
LOCALIZATIONS, PARTIAL HOLOMORPHIC CONNECTIONS, THE ATIYAH
BUNDLE AND THE CAMACHO-SAD INDEX THEOREM

FILIPPO BRACCI

1. INTRODUCTION

The classical index theorem due to C. Camacho and P. Sad [12] says that if a compact com-
plex curve S in a two dimensional complex manifold is invariant by a holomorphic foliation
then its self-intersection number is the sum of Grothendieck residues at the singularities of the
restriction of the foliation on the curve.

Such a deep result is nowadays a very important and useful tool in dynamics. For instance,
based on such a result Camacho and Sad proved the existence of separatrices for germs of
holomorphic vector fields in C2.

The Camacho-Sad index theorem contains several hypotheses, which we list as follows:

(a) a complex two dimensional manifold M ;
(b) a non-singular complex compact curve S;
(c) a holomorphic foliation F on M ;
(d) the curve S is F-invariant.

The Camacho-Sad index theorem has been generalized—and such generalizations profitably
used—changing from time to time some of the previous ingredients, by several authors. For
instance, A. Lins Neto [15] and T. Suwa [17] replaced (b) by allowing S to be any (possibly
singular) curve in M . Then D. Lehmann [13] and T. Suwa and D. Lehmann [14] relaxed (a), (b)
by allowing complex manifolds and subvarieties of any (co)dimensions. A rather complete list
of other papers related to generalizations of the Camacho-Sad index theorem with respect to (a)
and (b) can be found in [18]. More recently, C. Camacho and D. Lehmann [10] and C. Camacho,
H. Movasati and P. Sad [11] dropped the hypothesis (d), replacing it by some assumption on the
way S sits in M (for instance if S is the zero section of the vector bundle M and the dimension
of S equals the dimension of F). Along a different perspective, M. Abate replaced (c) and
(d) by the hypothesis of the existence of a holomorphic diffeomorphism pointwise fixing the
curve S and “tangent” to it. Later, F. Tovena and the author [9] allowed S to be singular and
in [2] those results were extended to any dimension (and used in discrete dynamics). Also, the
“tangentiality” hypothesis has been replaced by some assumption on the way S sits in M (see
[2], [3]).

In these notes we are going to explain a general strategy, discovered by M. Abate, F. Tovena
and the author in [3], to obtain all the previous (and actually any other which will be discovered
in future) Camacho-Sad type index theorems.
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The strategy is as follows. We first describe a cohomological machinery, essentially devel-
oped by D. Lehmann and T. Suwa, which allows to “localize” characteristic classes outside open
sets where one has some vanishing representatives. The next step is then to understand what
might yield to have vanishing representatives. The Bott vanishing theorem, due to the existence
of partial holomorphic connections, is the needed tool. Then we discuss partial holomorphic
connections and we see that existence of such objects is equivalent to the existence of particular
morphisms into a universal bundle, which we call the Atiyah bundle. Such morphisms are then
defined naturally from “dynamically objects” such as holomorphic foliations and holomorphic
diffeomorphisms, thus closing the circle.

This paper is based on the notes the author prepared for the conference he gave at the Sympo-
sium Geometry and analysis on complex algebraic varieties held in RIMS, Kyoto in December
2006. The author wishes to sincerely thank Prof. Kyoji Saito for the kind invitation and Prof.
Tatsuo Suwa for his support.

2. GENERAL STRATEGY FOR LOCALIZATION OF CHARACTERISTIC CLASSES

Let X be a n-dimensional complex variety and let ϕ ∈ H•(X) be an element of its coho-
mology. Such a class might represent the obstruction to the existence of a certain global object.
For instance—and this is the case we are most interested in here—Chern classes represents the
obstruction of existence of global frames for complex vector bundles).

Very roughly speaking, it is interesting to understand which “parts” of the variety really
obstruct the existence of the object represented by ϕ. Such loci, call them S, might not be
unique in general but there might be a good choice of them, depending on the problem one is
facing. Therefore, once removed the “obstructions”, the object exists and thus the cohomology
class representing it vanishes on M \ S. Therefore it “localizes” at S (in a way we will explain
later).

To explain slightly better this point of view, one can think of the complex projective space
X = CPN . Let L be a non-trivial holomorphic line bundle on X . Its first Chern class is
not vanishing and measures the obstruction of L from being trivial, namely, the existence of
a never zero holomorphic section. If we remove a hyperplane H from X , then we obtain
M := X \ H ' CN and the restriction of L to M is trivial. This implies that the first Chern
class of L might be localized at H .

Now we describe more in detail the cohomological-homological methods to localize charac-
teristic classes.

Let P : H•(X) → H2n−•(X) be the Poincaré homomorphism (isomorphism if X is nonsin-
gular).

Suppose that S is an analytic subset of X and let U = X \ S. Look at the cohomological
exact sequence

. . . −→ H•(M,U) −→ H•(M) −→ H•(U) −→ . . .

and assume that H•(M) 3 ϕ 7→ 0 ∈ H•(U). Therefore there exists a lifting ϕ̂ ∈ H•(M, U) of
ϕ in the relative cohomology. This lifting is not unique in general. Anyhow, by the Alexander
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homomorphism (isomorphism if S is nonsingular) A : H•(M,U) → H2n−•(S) we have the
following commuting diagram:

(2.1)

H•(M,U) −−−→ H•(M)

A

y
yP

H2n−•(S)
i∗−−−→ H2n−•(M)

An “index theorem” is thus given by the following formula:

P (ϕ) = i∗(ϕ̂).

In particular if • = 2n and S is a finite set of points, denoting by Res(ϕ̂, p) ∈ C the “residue”
at p ∈ S, we have

(2.2)
∫

M

ϕ =
∑
p∈S

Res(ϕ̂, p).

Typical examples of this situation appears when ϕ = cn(TM) (the top Chern class) and then
the left-hand side of (2.2) is nothing but the Euler characteristic χ(M) of M . An example is the
classical Poincaré-Hopf theorem.

In order to make formula (2.2) really useful one needs to have tools, reasonably good to
handle, to compute cohomology. In non-singular spaces such a cohomology is provided by the
Čech-de Rham cohomology (see, e.g., [18]).

2.1. The Čech-de Rham cohomology. Assume X is non-singular (the case X is singular can
be worked out using the so-called “extendable cohomology”, see [16]). Let U be an open
covering. For the sake of simplicity, we assume U = {U0, U1}. Let Ωk(U) be the set formed
by the triples (ω0, ω1, ω01) where ω0 is a k-form on U0, ω1 is a k-form on U1 and ω01 is a
(k − 1)-form on the intersection U01 = U0 ∩ U1. The operator D : Ωk(U) → Ωk+1(U) defined
by

D(ω0, ω1, ω01) = (dω0, dω1, dω01 + ω0|U01 − ω1|U01),

gives rise to a complex {Ω•(U), D} whose cohomology H•(U) is naturally isomorphic (via
partition of unity) to the de Rham cohomology of X . In other words, H•(U) is the cohomology
of the double complex Čech-de Rham.

In the Čech-de Rham cohomology setting, “localization” can be interpreted by finding D-
closed triples (θ0, θ1, θ01) whose cohomology class represents the wanted obstruction/object and
such that, for example, θ0 ≡ 0. The class [(0, θ1, θ01)] corresponds via the same isomorphism
as before to a class which belongs to the relative cohomology H•(X,U0).

This is particularly useful with vector bundles. Given a complex vector bundle E of rank
r on X , one can compute its Chern classes using the Čech-de Rham cohomology as follows:
let ∇0 be a connection for E|U0; let ∇1 be a connection for E|U1 . Let Kj be the curvature
form of ∇j , j = 0, 1. Let ci(∇j) be the i-th Chern form of ∇j , defined by det(I + Kj) =∑r

l=0(−2πi)lcl(∇j), j = 0, 1, i = 0, . . . , r. There exists a (i − 1)-th form ci(∇0,∇1) on U01,
which we call the Bott difference form, and which makes the triple (ci(∇0), ci(∇1), ci(∇0,∇1))
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D-closed. The class ci(E) := [(ci(∇0), ci(∇1), ci(∇0,∇1))] ∈ H i(U) represents the i-th Chern
class of E. The Bott difference form is defined by means of integration along the fibers as
follows.

Let p : U01 × [0, 1] → U01 be the projection on the first factor and let Ẽ := p∗(E|U01) be the
pull-back bundle. Note that Ẽ ' E|U01×[0, 1]. Then Ẽ is a vector bundle over U01×[0, 1] whose
fiber at a point (x, t) is Ex × {t} = Ex. Thus the sections σ̃ ∈ C∞(Ẽ) = C∞(E|U01 × [0, 1])
which are “constant along the fibers [0.1]”, i.e., such that σ̃(x, t) = σ(x) for some section σ of
E|U01 , generate C∞(Ẽ) as a C∞-module. This means that in order to define a connection ∇̃ on
Ẽ it is enough to define it on sections which are constant along [0, 1]. We let

(∇̃vσ̃)(x,t) = t((∇0)vσ)x + (1− t)((∇1)vσ)x ∀v ∈ C∞(TX|U01),(2.3)

(∇̃ ∂
∂t

σ̃)(x,t) = 0.

We can now define the Bott difference form ci (∇0,∇1) integrating along the fibers as

(2.4) ci (∇0,∇1) := (−1)[
r
2 ]

∫

∆

ci(∇̃).

Thus, if one is able to find a connection which is trivial with respect to a certain frame on
U0, a connection which is trivial with respect to another frames on U1, the i-th Chern class is
simply obtained as a (i − 1) form localized on U01. We also recall how integration works with
respect to Čech-de Rham cohomology. Let {R0, R1} be a honeycomb cell with respect to U .
Namely, R0, R1 are two smooth compact manifolds with boundary such that Rj ⊂ Uj , j = 0, 1,
the interior of R0 does not intersect the interior of R1 and R0 ∪ R1 = X . Therefore, given
[(θ0, θ1, θ01)] ∈ H2n(U), which corresponds to the class θ ∈ H2n(X), we have

∫

X

θ =

∫

R0

θ0 +

∫

R1

θ1 +

∫

∂R0

θ01.

In order to clarify our point of view, we present the following example:

Example 2.1 (Intersection number of the exceptional divisor). Let π : X → C2 be the two
dimensional manifolds obtained by blowing up the point O of C2. We want to compute the self-
intersection number D · D of the exceptional divisor D := π−1(O) using the Čech-de Rham
cohomology and the localization procedure as described above. Recall that D ·D =

∫
D

c1(ND),
where ND = TX|D/TD is the normal bundle of D in X . Let U0, U1 be the two standard
charts of X such that U0 ∪ U1 = X , with coordinates (u0, v0) on U0, and (u1, v1) on U1 with
π(uj, vj) = (ujvj, vj), j = 0, 1 (namely, D ∩ Uj = {vj = 0}). Then U01 = {(u0, v0) : u0 6= 0}
and the change of coordinates is given by u1 = 1/u0, v1 = v0/u0. On the chart Uj we choose
the natural frame [ ∂

∂vj
] for (ND)|Uj

, where [V ] represents the image of a section V of TX|D into
ND. We define two trivial connections ∇0 and ∇1 for (ND)|U0 and for (ND)|U1 respectively by
imposing:

∇0[
∂

∂v0

] = ∇1[
∂

∂v1

] = 0.
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Thus the 1-form associated to ∇0 (respectively ∇1) in such a frame [ ∂
∂v0

] (respectively [ ∂
∂v1

])
is zero, hence the curvature in such a frame is zero and it follows obviously that c1(∇0) =
c1(∇1) = 0. Therefore the class c1(ND) is represented in the Čech-de Rham cohomology
by [(0, 0, c1(∇0,∇1))]. Notice that, although c1(∇0) = c1(∇1) = 0, this does not mean that
c1(∇0,∇1) = 0. Indeed, we consider U01 with coordinates (u0, v0). Then the connection ∇̃,
defined along the lines described above, has associated 1-form θ̃ given by tθ0 +(1− t)θ1 where
θ0, θ1 are the 1-forms of ∇0,∇1 in the frame [ ∂

∂v0
]. Thus θ0 = 0, but to compute θ1 we find

0 = (∇1) ∂
∂u1

[
∂

∂v1

] = (∇1)−u2
0

∂
∂u0

[u0
∂

∂v0

] = −u2
0[

∂

∂v0

]− u3
0(∇1) ∂

∂u0

[
∂

∂v0

],

from which

(∇1) ∂
∂u0

[
∂

∂v0

] = − 1

u0

[
∂

∂v0

].

Therefore θ1 = −du0

u0
. From this it follows that

θ̃ = tθ0 + (1− t)θ1 = (t− 1)
du0

u0

.

Hence the curvature is K̃ = dθ̃ = dt ∧ du0

u0
and c1(∇̃) = − 1

2πi
dt ∧ du0

u0
. Integrating along the

fibers we find

c1(∇0,∇1) = − 1

2πi

du0

u0

,

and then, setting R0 = {(u0, 0) : |u0| ≤ 1} and R1 = D \R0, we obtain

D ·D =

∫

D

c1(ND) =

∫

R0

c1(∇0) +

∫

R1

c1(∇1) +

∫

∂R0

c1(∇0,∇1)

= 0 + 0 +

∫

|u0|=1

− 1

2πi

du0

u0

= −1.

3. PARTIAL HOLOMORPHIC CONNECTIONS AND SPLITTINGS

As explained in the previous section, in order to localize characteristic classes one is looking
for “good reasons” to get certain forms vanished on certain open sets on the ambient manifold.
One of these “good reasons” is to have a partial holomorphic connection as we define now. As
a matter of notation, if E is a complex bundle over a manifold S, we use the letter E to denote
the associated locally free OS-sheaf of its holomorphic sections.

Definition 3.1. Let F be a sub-bundle of the tangent bundle TS of a complex manifold S.
A partial holomorphic connection along F on a complex vector bundle E on S is a C-linear
morphism ∇ : E → F∗ ⊗ E such that

∇(gs) = dg|F ⊗ s + g∇s

for all g ∈ OS and s ∈ E . Moreover, if F is involutive, the partial holomorphic connection ∇
is said to be flat if ∇u ◦ ∇v −∇v ◦ ∇u = ∇[u,v] for all u, v ∈ F .
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Roughly speaking, having a partial holomorphic connection means that one can “differenti-
ate” holomorphically along some directions but not on all of them. The following result, known
as the Bott vanishing theorem holds:

Theorem 3.2. Let S be a complex manifold, F a sub-bundle of TS of rank `, and E a complex
vector bundle on S. Assume we have a partial holomorphic connection on E along F . Then:

(i) every symmetric polynomial in the Chern classes of E of degree larger than dim S −
` + b`/2c vanishes.

(ii) Furthermore, if F is involutive and the partial holomorphic connection is flat then ev-
ery symmetric polynomial in the Chern classes of E of degree larger than dim S − `
vanishes.

A proof of such a theorem can be found adapting the result in [6], see also [3, Theorem 6.1].
The question now is what guarantees that a partial holomorphic connection exists on a given

complex vector bundle. Arguing as in Atiyah [5], one can prove the following: if F is a sub-
bundle of TS, there exists an exact sequence

(3.1) O −→ Hom(E , E) −→ AE,F
π0−→ F −→ O,

where AE,F = π−1
0 (F). It holds

Proposition 3.3. Let F be a sub-bundle of the tangent bundle TS of a complex manifold S, and
let E be a complex vector bundle over S. Then there is a partial holomorphic connection on E
along F if and only if the sequence (3.1) splits, that is if and only if there is an OS-morphism
ψ0 : F → AE,F such that π0 ◦ ψ0 = id.

Therefore existence of partial holomorphic connections is related to the existence of certain
splittings.

4. THE ATIYAH BUNDLE

Now we restrict our attention to the case S is a complex submanifold of a complex manifold
M , and we study the normal bundle E = NS of S into M defined by the natural exact sequence

0 −→ TS −→ TM ⊗OM
OS

p−→ NS → 0,

where IS is the ideal subsheaf of OM of functions identically vanishing on S and OS :=
OM/IS . Let TM,S(1) := TM ⊗OM

OM/I2
S . Let θ : TM,S(1) → TM ⊗OM

OS be the natural
OM -morphism and let T S

M,S(1) := ker(p ◦ θ).
In order to give a rough description of the elements of T S

M,S(1), we use the following notations.
Choose a local coordinates patch (z, w) ∈ U × U ′ ⊂ Cm ×Cs such that S = {w = 0}. Then a
vector of type

∑
aj(z, w) ∂

∂zj
will be denoted with the letter T (as “tangent”), while a vector of

the form
∑

bj(z, w) ∂
∂wj

will be denoted with the letter N (as “normal”). For q ∈ N, we write
Tq if Tq =

∑
aj(z, w) ∂

∂zj
with aj ∈ Iq

S for all j (namely, if aj(z, w) = wQãj(z, w) for some
multi-indices Q with |Q| = q). Similarly we will use the notation Nq for “normal” vectors with
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all coefficients in Iq
S . Also, we write Rq (all the “rest”) for any combinations of vectors of type

Tq, Nq.
With such notations, a (local) section of TM,S(1) is represented by a vector of the form T0 +

T1 +N0 +N1 +R2. And an element in T S
M,S(1) is represented by a vector of the form T0 +T1 +

N1 + R2 (i.e., no terms N0 appear).

Definition 4.1. The Atiyah sheaf of S in M is the quotient sheaf given by

A := T S
M,S(1)/IS · T S

M,S(1).

A (local) section of A is represented by a vector of the form T0 + N1 + R2. The following
results are proved in [3]:

Theorem 4.2. Let A be the Atiyah sheaf of the complex submanifold S in M . Then:

(1) The sheafA has a natural structure of locally freeOS-module and the map π : A → TS

(locally) defined as π : [T0 + N1] 7→ T0 is an OS-morphism.
(2) The Atiyah sheaf A is isomorphic to the sheaf ANS ,TS

defined in (3.1).
(3) The Atiyah sheaf A has a natural structure {·, ·} of Lie algebroid such that π{u, v} =

[π(u), π(v)] for all u, v ∈ A.
(4) There exists a natural holomorphic π-connection X̃ : NS → A∗ ⊗NS on NS given by

X̃q(s) = p([v, s̃])

for all q ∈ A and s ∈ NS , where v ∈ T S
M,S(1) and s̃ ∈ TM,S(1) are such that [v]A = q

and p ◦ θ(s̃) = s;
(5) this holomorphic π-connection X̃ is flat.

Here we recall that aC-bilinear map {·, ·} is a Lie algebroid structure forA if for all u, v ∈ A
(a) {v, u} = −{u, v};
(b) {u, {v, w}}+ {v, {w, u}}+ {w, {u, v}} = O;
(c) {g · u, v} = g · {u, v} − π(v)(g) · u for all g ∈ OS and u, v ∈ A.

Moreover, a holomorphic π-connection is a C-linear map X̃ : NS → A∗ ⊗NS such that

X̃(gs) = π∗(dg)⊗ s + gX̃(s)

for all g ∈ OS and s ∈ NS , where π∗ : T ∗
S → A∗ is the dual map of π. We write X̃q(s) :=

X̃(s)(v) for s ∈ NS and q ∈ A. It is flat in the sense that for all u, v ∈ A
X̃u ◦ X̃v − X̃v ◦ X̃u = X̃{u,v}.

The Atiyah sheaf A and its canonical connection determine all possible partial holomorphic
connections on NS . Indeed, [3, Theorem 5.9]:

Theorem 4.3. Let S be a submanifold of a complex manifold M , and let F be a locallyOS-free
subsheaf of the tangent bundle TS . Then:
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(i) if ψ : F → A is anOS-morphism such that π◦ψ = id then the map∇ψ : NS → F∗⊗NS

given by
∇ψ

v (s) = X̃ψ(v)(s)

for all v ∈ F and s ∈ NS is a partial holomorphic connection on NS along F ;
(ii) there exists a partial holomorphic connection on NS along F if and only if there exists

an OS-morphism ψ : F → A such that π ◦ ψ = id;
(iii) if F is involutive, then the partial holomorphic connection ∇ψ is flat if and only if

ψ : F → A is a Lie algebroid morphism.

Therefore, in order to find partial holomorphic connection for NS along F one has to deter-
mine all possible OS-morphism ψ : F → A such that π ◦ ψ = id.

5. THE CAMACHO-SAD INDEX THEOREM REVISED

Let S be a complex compact reduced irreducible subvariety of a complex manifold M . As-
sume that the normal bundle of S in M , a priori defined only outside the singularities of S,
“extends” over the singularities of S, namely, there exists a coherent C∞M -modules N (with a
finite syzygy of locally free modules) such that N ⊗ OS = NS on the regular locus of S. For
instance this is always the case if S is a hypersurface or if S is the zero section of a vector
bundle M . We are interested in localizing the characteristic classes of N on S, with respect to
some dynamical object which acts on S (such as holomorphic foliations for which S is or not
invariant, holomorphic diffeomorphisms leaving S fixed). Using the Čech-de Rham cohomol-
ogy as explained before, one can always put the singular locus of S into some open set of a
suitable covering of S so that we can try to use Theorem 4.3 only on the regular part of S.

If S is invariant by a holomorphic foliation F of M then one can construct a Lie algebroid
morphism ψ : F ⊗OM

OS → A outside the singularity of the restriction F ⊗OM
OS of the

foliation F on S, and the classical Camacho-Sad theorem [12] follows then from Theorem 4.3
and the previous constructions. The same argument works for the various generalizations of
the Camacho-Sad index theorem due, with direct and different methods, to T. Suwa [17], A.
Lins-Neto [15] and D. Lehmann-T.Suwa [14].

If S is not invariant by the foliationF but it is “well embedded” into M (for instance if S is the
zero section of a vector bundle M ; 2-linearizable is enough, see [3], [4]) and the dimension of
S equals the dimension of F then again it is possible to define a morphism ψ : F⊗OM

OS → A
outside the singularity of the restriction F ⊗OM

OS of the foliation F on S. The same is true
if S is “well embedded” into M and F ⊗ OM/I2

S is trivial (for instance if F is generated by a
certain number of globally defined vector fields). In all those cases we obtain a generalization
of the Camacho-Sad index theorem arguing as above. Such an index theorem for the case S is
the zero section of a vector bundle and the dimension of S equals the dimension of the foliation
is due to C. Camacho and D. Lehmann [10], while for M of dimension 2, S non singular curve
2-linearizable is due to C. Camacho, H. Movasati and P. Sad [11]. The other generalizations,
plus another one with cohomological conditions, are contained in [3, Theorem 7.21].

Another “dynamical condition” with guarantees the existence of a (Lie algebroid) morphism
ψ : F → A (outside some closed analytic subset of S) from some subsheaf F of TS is given
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in case S is a hypersurface pointwise fixed by a biholomorphism f of (a neighborhood of S in)
M which is “tangential” to S. Morally speaking, given the diffeomorphism f pointwise fixing
S, one can look at its “logarithm”, namely, the formal vector field v whose time one flow is f .
Such a vector field turns out to be semi-formal, namely, it is a section of TS ⊗ lim←OM/Im

S ,
and it is singular along S (namely, its restriction to OS is identically zero). The map f is then
‘tangential” to S if and only if the desingularization of v is tangent to S. The “singularities” of
f along S are exactly the singularities of the desingularization of v on S. The Camacho-Sad
type index theorem was obtained first by M. Abate [1] for the case S is a non singular curve
in a two dimensional complex manifold, then by F. Tovena and the author [9] for the case S is
singular. The general case is in [2] (see also [7] and [8] for the case where M is also allowed to
have some simple singularity and [16] for general cases with M singular).

In case the diffeomorphism f is non-tangential to S (or S has codimension greater than one),
one can also construct morphism ψ : F → A (outside some closed analytic subset of S) in
case S is “well embedded” in M or some cohomological condition is satisfied (see [3, Theorem
8.10]).

Then, collecting the previous mentioned constructions with foliations and diffeomorphisms
under the sentence S is “dynamically subjected to a holomorphic object”, the very abstract form
of the Camacho-Sad index theorem is:

Theorem 5.1. Let S be a complex compact reduced irreducible subvariety of a complex man-
ifold M with extended normal bundle N . Assume that S is “dynamically subjected to a holo-
morphic object” outside some closed analytic set Σ. Then every symmetric polynomial in the
Chern classes of N of suitable degree localizes around Σ ∪ Sing(S).
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