1)|2 + (1− |z1|2)es−t · 1− |φs,t(z1)|2

1− |z1|2
≤ 1, z ∈ Bn, t ≥ s ≥ 0.

Hence Φs,t(Bn) ⊆ Bn, and since Fs(z) = Ft(Φs,t(z)) for z ∈ Bn and t ≥ s ≥ 0, we obtain
that Fs(Bn) ⊆ Ft(Bn) for s ≤ t. In view of the above relations, we deduce that (Ft) is an
algebraic Loewner chain and (Φs,t) is the associated algebraic evolution family.
It remains to prove that (Ft) is of order d. Since (φs,t) is an evolution family of order

d, we deduce in view of [4, Theorem 6.2] that there exists a Herglotz vector field g(z1, t)
of order d such that

∂φs,t

∂t
(z1) = g(φs,t(z1), t), a.e. t ∈ [s,+∞), ∀z1 ∈ D.

Now, let G = G(z, t) : Bn × R+ → Cn be given by

G(z, t) =
(
g(z1, t),

z̃

2
(−1 + g′(z1, t))

)
, z = (z1, z̃) ∈ Bn, t ≥ 0.

Then G(z, t) is a weak holomorphic vector field of order d on Bn. Indeed, the measurability
and holomorphicity conditions from the definition of a weak holomorphic vector field are
satisfied. We next prove that for each r ∈ (0, 1) and T > 0, there exists Cr,T ∈ Ld([0, T ],R)
such that

∥G(z, t)∥ ≤ Cr,T (t), ∥z∥ ≤ r, t ∈ [0, T ].

But the above condition can be easily deduced by using the fact that g(z1, t) is a Herglotz
vector field of order d on D and by the Cauchy integral formula.
On the other hand, since φs,t is locally absolutely continuous on [s,+∞) locally uni-

formly with respect to z1 ∈ D, it follows in view of Vitali’s theorem (see e.g. [28, Chapter
6]) that

∂

∂t

(∂φs,t(z1)

∂z1

)
=

∂

∂z1

(∂φs,t(z1)

∂t

)
, a.e. t ≥ s, ∀z1 ∈ D.
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Using the above equality, we obtain by elementary computations that

∂Φs,t(z)

∂t
= G(Φs,t(z), t), a.e. t ≥ s, ∀z ∈ Bn.

Therefore, as in the proof of [5, Proposition 2], we deduce that

(dkBn)(z,w)(G(z, t), G(w, t)) ≤ 0

for a.e. t ∈ R+, z ̸= w. Hence G(z, t) is a Herglotz vector field of order d on Bn. Also, as
in the proof of [5, Proposition 1], we deduce that (Φs,t) is an evolution family of order d.
Finally, we conclude that the associated algebraic Loewner chain (Ft) is of order d on Bn

by Theorem 4.10. This completes the proof. �
Corollary 7.2. Let f : D → C be a univalent function such that | arg f ′(0)| < π/2.
Assume that (ft) is an Ld-Loewner chain on D such that f0 = f , | arg f ′

t(0)| < π/2 for
t ≥ 0, and | arg(f ′

s(0)/f
′
t(f

−1
t ◦ fs(0)))| < π/2 for t ≥ s ≥ 0. Then F = Φn(f) can

be imbedded in a Ld-Loewner chain on Bn, where Φn is the Roper-Suffridge extension
operator,

Φn(f)(z) = (f(z1), z̃
√
f ′(z1)), z = (z1, z̃) ∈ Bn.

Proof. The desired Ld-Loewner chain is given by (7.1). �

8. Spiral-shapedness and Star-shapedness

Definition 8.1. Let Ω ⊂ Cn and let A ∈ L(Cn,Cn) be such that m(A) > 0, where

m(A) = min{Re ⟨A(z), z⟩ : ∥z∥ = 1}.
We say that Ω is spiral-shaped with respect to A if e−tA(w) ∈ Ω whenever w ∈ Ω and
t ∈ R+. If A = id and Ω is spiral-shaped with respect to id, we say that Ω is star-shaped.
If f is a univalent mapping on Bn, then f is called spiral-shaped with respect to A if

the image domain Ω = f(Bn) is spiral-shaped with respect to A. In addition, if A = id
and f is spiral-shaped with respect to id, we say that f is star-shaped (see [10]).

Remark 8.2. It is clear that if f is spiral-shaped with respect to A, then 0 ∈ f(Bn).
Moreover, if 0 ∈ f(Bn), then the above definition reduces to the usual definition of spiral-
likeness (respectively star-likeness) (see [18] and [34]).

We next present some applications of Theorem 5.2 to the caseM = Bn. The first result
provides necessary and sufficient conditions for a locally univalent mapping on the unit
ball Bn in Cn to be spiral-shaped, and thus univalent on Bn.

Remark 8.3. We remark that the equivalence between the conditions (i) and (iii) in The-
orem 8.4 below was first obtained by Elin, Reich and Shoikhet (see the proof of [10,
Proposition 3.5.2]; cf. [10, Proposition 3.7.2]; [30]) by different arguments (compare [9]).
In the case f(0) = 0, the analytic characterization of spiral-likeness is due to Gurganus
[18] and Suffridge [34].
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Theorem 8.4. Let f : Bn → Cn be a locally univalent mapping such that 0 ∈ f(Bn). Also
let A ∈ L(Cn,Cn) be such that m(A) > 0. Then the following conditions are equivalent:
(i) f is spiral-shaped with respect to A;
(ii) The family (ft := etAf(z))t≥0 is an L∞-Loewner chain.
(iii) f is univalent on Bn and

(8.1) Re ⟨(dfz)−1Af(z), z⟩ ≥ (1− ∥z∥2)Re ⟨(df0)−1Af(0), z⟩, z ∈ Bn.

Proof. The equivalence between the conditions (i) and (ii) is immediate. Now, we assume
that the condition (ii) holds. Then f is univalent on Bn. Let G(z, t) be the Herglotz
vector field of order ∞ given by Corollary 5.3. A direct computation from (5.3) implies

(8.2) G(z, t) = −(dfz)
−1Af(z), t ≥ 0, z ∈ Bn.

Since by the very definition a Herglotz vector field is a semicomplete vector field for almost
every t ≥ 0, it follows that −(dfz)

−1Af(z) is semicomplete. Hence, by [10, Proposition
3.5.2] (where the sign convention is different from the one adopted here), we deduce the
relation (8.1), as claimed.
Conversely, assume that the condition (iii) holds. Clearly (ft) is a family of univalent

mappings on Bn such that the mapping t 7→ ft(z) is of class C∞ on R+ for all z ∈ Bn.
Also (ft) satisfies the differential equation

(8.3)
∂ft
∂t

(z) = −(dft)zG(z, t), a.e. t ≥ 0, ∀ z ∈ Bn,

where G(z, t) is given by (8.2). In view of the condition (8.1) and [10, Lemma 3.3.2], we
deduce that the mapping G(z, t) is a semicomplete vector field for all t ≥ 0, and thus it
is a Herglotz vector field of order ∞ by [6, Theorem 0.2]. Hence (ft) is an L

∞-Loewner
chain by Theorem 5.2. This completes the proof. �
We next give the following analytic characterization of star-shapedness on the unit ball

Bn (cf. [10]). In the case f(0) = 0, the inequality in the third statement becomes the
well known analytic characterization of star-likeness for locally univalent mappings on Bn

(see [13], [17], [34] and the references therein). Necessary and sufficient conditions for
star-likeness with respect to a boundary point are given in [22].

Corollary 8.5. Let f : Bn → Cn be a locally univalent mapping such that 0 ∈ f(Bn).
Then the following conditions are equivalent:
(i) f is star-shaped;
(ii) The family (ft := etf(z))t≥0 is an L∞-Loewner chain.
(iii) f is univalent on Bn and

Re ⟨(dfz)−1f(z), z⟩ ≥ (1− ∥z∥2)Re ⟨(df0)−1f(0), z⟩, z ∈ Bn.

Corollary 8.6. Let f : D → C be a star-shaped function on D such that | arg f ′(0)| < π/2
and | arg(f ′(0)/f ′(f−1(λf(0)))| < π/2 for λ ∈ (0, 1]. Also let F = Φn(f). Then F is also
star-shaped on Bn.
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Proof. Since f is star-shaped, it follows that ft(z1) = etf(z1) is an L
∞-Loewner chain by

Corollary 8.5. Let (Ft) be the chain given by (7.1). In view of Theorem 7.1, (Ft) is an

L∞-Loewner chain on Bn. Moreover, since 0 ∈ F (Bn) and Ft(z) = etF (z), we deduce
that the mapping F = F0 is star-shaped on Bn, by Corollary 8.5. This completes the
proof. �
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