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1. Introduction

The theory developed by Ch. Loewner [36] in 1923, and nowadays bearing his name,
has been extended and used in the past decades to solve many different problems in the
area of complex analysis. Just to name a few instances, the Loewner theory is one of
the main tool in the de Branges’ proof of the Bieberbach conjecture, and it has been
recently successfully exploited in connection with stochastic equations to study scaling
limits of various probabilistic and physical models (giving rise to the so called SLEs of
Oded Schramm).
The original idea of Loewner was to represent a family of domains obtained by removing

from the complex plane a Jordan arc by means of a family (nowadays known as a Loewner
chain) of univalent functions defined on the unit disc and satisfying a suitable differential
equation. Such a machinery was later studied and extended to other types of simply

Date: December 13, 2011.
1



2 F. BRACCI

connected domains by Kufarev in 1943 and Pommerenke in 1965 ([29], [42], and see also
[43, Chapter 6]).
The classical Loewner partial differential equation in the unit disc D := {ζ ∈ C : |ζ| <

1} is given by

∂ft(z)

∂t
= −∂ft(z)

∂z
G(z, t).

where ft : D → C is a family of univalent mappings depending on the parameter t ≥
0, ft(0) = 0, f ′

t(0) = et, and G(w, t) = −w 1+k(t)w
1−k(t)w

for some continuous function k :

[0,+∞) → ∂D. The vector field G(w, t) is a so-called Herglotz vector field.
The classical radial Loewner equation is the following associated non-autonomous or-

dinary differential equation{ •
w = G(w, t) for almost every t ∈ [s,∞)

w(s) = z.

The solutions t 7→ φs,t(z) of such a differential equation possess certain “semigroup-type”
properties, and the family (φs,t) is called an evolution family of the unit disc.
The relations among the three objects, that is, Loewner’s chains, evolution families and

Herglotz vector fields, is the core of Loewner’s theory and its extensions and generaliza-
tions.
The aim of this note is to provide an updated account of the extensions and gener-

alizations of the original Loewner theory, with a particular view toward the geometrical
and dynamical aspects of the above equations and their invariant forms. We will start
by presenting quite in detail the original work of Loewner, and the extension by Pom-
merenke, Kufarev and Schramm in the unit disc. Next, we will describe infinitesimal
generators of semigroups of holomorphic self-maps on complex manifolds, with the target
of presenting a very general and natural definition of Herglotz vector fields and evolution
families, as discovered by the author and M. D. Contreras and S. Dı́az-Madrigal in [10],
[11]. In this new framework, the accent is put on the evolution families considered as
families of holomorphic self-maps resembling semigroups. Hence, on the one side they
are objects that can be iterated, creating a “dynamical system”, and on the other side
they are generated by non-autonomous vector fields which are semicomplete for almost
all times. In this optic, Loewner chains are essentially viewed as “intertwining mappings”
which conjugated the dynamical behavior of an evolution family on a complex manifold
with the geometry of an “abstract basin of attraction” which we call the Loewner range.
The construction of Loewner chains, taken by the work of the author with L. Arosio, H.
Hamada, G. Kohr [5], is categorial and provides the “PDE Loewner equation” in its full
generality.
Some results are presented with a sketch of the proof, and some efforts are made to

relate various branches of the theory to a single unified source (for instance the reverse
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equation used from Schramm is presented here starting from the Loewner classical equa-
tion). However, many applications of Loewner theory and other areas of related researches
are not discussed here. For further material, we refer the reader to the survey paper [2],
the books [24] (for basic one dimensional and the higher dimensional theory) and [33] (for
SLEs), and the recent paper [14, 15] (for the multi-connected cases).

These notes are the revised version of the text of the plenary talk the author gave at
XIX Congress of the Unione Matematica Italiana held in Bologna, 12-17 September 2011.
The author wants to sincerely thank the organizers for both the invitation to give the
talk and the possibility of writing these notes. Also, the author warmly thanks Pavel
Gumenyuk for several comments which improved this paper.

2. The classical Loewner equation

We define the “class S” as the set of all univalent (i.e. holomorphic and injective)
function f : D → C such that f(0) = 0, f ′(0) = 1. Namely,

S := {f : D → C : f is univalent, f(0) = 0, f ′(0) = 1}.
By the Riemann mapping theorem, given a simply connected domain D ⊂ C, D ̸= C,

there exists a univalent and surjective mapping g : D → D, called a Riemann map. Up
to translation we can assume that 0 ∈ D. With this assumption, one can show that there
exists a unique Riemann map gD : D → D such that gD(0) = 0 and λ := g′D(0) > 0.
In particular, if we dilate D by 1/λ, the unique Riemann map g : D → 1

λ
D such that

g(0) = 0, g′(0) > 0, belongs to the class S.

Definition 2.1. A slit map f : D → C is a univalent mapping such that f(0) = 0 and
the complement of f(D) in C is a Jordan arc Γ, i.e., there exists a continuous injective
curve γ : [0, T ) → C such that limt→T |γ(t)| = ∞, Γ := γ([0, T )) and f(D) = C \ Γ.

One can prove that slit maps are dense (with respect to the topology of uniform con-
vergence on compacta) in the class S. Therefore, if one can prove certain bounds on slit
maps, they propagate to all the class S.
Now we are going to discuss the so-called “parametric representation of slit maps” due

to Ch. Loewner.
Let γ : [0, T ) → C be a Jordan arc such that limt→T |γ(t)| = ∞, Γ := γ([0, T )). Assume,

up to translation, that 0 ̸∈ Γ. Let Γt := γ([t, T )), for t ∈ [0, T ). Then Dt := C \ Γt is a
family of simply connected domains with the property that Ds ⊂ Dt for s < t.
Let ft : D → Dt be the Riemann map such that ft(0) = 0, f ′

t(0) > 0. Then we can
expand ft and obtain

ft(z) = β(t)[z + b2(t)z
2 + b3(t)z

3 + . . .].

By the geometry of Dt’s, one can show that t 7→ β(t), bj(t) are continuous for all j ≥ 2.
Moreover, consider the map z 7→ φs,t(z) := f−1

t ◦ fs(z) (s < t). Then φs,t : D → D is
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holomorphic, injective, φs,t(0) = 0 and it is not the identity map. By the Schwarz’ Lemma
it follows then φ′

s,t(0) < 1. Hence, t 7→ β(t) is strictly increasing.
It can be also proved that limt→T β(t) = +∞. Indeed, if this is not the case, then

thanks to the so-called “distortion theorems” for the class S, one would find a converging
(in the topology of uniform convergence on compacta) subsequence of {ft} which would
converge to a biholomorphism from D to C.
Therefore, we can re-parameterize the Jordan arc γ by define σ(s) := β−1(es) and

γ̃ : [0,+∞) → C as γ̃(s) = γ(σ(s)). With this new parametrization we have

ft(z) = et

[
z +

∑
j≥2

bj(t)z
j

]
.

Definition 2.2. A family (ft) of univalent mappings ft : D → C is called a classical
Loewner chain if

(1) ft(0) = 0, f ′
t(0) = et for all t ≥ 0 and

(2) fs(D) ⊂ ft(D) for all 0 ≤ s ≤ t.

Now we can state Loewner’s original result:

Theorem 2.3 (Loewner). Let (ft) be a classical Loewner chain of slit maps. Let φs,t :=
f−1
t ◦ fs : D → D, 0 ≤ s ≤ t. Then there exists k : [0,+∞) → ∂D a continuous function
such that for all t ∈ [0,+∞) and z ∈ D

(2.1)
∂φs,t(z)

∂t
= −φs,t(z)

1 + k(t)φs,t(z)

1− k(t)φs,t(z)
.

Moreover, limt→∞ etφs,t(z) = fs(z) uniformly on compacta.

Sketch of the proof. The map φs,t : D → D is univalent, φs,t(0) = 0, φ′
s,t(0) = es−t. Note

also that
φs,t = φu,t ◦ φs,u 0 ≤ s ≤ u ≤ t.

Also, by Carathéodory’s extendability result (see, e.g. [43]), the map φs,t is continuous
up to ∂D for all 0 ≤ s ≤ t.

The function D \ {0} ∋ z 7→ gs,t(z) := φs,t(z)

z
extends holomorphic in D by defining

gs,t(0) = φ′
s,t(0) = es−t and gs,t(z) ̸= 0 for all z ∈ D because φs,t is injective and it is equal

to zero at z = 0. Hence, since D is simply connected, it is possible to define the logarithm
ϕs,t(z) := log gs,t(z), choosing the branch of log such that log es−t = s− t.
Now, the image of D under φs,t is D \ Γs,t, where Γs,t is a Jordan arc contained in D

and starting from a boundary point. Therefore, there exists an arc As,t ⊂ ∂D such that
φs,t(∂D \ As,t) ⊂ ∂D, hence Reϕs,t(∂D \ As,t) = 0. Also, Reϕs,t(z) < 0 for all z ∈ D. We
apply then the Poisson formula and obtain

ϕs,t(z) =
1

2π

∫
As,t

eiθ + z

eiθ − z
Reϕs,t(e

iθ)dθ.
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By the mean value theorem, there exist θ′, θ′′ ∈ R such that eiθ
′
, eiθ

′′ ∈ As,t and

ϕs,t(φm,s(z)) =
1

2π

∫
As,t

eiθ + φm,s(z)

eiθ − φm,s(z)
Reϕs,t(φm,s(e

iθ))dθ

=
1

2π

∫
As,t

Reϕs,t(φm,s(e
iθ))dθ

[
Re

(
eiθ

′
+ φm,s(z)

eiθ′ − φm,s(z)

)
+ iIm

(
eiθ

′′
+ φm,s(z)

eiθ′′ − φm,s(z)

)]
.

But
1

2π

∫
As,t

Reϕs,t(φm,s(e
iθ))dθ = Reϕs,t(φm,s(0)) = Reϕs,t(0) = s− t.

Therefore

(2.2) ϕs,t(φm,s(z)) = (s− t)

[
Re

(
eiθ

′
+ φm,s(z)

eiθ′ − φm,s(z)

)
+ iIm

(
eiθ

′′
+ φm,s(z)

eiθ′′ − φm,s(z)

)]
.

Now, φs,t(φm,s(z)) = φm,t(z) for 0 ≤ m ≤ s ≤ t, hence

ϕs,t(φm,s(z)) = log

(
φs,t(φm,s(z))

φm,s(z)

)
= log

φm,t(z)

φm,s(z)
.

It can be proved that, as t → s, the arc As,t shrinks to a point λ(s) ∈ ∂D which represents
the preimage of the tip of the arc Γs,t under φs,t. From this, and from (2.2) we obtain

lim
t→s

1

t− s
log

φm,t(z)

φm,s(z)
= − lim

t→s

[
Re

(
eiθ

′
+ φm,s(z)

eiθ′ − φm,s(z)

)
+ iIm

(
eiθ

′′
+ φm,s(z)

eiθ′′ − φm,s(z)

)]
= −λ(s)− φm,t(z)

λ(s) + φm,t(z)
.

Unwrapping the left hand side, we obtain (2.1) with k(t) := 1/λ(t). The rest of the
statement is technical and we omit it (see, e.g. [18]). �
In the proof of Loewner’s equation we defined a family (φs,t) of univalent self-mappings

of the unit discs having certain semigroup properties. Abstracting those properties we
give the following

Definition 2.4. A family (φs,t) with 0 ≤ s ≤ t < +∞ of univalent self-maps of the unit
disc D is a classical evolution family if

(1) φs,t = φu,t ◦ φs,u for all 0 ≤ s ≤ u ≤ t,
(2) φs,t(0) = 0, φ′

s,t(0) = es−t.

Given a classical Loewner chain (ft), it is possible to define a classical evolution family
(φs,t) by means of the formula

(2.3) ft ◦ φs,t = fs.

Since φs,t = f−1
t ◦ fs, it is clear that such an evolution family is uniquely determined.

However, the converse is not so immediate. We will discuss later (see Theorem 7.3) of the
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uniqueness of Loewner chains associated to a given evolution family on complete hyper-
bolic manifolds, and the reader can easily check that in the classical case the uniqueness
follows as a result of the normalization chosen in the definition of classical Loewner chains.
Equation (2.1) can be re-written in the following way. Let k : [0,+∞) → ∂D be

continuous and let

p(z, t) :=
1 + k(t)z

1− k(t)z
.

Then Re p(z, t) ≥ 0 for all z ∈ D and t ∈ [0,+∞). Let

G(z, t) = −zp(z, t).

Loewner’s equation (2.1) reads as

(2.4)
∂φs,t(z)

∂t
= G(φs,t(z), t).

The equation (2.1) (or the more general equation (2.4)) are known as radial Loewner
equations.
Looking abstractly to the properties of G, we give the following definition

Definition 2.5. A classical Herglotz vector field G(z, t) = −zp(z, t) is a non-autonomous
vector field such that

(1) [0,+∞) ∋ t 7→ p(z, t) is measurable for all z ∈ D,
(2) z 7→ p(z, t) is holomorphic for all t ∈ [0,+∞)
(3) Re p(z, t) ≥ 0 for almost all t ∈ [0,+∞),
(4) p(0, t) = 1 for all t ∈ [0,+∞).

Differentiating (2.3) and taking into account (2.4) we obtain the following PDE:

(2.5)
∂ft(z)

∂t
= −∂ft(z)

∂z
G(z, t).

Ch. Pommerenke [43, 42] showed that (2.3), (2.4) and (2.5) hold in the context of
classical Loewner chains, classical evolution families and classical Herglotz vector fields,
and not only for slit maps. We will discuss later of a more general version of these results.

2.1. The Bieberbach conjecture. The Bieberbach conjecture states the following. Let
f ∈ S. Expand f(z) = z +

∑
j≥2 amz

m. Then

|am| ≤ m ∀m ∈ N.

The Bieberbach conjecture has been positively solved by L. de Branges [17], who proved
the so called Milin’s conjecture (which implies the Bieberbach conjecture) using special
functions and Loewner’s equation (a simplified proof is given by C. FitzGerald and Ch.
Pommerenke [20]).
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The case m = 2 is a consequence of the so called “area theorem” (see, e.g., [18]). The
case m = 3 was proved by Loewner himself, using his equation (2.5). We give here a brief
sketch of his idea. We start with

(2.6)
∂ft(z)

∂t
= z

∂ft(z)

∂z
p(z, t).

Now, we expand
p(z, t) = 1 + p1(t)z + p2(t)z

2 + . . . ,

and also, we write
ft(z) = etz + a2(t)z

2 + . . . .

Substituting in (2.6) and equating coefficients with the same degree in z, we obtain for
almost all t ≥ 0,

d

dt
am(t) =

m−1∑
k=1

kak(t)pm−k(t) +mam(t).

Now, multiplying both sides by e−mt and integrating, one obtains an expression for am
which involves the terms pk. By the distortion theorems for p(z, t), it follows that |pk(t)| ≤
2 for all k. From here (after some algebraic manipulations which are working well only
for m = 2, 3), we obtain the estimates.

2.2. Slit mappings and the Loewner differential equation. Given a continuous
function k : [0,+∞) → ∂D, one can consider the PDE

(2.7)
∂ft(z)

∂t
= z

∂ft(z)

∂z

1 + k(t)z

1− k(t)z
,

with z ∈ D. The function k is called the driving term of the equation.
Loewner’s theorem 2.3 shows that any evolution family of slit mappings satisfies (2.7)

with a continuous driving term. The converse is not true: P. P. Kufarev [31] showed that
the solutions to (2.7) with continuous driving term are not slit mappings in general.
The question is then which are the relations between the properties of the driving term

k in (2.7) and the family generated by the solutions. It is known that if the evolution
derives from a slit which is real analytic, then k is real analytic. A proof of this fact can
be found in [19], where C. Earle and A. Epstein proved also that if the slit is of class Cm

then the driving term is at least of class Cm−1.
In [38], D. Marshall and S. Rohde proved that if the slit in C is a “quasiarc” (namely

it is the image of [0,∞) under a quasiconformal homeomorphism of C) then the driving
term is Lipschitz continuous with exponent 1/2. And conversely, there exists a constant
C > 0 such that if |k(t) − k(s)| < C|t − s|1/2 for all s, t ∈ [0,+∞) then C \ ft(D) is a
quasiarc for all t. In Kufarev’s example, the driving term k is Lipschitz continuous with
exponent 3

√
2, thus C ≤ 3

√
2. J. Lind [37] has proved that the best constant C is 4.

However, W. Kager, B. Nienhuis, L. P. Kadanoff [27] showed that there exist examples
of slit evolutions for which the associated driving terms have arbitrary big norm. In [41],
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D. Prokhorov and A. Vasil’ev extended such results to the case of evolutions of so-called
“chordal type” (see below) when the slit is an arc tangent to the boundary, proved that
in such a case the driving term is 1/3-Lipschitz.

3. Kufarev-Loewner chordal equation

In 1946 P. P. Kufarev [30] (developed later by Kufarev himself, Sobolev and Sporysheva
[32]) proposed an equation of evolution in the upper half-plane H := {z ∈ C : Im z > 0}
analogous to the one proposed by Loewner in the unit disc. Note that H and D are
conformally equivalent by means of the Cayley transform

D ∋ z 7→ i
1 + z

1− z
∈ H.

However, Kufarev’s equation is not just a transliteration from D to H by means of the
Cayley transform of Loewner’s evolution equation. Kufarev in fact considered a different
equation, where the base point of the evolution is at ∞. This process is connected to
physical problems in hydrodynamics.
In order to introduce Kufarev’s equation properly, let us fix some notations. Let γ be

a Jordan arc in the upper half-plane H with starting point γ(0) = 0. Then, there exists
a unique Riemann map ft : H → H \ γ[0, t] normalized such that

ft(z) = z +
c(t)

z
+O

(
1

z2

)
.

Up to a re-parametrization of the curve γ, one can assume that c(t) = −2t. Such a
normalization is sometimes called the hydrodynamics normalization. Under this normal-
ization, one can show that ft satisfies the following differential equation. For all t ≥ 0
and for all z ∈ H

(3.1)
∂ft(z)

∂t
=

−2

ft(z)− k(t)
, f0(z) = z,

where k : [0,+∞) → R is a continuous function. Conversely, starting with a continuous
function k : [0,+∞) → R, one can consider the non-autonomous holomorphic vector field

P (w, t) :=
−2

w − k(t)
,

and the associated initial value problem for each z ∈ H:

dw

dt
= P (w(t), t), w(0) = z.

Let t 7→ wz(t) denote the only solution of the previous system, and let ft(z) := wz(t).
Then ft : H → H is univalent. This equation is nowadays known as the chordal Loewner
differential equation and the function k is its driving term. The name “chordal” is due
to the picture that the images of the solutions of the associated characteristic equation
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draw when taking the time-limit: something like the half-plane erased a chord joining two
boundary points.
Moving back to the unit disc by means of the Cayley transform, it is easy to see that

the chordal Kufarev-Loewner equation takes the form

(3.2)
dz

dt
= (1− z)2p(z, t), z(0) = z,

where Re p(z, t) ≥ 0 for all t ≥ 0 and z ∈ D.
We will show later on that both the classical Loewner equation and its radial general-

izations and the Kufarev equation are just particular cases of a more general picture.
D. Marshall kindly told me in a private conversation that the classical Loewner equation

and the Kufarev one are equivalent in the sense that can be obtained one from the other
by means of a suitable construction.

4. Reversing evolution and SLE’s

The original Loewner equation (and the generalized Pommerenke’s and Kufarev’s equa-
tions) deals with families of univalent mappings from D to increasing families of simply
connected domains. In the applications it is sometimes useful to consider a reverse evolu-
tion. Namely, let (Dt)t≥0 be a family of simply connected domains contained in the unit
disc D and such that Dt ⊆ Ds for all 0 ≤ s ≤ t. We also assume that D0 = D.
A typical example is given by considering a Jordan arc γ : [0,+∞) → C such that

γ(0) ∈ ∂D and γ((0,∞)) ⊂ D. In such a case Dt = D \ γ([0, t]). If 0 ∈ Dt for all t, one
can consider a chain of univalent mappings ft : D → Dt normalized so that ft(0) = 0 and
f ′
t(0) > 0. This is a sort of “reverse classical Loewner evolution”.
Similarly, one can consider a “reverse chordal Kufarev-Loewner evolution”, taking the

upper half-plane model H and removing a growing Jordan arc γ : (0,+∞) → H such that
γ(0) = 0, considering the chain given by ft : H → H \ γ([0, t]) with the hydrodynamics
normalization.
In this section we restrict ourselves to the case of the “reverse classical Loewner evo-

lution”. However, one can show the same procedure works for all generalizations of the
classical Loewner equation (see also [16]).
For t ≥ 0, let ft : D → Dt be a Riemann mapping normalized such that ft(0) = 0 and

f ′
t(0) > 0. Assume that Dt := ft(D) be such that Dt ⊂ Ds for 0 ≤ s ≤ t and f0 = id.
Moreover, D\Dt is a Jordan arc γ : [0,+∞) → C such that γ(0) ∈ ∂D and γ((0,∞)) ⊂ D.
Let β(t) := f ′

t(0). By Schwarz’ lemma, β : [0,+∞) → R+ is a decreasing function,
β(0) = 1. Let

A := lim
t→∞

β(t).

Then 0 ≤ A < 1. Let σ(s) := β−1(e−s), for s ∈ [0,− lnA). We re-parameterize the
Jordan arc as γ̃(s) := γ(σ(s)), for s ∈ [0,− lnA). With such a parametrization we have
ft(0) = 0, f ′

t(0) = e−t for t ∈ [0,− lnA).
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Fix T ∈ (0,− lnA), and, for t ∈ [0, T ], let ϕt(z) := fT−t(z). By definition, ϕs(D) ⊂
ϕt(D) for all 0 ≤ s ≤ t ≤ T and ϕT = id. Also, ϕt(0) = 0, ϕ′

t(0) = et−T .
The family (φt) is a “classical Loewner chain” as defined in Section 2, except that

t ∈ [0, T ] instead of taking values in [0,+∞). In any case, we can define the associated
“evolution family” φs,t := f−1

t ◦ fs. It is easy to check that such a family satisfies the
requirement of Definition 2.4, taking 0 ≤ s ≤ t ≤ T .
Then Theorem 2.3 applies and there exists kT : [0, T ) → ∂D a continuous function such

that for all t ∈ [0, T ) and z ∈ D equation (2.1) holds with kT replacing k.
Then the family (ϕt)t∈[0,T ] satisfies (2.5), i.e.

∂ϕt(z)

∂t
= ϕ′

t(z)z
1 + kT (t)z

1− kT (t)z
.

Now, taking into account that ϕt = fT−t, from the previous equation we obtain

∂ft(z)

∂t
= −∂ft(z)

∂z
z
1 + kT (T − t)z

1− kT (T − t)z
, t ∈ [0, T ).

This yields that kT (T − t) = kT ′(T ′ − t) for all t ≤ min{T, T ′}. Thus, setting k(t) :=
kT (T − t) whenever t ∈ [0, T ), we find

(4.1)
∂ft(z)

∂t
= −∂ft(z)

∂z
z
1 + k(t)z

1− k(t)z
, t ∈ [0,− lnA).

Note that (4.1) differs from (2.5) by a sign. Now, let

gt := f−1
t : Dt → D.

Since z = ft(gt(z)) for all z ∈ ft(D) = Dt, differentiating in t and taking into account
(4.1), we obtain

0 =
∂ft
∂t

(gt(z)) +
∂ft
∂z

(gt(z))
∂gt(z)

∂t

= −∂ft
∂z

(gt(z))z
1 + k(t)gt(z)

1− k(t)gt(z)
+

∂ft
∂z

(gt(z))
∂gt(z)

∂t
.

Since ft is univalent, we get

(4.2)
∂gt(z)

∂t
= z

1 + k(t)gt(z)

1− k(t)gt(z)

for all t ∈ [0,− lnA) and z ∈ Dt.
Note that, given z ∈ D, (4.2) holds for all t ∈ [0,− lnA) if z ̸∈ γ̃([0,− lnA)). If

z = γ̃(t0) then (4.2) holds for all t ∈ [0, t0).
Putting together the previous considerations we have

Theorem 4.1 (Reverse classical radial Loewner evolution). Let γ : [0,M) → C be a
Jordan arc such that γ(0) ∈ ∂D and γ((0,M)) ⊂ D. Let ft : D → D, for t ∈ [0,M), be a
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family of Riemann mappings such that D \ ft(D) = γ((0, t]), ft(0) = 0 and f ′
t(0) = e−t.

Let gt := f−1
t . Then there exists a continuous function k : [0,M) → ∂D such that

∂gt(z)

∂t
= z

1 + k(t)gt(z)

1− k(t)gt(z)

for all z ∈ D and either for all t ∈ [0,M) if z ̸∈ γ([0,M)), or for all t ∈ [0, t0) if z = γ(t0).

A similar argument as before applies to the Kufarev-Loewner chordal equation. In
particular, we obtain the reverse evolution from (3.1). That is

Theorem 4.2 (Reverse classical chordal Kufarev-Loewner evolution). Let γ : [0,M) → C
be a Jordan arc such that γ(0) = 0 and γ((0,M)) ⊂ H. Let ft : H → H, for t ∈ [0,M),
be a family of Riemann mappings such that H \ ft(H) = γ((0, t]), ft(z) = z− 2t

z
+O

(
1
z2

)
.

Let gt := f−1
t . Then there exists a continuous function k : [0,M) → R such that

∂gt(z)

∂t
=

2

gt(z)− k(t)
,

for all z ∈ H and either for all t ∈ [0,M) if z ̸∈ γ([0,M)), or for all t ∈ [0, t0) if z = γ(t0).

4.1. The Schramm-Loewner equation. In 1999 Oded Schramm [S] had the wonder-
ful idea of replacing the driving term of the classical Loewner equation for single-slit
maps with a weighted Brownian motion, inventing the nowadays well known stochastic-
Loewner equations, or Schramm-Loewner’s equations. In particular, the (chordal) sto-
chastic Loewner evolution with parameter k ≥ 0 (SLEk) starting at a point x ∈ R is the
random family of univalent maps (gt) obtained from the reverse classical chordal Kufarev-

Loewner equation replacing the driving term k(t) with
√
kBt, where Bt is a standard one

dimensional Brownian motion such that
√
kB0 = x. That is

∂gt(z)

∂t
=

2

gt(z)−
√
kBt

, g0(z) = z.

Similarly, one can define a radial stochastic Loewner evolution starting from the reverse

classical radial Loewner equation replacing the driving term k(t) with e−i
√
kBt , i.e.

∂gt(z)

∂t
= z

1 + e−i
√
kBtgt(z)

1− e−i
√
kBtgt(z)

, g0(z) = z.

The SLEk depends on the choice of the Brownian motion and it comes in several flavours
depending on the type of Brownian motion exploited. For example, it might start at a
fixed point or start at a uniformly distributed point, or might have a built in drift and
so on. The parameter k controls the rate of diffusion of the Brownian motion and the
behaviour of the SLEk critically depends on the value of k.
The SLE2 corresponds to the loop-erased random walk and the uniform spanning tree.

The SLE8/3 is conjectured to be the scaling limit of self-avoiding random walks. The SLE3

is conjectured to be the limit of interfaces for the Ising model, while the SLE4 corresponds



12 F. BRACCI

to the harmonic explorer and the Gaussian free field. The SLE6 was used by Lawler,
Schramm and Werner in 2001 [LSW1], [LSW2] to prove the conjecture of Mandelbrot
(1982) that the boundary of planar Brownian motion has fractal dimension 4/3. Moreover,
Smirnov [Sm] proved that SLE6 is the scaling limit of critical site percolation on the
triangular lattice. This result follows from his celebrated proof of Cardy’s formula. We
refer the reader to the very beautiful book of G. Lawler [33] for more details.

5. Semigroups and infinitesimal generators

Looking at the classical radial Loewner equation (2.1) and the classical chordal Kufarev-
Loewner equation (3.2), one notices that there is a similitude between the two. Indeed,
we can write both the equation in the form

∂z(t)

∂t
= G(z, t),

with

G(z, t) = (τ − z)(1− τz)p(z, t),

where τ = 0, 1 and Re p(z, t) > 0 for all z ∈ D and t ≥ 0.
The reason for the previous formula is not at all by chance, but it reflects a very

important feature of “Herglotz vector fields”. In order to give a rough idea of what we
are aiming, consider the case τ = 0 (the radial case). Fix t = t0 ∈ [0,+∞). Consider the
holomorphic vector field H(z) := G(z, t0). Let h(z) := |z|2. Then,

(5.1) dhz(H(z)) = 2Re ⟨H(z), z⟩ = −|z|2Re p(z, t0) ≤ 0, ∀z ∈ D.

This Lyapunov type inequality has a deep geometrical meaning. Indeed, (5.1) tells that
H points toward the center of the level sets of h, which are concentric circles centered at
0. For each z0 ∈ D, consider then the Cauchy problem

(5.2)

{
dw(t)
dt

= H(w(t)),

w(0) = z0

and let wz0 : [0, δ) → D be the maximal solution (such a solution can propagate also in
the “past”, but we just consider the “future” time). Since H points inward with respect
to all circles centered at 0, the flow t 7→ wz0(t) cannot escape from the circle h(z) = h(z0).
Therefore, the flow is defined for all future times, namely, δ = +∞. This holds for all
z0 ∈ D.
Hence, the Herglotz vector field G(z, t0) has the feature to be R+-semicomplete for all

fixed t0.
LetH be a R+-semicomplete holomorphic vector field on D and let [0,+∞) ∋7→ wz(t) ∈

D be the solution of (5.2). By the holomorphic flow-box theorem, the map

[0,+∞)× D 7→ ϕt(z) := wz(t) ∈ D
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is real analytic, and for all fixed t, the map z 7→ ϕt(z) is holomorphic. By definition
ϕ0 = id and by the uniqueness of solutions of (5.2),

ϕt+s = ϕt ◦ ϕs = ϕs ◦ ϕt ∀s, t ≥ 0.

In other words, (ϕt) is a continuous morphism of semigroups between (R≥0,+) endowed
with the Euclidean topology and the semigroup of holomorphic self-maps of the unit disc
(Hol(D,D), ◦) endowed with the topology of uniform convergence on compacta.
Recall that a holomorphic vector field H on a complex manifold M is a section of the

holomorphic tangent bundle TM . In case M is a domain in Cn (for instance the unit disc
in C), then TM ≃ M × Cn and thus we can interpret H as a holomorphic function from
M to Cn. With this in mind, we give the following definition:

Definition 5.1. Let M be a complex manifold. A holomorphic vector field H : M → TM
is an infinitesimal generator if for each z0 ∈ M , its flow starting from z0 is defined for all
t ≥ 0.

Also, we define:

Definition 5.2. Let M be a complex manifold. A continuous semigroup of holomorphic
self-maps of M , (ϕt)t≥0, is a continuous morphism of semigroups between (R≥0,+) en-
dowed with the Euclidean topology and the semigroup of holomorphic self-maps of M
endowed with the topology of uniform convergence on compacta.

It can be shown that if (ϕt) is a semigroup, then for each t ≥ 0, the map z 7→ ϕt(z) is
univalent.
Let M be a complex manifold. By the holomorphic flow-box theorem, for an infinitesi-

mal generator H onM there exists a unique continuous semigroups (ϕt)t≥0 of holomorphic
self-maps of M such that

(5.3)
∂ϕt(z)

∂t
= H(ϕt(z)).

Conversely, given a continuous semigroup of holomorphic self-maps of M , there exists a
unique infinitesimal generator H on M such that (5.3) holds ([8], see also e.g., [1], [46]).
Much has been done in the theory of semigroups, see [46] for a very good recent account.

Here we content ourselves to examine the theory we need for our aim.
As we saw before, a classical Herglotz vector field G(z, t) (as defined in Definition

2.5) has the property that for all t ≥ 0, the holomorphic vector field z 7→ G(z, t) is an
infinitesimal generator, and one might suspect that this is the right choice for a workable
definition of a general Herglotz vector field. Therefore, it is fundamental to characterize
which holomorphic vector fields are infinitesimal generators.
The previous argument with the function h, gives a basic rough idea of the way one

can characterize infinitesimal generators. Before going ahead, we need to recall some few
facts about the so-called “invariant distances”. We refer the reader to [28] and [1] for
details.
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Let ω : D× D → R+ denote the Poincaré distance on D. Recall that

ω(z, w) =
1

2
log

1 + |Tz(w)|
1− |Tz(w)|

,

where Tz(w) = z−w
1−zw

. Essentially by a re-interpretation of the Schwarz lemma, the
Poincaré distance has the property of being shrunk by holomorphic self-maps of the unit
disc, namely, if f : D → D is holomorphic, then

ω(f(z), f(w)) ≤ ω(z, w) ∀z, w ∈ D.
Moreover, there is equality for some z ̸= w—and hence for all—if and only if f is an
automorphism of D. The Poincaré distance is of class C∞ outside the diagonal. Take a
semigroup (ϕt) of holomorphic self-maps of D generated by the infinitesimal generator H.
Then, for z ̸= w, the function

(5.4) t 7→ ω(ϕt(z), ϕt(w))

is differentiable (because ϕt(z) ̸= ϕt(w) for all t ≥ 0 being the map injective) and decreas-
ing, since

ω(ϕt(z), ϕt(w)) = ω(ϕt−ϵ+ϵ(z), ϕt−ϵ+ϵ(w))

= ω(ϕϵ(ϕt−ϵ(z)), ϕϵ(ϕt−ϵ(w))) ≤ ω(ϕt−ϵ(z), ϕt−ϵ(w)).

Differentiating in t at t = 0 we obtain thus

(5.5) dω(z,w) · (H(z), H(w)) ≤ 0, ∀z, w ∈ D, z ̸= w.

Note that if ϕt(0) = 0 for all t ≥ 0, then H(0) = 0 and the previous equation for w = 0
is equivalent to dhz(H(z)) ≤ 0 (where, as before, h(z) = |z|2), that is,
(5.6) Re ⟨H(z), z⟩ ≤ 0.

However, being H(0) = 0, it follows that H(z) = −zp(z) for some holomorphic function
p : D → C, and (5.6) implies that p : D → {w ∈ C : Rew ≥ 0}.
Condition (5.5) is also necessary to ensure that H is an infinitesimal generator (see

[9]). The geometric reason of such is that such equation means that Poincaré discs are
shrunk by the flow of H, hence the flow starting at any given point of D cannot reach
the boundary in a finite time. Analytically, (5.5) translates saying that the function
(5.4) (where t 7→ ϕt(z) denotes here the flow starting at z) is decreasing in time, and
therefore the vector field H is semicomplete. In fact, starting from (5.5) one can derive
useful equivalent analytical characterizations of infinitesimal generators in the unit disc—
historically, such characterizations have been derived directly without using formula (5.5),
which was discovered in [9].

Theorem 5.3 (Characterization of infinitesimal generators in the unit disc). Let H :
D → C be holomorphic. Then the following are equivalent:

(1) H is an infinitesimal generator,
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(2) ([9]) dω(z,w) · (H(z), H(w)) ≤ 0, ∀z, w ∈ D, z ̸= w,
(3) ([3]) there exist a ∈ C and q : D → {w ∈ C : Rew ≥ 0} holomorphic such that for

all z ∈ D
H(z) = a− az2 − zq(z),

(4) (Berkson-Porta’s formula [8]) there exist τ ∈ D and p : D → {w ∈ C : Rew ≥ 0}
holomorphic such that for all z ∈ D

H(z) = (τ − z)(1− τz)p(z).

Sketch of the Proof. We already saw the equivalence between (1) and (2). Now, if H(0) =
0 the previous discussion shows that H(z) = −zp(z) for some holomorphic function
p : D → {w ∈ C : Rew ≥ 0}. Hence (3) and (4) holds with a = τ = 0 and they are
equivalent to (1) and (2) in such a case.

Now, using the infinitesimal Poincaré metric, given by ds2 = |dz|2
(1−|z|2)2 , and the shrinking

properties of holomorphic self-maps of the unit disc and arguing similarly as above (see
also [1, Thm. 1.4.14]), one can show that H is an infinitesimal generator if and only if

Re [2zH(z) + (1− |z|2)H ′(z)] ≤ 0 ∀z ∈ D.

As a consequence, the set of infinitesimal generators is a real cone with vertex 0. Now,
given a ∈ C, a direct computation shows that the holomorphic vector field D ∋ z 7→
ga(z) = a − az2 is a generator of a group of automorphisms of D. Namely, both ga and
−ga are infinitesimal generator. Therefore, a holomorphic vector fieldH is an infinitesimal
generator if and only if H − ga is an infinitesimal generator for all a ∈ C. Hence, setting
a := H(0), it follows that a holomorphic vector field H is an infinitesimal generator if and
only if

Re ⟨H(z)− ga(z), z⟩ ≤ 0.

This implies that (3) is equivalent to (1) and (2). The equivalence with (4) in case τ ̸= 0
relies on dynamical properties of the semigroups which we are not going to discuss in
here, and therefore it is omitted. �

Remark 5.4. Berkson-Porta’s formula (4) relates the infinitesimal generator H with the
dynamical properties of the associated semigroup (ϕt). In particular, the point τ is (except
in the case of a group of rotation) the attractive fixed point of the semigroup, i.e., ϕt(z) →
τ as t → ∞ for all z ∈ D.

5.1. Higher dimension. In higher dimension one can replace the Poincaré distance with
the Kobayashi distance. First, we recall the definition of Kobayashi distance (see [28] for
details and properties). Let M be a complex manifold and let z, w ∈ M . A chain of
analytic discs between z and w is a finite family of holomorphic mappings fj : D → M ,
j = 1, . . . ,m and points tj ∈ (0, 1) such that

f1(0) = z, f1(t1) = f2(0), . . . , fm−1(tm−1) = fm(0), fm(tm) = w.
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We denote by Cz,w the set of all chains of analytic discs joining z to w. Let L ∈ Cz,w. The
length of L, denoted by ℓ(L) is given by

ℓ(L) :=
m∑
j=1

ω(0, tj) =
m∑
j=1

1

2
log

1 + tj
1− tj

.

We define the Kobayashi (pseudo)distance kM(z, w) as follows:

kM(z, w) := inf
L∈Cz,w

ℓ(L).

If M is connected, then kM(z, w) < +∞ for all z, w ∈ M . Moreover, by construction, it
satisfies the triangular inequality. However, it might be that kM(z, w) = 0 even if z ̸= w
(a simple example is represented by M = C, where kC ≡ 0). In the unit disc, kD ≡ ω.

Definition 5.5. A complex manifoldM is said to be (Kobayashi) hyperbolic if kM(z, w) >
0 for all z, w ∈ M such that z ̸= w. Moreover, M is said complete hyperbolic if kM is
complete.

Important examples of complete hyperbolic manifolds are given by bounded convex
domains in Cn.
The main property of the Kobayashi distance is the following: let M,N be two complex

manifolds and let f : M → N be holomorphic. Then for all z, w ∈ M it holds

kN(f(z), f(w)) ≤ kM(z, w).

It can be proved that if M is complete hyperbolic, then kM is Lipschitz continuous
(see [6]). If M is a bounded strongly convex domain in Cn with smooth boundary, L.
Lempert (see, e.g. [28]) proved that the Kobayashi distance is of class C∞ outside the
diagonal. In any case, even if km is not smooth, one can consider the differential dkM
as the Dini-derivative of km, which coincides with the usual differential at almost every
point in M ×M .
The following characterization of infinitesimal generators is proved for strongly convex

domains in [9], and in general in [6]:

Theorem 5.6. Let M be a complete hyperbolic complex manifold and let H be an holo-
morphic vector field on M . Then the following are equivalent.

(1) H is an infinitesimal generator,
(2) For all z, w ∈ M with z ̸= w it holds

(dkM)(z,w) · (H(z), H(w)) ≤ 0.

6. Ld-Herglotz vector fields and Evolution families

In the previous section we saw that the classical Herglotz vector fields which appear in
the Loewner equation have the property to be infinitesimal generators for all fixed times.
We will exploit such a fact to define a general family of Herglotz vector fields. As a matter
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of notation, if M is a complex manifold, we let ∥ · ∥ be a Hermitian metric on TM and
dM the corresponding integrated distance.

Definition 6.1. Let M be a complex manifold. A weak holomorphic vector field of order
d ≥ 1 on M is a mapping G : M × R+ → TM with the following properties:

(i) The mapping G(z, ·) is measurable on R+ for all z ∈ M .
(ii) The mapping G(·, t) is a holomorphic vector field on M for all t ∈ R+.
(iii) For any compact set K ⊂ M and all T > 0, there exists a function CK,T ∈

Ld([0, T ],R+) such that

∥G(z, t)∥ ≤ CK,T (t), z ∈ K, a.e. t ∈ [0, T ].

A Herglotz vector field of order d ≥ 1 is a weak holomorphic vector field G(z, t) of order
d with the property that M ∋ z 7→ G(z, t) is an infinitesimal generator for almost all
t ∈ [0,+∞).

Remark 6.2. If M is complete hyperbolic, then a weak holomorphic vector field G(z, t) of
order d if a Herglotz vector field of order d if and only if

(6.1) (dkM)(z,w) · (G(z, t), G(w, t)) ≤ 0, z, w ∈ M, z ̸= w, a.e. t ≥ 0.

This is proved in [9] for strongly convex domains, and in [6] for the general case.

Using the so-called distortion theorem for holomorphic mappings p : D → {w ∈ C :
Rew > 0} and the Berkson-Porta formula in Theorem 5.3, it can be proved that a classical
Herglotz vector field as in the sense of Definition 2.5 or given as in the Kufarev-Loewner
equation (3.2), is a Herglotz vector field of order ∞ in the unit disc in the sense of the
previous definition.
Herglotz vector fields in the unit disc can be decomposed by means of Herglotz functions

(and this the reason for the name). We begin with the following definition:

Definition 6.3. Let d ∈ [1,+∞]. A Herglotz function of order d is a function p :
D× [0,+∞) 7→ C with the following properties:

(1) For all z ∈ D, the function [0,+∞) ∋ t 7→ p(z, t) ∈ C belongs to Ld
loc([0,+∞),C);

(2) For all t ∈ [0,+∞), the function D ∋ z 7→ p(z, t) ∈ C is holomorphic;
(3) For all z ∈ D and for all t ∈ [0,+∞), we have Re p(z, t) ≥ 0.

Then we have the following result which, using the Berkson-Porta formula, gives a
general form of the classical Herglotz vector fields:

Theorem 6.4. [10]Let τ : [0,+∞) → D be a measurable function and let p : D ×
[0,+∞) → C be a Herglotz function of order d ∈ [1,+∞). Then the map Gτ,p : D ×
[0,+∞) → C given by

Gτ,p(z, t) = (z − τ(t))(τ(t)z − 1)p(z, t),

for all z ∈ D and for all t ∈ [0,+∞), is a Herglotz vector field of order d on the unit disc.
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Conversely, if G : D × [0,+∞) → C is a Herglotz vector field of order d ∈ [1,+∞)
on the unit disc, then there exist a measurable function τ : [0,+∞) → D and a Herglotz
function p : D × [0,+∞) → C of order d such that G(z, t) = Gτ,p(z, t) for almost every
t ∈ [0,+∞) and all z ∈ D.
Moreover, if τ̃ : [0,+∞) → D is another measurable function and p̃ : D× [0,+∞) → C

is another Herglotz function of order d such that G = Gτ̃ ,p̃ for almost every t ∈ [0,+∞)
then p(z, t) = p̃(z, t) for almost every t ∈ [0,+∞) and all z ∈ D and τ(t) = τ̃(t) for
almost all t ∈ [0,+∞) such that G(·, t) ̸≡ 0.

We also give a generalization of the concept of evolution families:

Definition 6.5. Let M be a complex manifold. A family (φs,t)0≤s≤t of holomorphic self-
mappings of M is an evolution family of order d ≥ 1 (or Ld-evolution family) if it satisfies
the evolution property

(6.2) φs,s = id, φs,t = φu,t ◦ φs,u, 0 ≤ s ≤ u ≤ t,

and if for any T > 0 and for any compact set K ⊂⊂ M there exists a function cT,K ∈
Ld([0, T ],R+) such that

(6.3) dM(φs,t(z), φs,u(z)) ≤
∫ t

u

cT,K(ξ)dξ, z ∈ K, 0 ≤ s ≤ u ≤ t ≤ T.

Remark 6.6. The Schwarz lemma and distortion estimates imply that a classical evolution
family in the sense of Definition 2.4 is an evolution family of order ∞ in D.
A classical evolution family in the sense of Definition 2.4 is, by its very definition,

constituted by univalent maps, while this is not required a priori in the general definition
of evolution family given in Definition 6.5. However, it is always a case that an evolution
family is made of univalent functions, as the following proposition (cf. [5, Prop. 2.3])
shows:

Proposition 6.7. Let d ∈ [1,+∞]. Let (φs,t) be an Ld-evolution family for some d ≥ 1.
Then for all 0 ≤ s ≤ t the map M ∋ z 7→ φs,t(z) is univalent.

Proof. We proceed by contradiction. Suppose there exists 0 < s < t and z ̸= w in M such
that φs,t(z) = φs,t(w). Set r := inf{u ∈ [s, t] : φs,u(z) = φs,u(w)}. By Lemma [11, Lemma
2], limu→s+ φs,u = id uniformly on compacta, we have r > s. If u ∈ (s, r),

φu,r(φs,u(z)) = φu,r(φs,u(w)),

and since φs,u(z) ̸= φs,u(w), the mappings φu,r, u ∈ (s, r), are not univalent on a fixed
relatively compact subset of M . But again by [11, Lemma 2], limu→r− φu,r = id uniformly
on compacta, which is a contradiction since the identity mapping is univalent. �
Remark 6.8. If (ϕt) is a continuous semigroup of holomorphic self-maps of a complex
manifold M , one can define an evolution family (φs,t) by setting

φs,t := ϕt−s, s ≤ t.
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It is not too difficult to check that (φs,t) is a L∞-evolution family in the sense of the above
Definition 6.5.

The classical Loewner and Kufarev-Loewner equations can be generalized as follows:

Theorem 6.9. Let M be a complete hyperbolic complex manifold. Then for any Herglotz
vector field G of order d ∈ [1,+∞] there exists a unique Ld-evolution family (φs,t) over
M such that for all z ∈ M

(6.4)
∂φs,t

∂t
(z) = G(φs,t(z), t) a.e. t ∈ [s,+∞).

Conversely for any Ld-evolution family (φs,t) over M there exists a Herglotz vector field G
of order d such that (6.4) is satisfied. Moreover, if H is another weak holomorphic vector
field which satisfies (6.4) then G(z, t) = H(z, t) for all z ∈ M and almost every t ∈ R+.

Equation (6.4) is the bridge between the Ld-Herglotz vector fields and Ld-evolution
families. The result has been proved in [10] for the case M = D the unit disc in Cn. In
[10] it has been proved to hold for any complete hyperbolic complex manifold M with
Kobayashi distance of class C1 outside the diagonal, but the construction given there
only allowed to start with evolution families of order d = +∞. Next, in [26] the case of
Ld-evolution families has been proved for the case M = Bn the unit ball in Cn. Finally,
in [6], L. Arosio and the author proved Theorem 6.9 in complete generality.
The previous equation, especially in the case of the unit ball of Cn and for the case

d = +∞, with evolution families fixing the origin and having some particular first jets at
the origin has been studied by many authors, we cite here J.A. Pfaltzgraff [39], [40], T.
Poreda [44], I. Graham, H. Hamada, G. Kohr [22], I. Graham, H. Hamada, G. Kohr, M.
Kohr [23] (see also [25]).
The strong relation between semigroups and evolution families on the one side and

Herglotz vector fields and infinitesimal generators on the other side, is very much reflected
by the so-called “product formula” in convex domains of S. Reich and D. Shoikhet [45]
(see also [46]), generalized on complete hyperbolic manifold in [6]. Such a formula can
be rephrased as follows: let G(z, t) be a Herglotz vector field on a complete hyperbolic
complex manifold M . For almost all t ≥ 0, the holomorphic vector field M ∋ z 7→ G(z, t)
is an infinitesimal generator. Let (ϕt

r) be the associated semigroups of holomorphic self-
maps of M . Let (φs,t) be the evolution family associated to G(z, t). Then, uniformly on
compacta of M it holds

ϕr
t = lim

m→∞
φ◦m
t,t+ r

m
= lim

m→∞
(φt,t+ r

m
◦ . . . ◦ φt,t+ r

m
)︸ ︷︷ ︸

m

.

Using such a formula for the case of the unit disc D, in [12] it has been proved the following
result which gives a description of semigroups-type evolution families:

Theorem 6.10. Let G(z, t) be a Ld-Herglotz vector field in D and let (φs,t) be the asso-
ciated Ld-evolution family. The following are equivalent:
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(1) there exists a function g ∈ Ld
loc([0,+∞),C) and an infinitesimal generator H such

that G(z, t) = g(t)H(z) for all z ∈ D and almost all t ≥ 0,
(2) φs,t ◦ φu,v = φu,v ◦ φs,t for all 0 ≤ s ≤ t and 0 ≤ u ≤ v.

7. Abstract Loewner chains

In order to end up the picture started with the classical Loewner theory, we should put
in the frame also the Loewner chains.
In the unit disc D, the general theory of Loewner chains has been settled by M. D.

Contreras, S. Dı́az-Madrigal and P. Gumenyuk [13], who showed that to each Ld-evolution
family (φt) is associated an (essentially unique) “Ld-Loewner chain” (ft) of univalent maps
ft : D → C such that fs = ft ◦ φs,t for all 0 ≤ s ≤ t. Their proof relies on a limiting
process similar (although technically more complicated) to the classical case.
From this point of view, if D ⊂ Cn is a bounded domain, apparently, it seems natural

to define a Loewner chain as a family of univalent mappings ft : D → Cn. In fact, in
case D = Bn the unit ball, much effort has been done to show that, given an evolution
family (φs,t) on Bn such that φs,t(0) = 0 and d(φs,t)0 has a special form, then there exists
an associated Loewner chain. We cite here the contributions of J.A. Pfaltzgraff [39], [40],
T. Poreda [44], I. Graham, H. Hamada, G. Kohr [22], I. Graham, H. Hamada, G. Kohr,
M. Kohr [23], L. Arosio [4], M. Voda [48]. In the last two mentioned papers, resonances
phenomena among the eigenvalues of d(φs,t)0 are taken into account. However, the (very
natural) fact that resonances enter into the game, gives a clue that possibly, if one stays
with the willing of looking for chains with values in Cn, associated Loewner chains might
not always exist. Not to talk about evolution families on a complex manifold: in such a
case, what is the appropriated target domain for Loewner chains?
The previous question, which leads to a very general theory, has been answer in [5].

Interesting and surprisingly enough, regularity conditions–which were basic in the classical
theory for assuming the limiting process to converge—do not play any role. In order to
explain our results, we give some definition:

Definition 7.1. Let M be a complex manifold. An algebraic evolution family is a family
(φs,t)0≤s≤t of univalent self-mappings of M satisfying the evolution property (6.2).

A Ld-evolution family is an algebraic evolution family because all elements of a Ld-
evolution family are injective as we showed before.

Definition 7.2. Let M,N be two complex manifolds of the same dimension. A family
(ft)t≥0 of holomorphic mappings ft : M → N is a subordination chain if for each 0 ≤ s ≤ t
there exists a holomorphic mapping vs,t : M → M such that fs = ft◦vs,t. A subordination
chain (ft) and an algebraic evolution family (φs,t) are associated if

fs = ft ◦ φs,t, 0 ≤ s ≤ t.
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An algebraic Loewner chain is a subordination chain such that each mapping ft : M →
N is univalent. The range of an algebraic Loewner chain is defined as

rg (ft) :=
∪
t≥0

ft(M).

Note that an algebraic Loewner chain (ft) has the property that

fs(M) ⊂ ft(M), 0 ≤ s ≤ t.

We have the following result which relates algebraic evolution families with algebraic
Loewner chains, whose proof is essentially based on abstract categorial analysis:

Theorem 7.3. [5] Let M be a complex manifold. Then any algebraic evolution family
(φs,t) on M admits an associated algebraic Loewner chain (ft : M → N). Moreover if
(gt : M → Q) is a subordination chain associated with (φs,t) then there exist a holomorphic
mapping Λ: rg (ft) → Q such that

gt = Λ ◦ ft, ∀t ≥ 0.

The mapping Λ is univalent if and only if (gt) is an algebraic Loewner chain, and in that
case rg (gt) = Λ(rg (ft)).

Proof. We define an equivalence relation on the product M × R+:

(x, s) ∼ (y, t) iff φs,u(x) = φt,u(y) for u large enough.

and we let N := (M × R+)/∼. Let π : M × R+ → N be the projection on the quotient,
and let it : M → M × R+ be the injection it(x) = (x, t). Define a family of mappings
(ft : M → N) as

ft := π ◦ it, t ≥ 0.

Each mapping ft is injective and by construction

fs = ft ◦ φs,t, 0 ≤ s ≤ t.

Thus we have fs(M) ⊂ ft(M) for 0 ≤ s ≤ t and N =
∪

t≥0 ft(M).

Endow the product M ×R+ with the product topology, considering on R+ the discrete
topology. Endow N with the quotient topology. Each mapping ft is continuous and open,
hence it is an homeomorphism onto its image and we define a complex structure on N by
considering the M -valued charts (f−1

t , ft(M)) for all t ≥ 0.
If (gt : M → Q) is a subordination chain associated with (φs,t), then the map Ψ: M ×

R+ → Q
(z, t) 7→ gt(z)

is compatible with the equivalence relation ∼, thus it passes to the quotient defining a
holomorphic mapping Λ: N → Q such that

gt = Λ ◦ ft, t ≥ 0.

�
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The previous theorem shows that the range rg (ft) of an algebraic Loewner chain (ft)
is uniquely defined up to biholomorphisms. In particular, given an algebraic evolution
family (φs,t) one can define its Loewner range Lr(φs,t) as the class of biholomorphism of
the range of any associated algebraic Loewner chain.
As one can suspect, the Ld regularity of an algebraic evolution family passes to the

associated algebraic Loewner chain. This is the right definition:

Definition 7.4. Let d ∈ [1,+∞]. Let M,N be two complex manifolds of the same
dimension. Let dN be the distance induced by a Hermitian metric on N . An algebraic
Loewner chain (ft : M → N) is a Ld-Loewner chain (for d ∈ [1,+∞]) if for any compact
set K ⊂⊂ M and any T > 0 there exists a kK,T ∈ Ld([0, T ],R+) such that

(7.1) dN(fs(z), ft(z)) ≤
∫ t

s

kK,T (ξ)dξ

for all z ∈ K and for all 0 ≤ s ≤ t ≤ T .

The Ld-regularity passes from evolution family to Loewner chains and back:

Theorem 7.5. [5] Let M be a complete hyperbolic manifold with a given Hermitian metric
and d ∈ [1,+∞]. Let φs,t be an algebraic evolution family on M and let (ft : M → N) be
an associated algebraic Loewner chain. Then (φs,t) is a Ld-evolution family on M if and
only if (ft) is a Ld-Loewner chain.

As one can imagine, once the general Loewner equation is established and Loewner
chains have been well defined, even the Loewner-Kufarev PDE can be generalized. We
state here a result in this sense from [5]:

Theorem 7.6. Let M be a complete hyperbolic complex manifold, and let N be a complex
manifold of the same dimension. Let G : M × R+ → TM be a Herglotz vector field
of order d ∈ [1,+∞] associated with the Ld-evolution family (φs,t). Then a family of
univalent mappings (ft : M → N) is an Ld-Loewner chain associated with (φs,t) if and
only if it is locally absolutely continuous on R+ locally uniformly with respect to z ∈ M
and solves the Loewner-Kufarev PDE

∂fs
∂s

(z) = −(dfs)zG(z, s), a.e. s ≥ 0, z ∈ M.

7.1. The Loewner range. As we saw before, given a Ld-evolution family (or just an
algebraic evolution family) on a complex manifold, it is well defined the Loewner range
Lr(φs,t) as the class of biholomorphism of the range of any associated Loewner chain.
Note that if a manifold N is in the Loewner range of an evolution family (φs,t) on a

complex manifold M , i.e., the biholomorphic class of N coincides with Lr(φs,t), then there
exists a Loewner chain (ft) associated to (φs,t) such that ∪t≥0ft(M) = N .
One can ask if it is possible to know the Loewner range in case M is a given manifold.

For instance, if M is the unit disc D ⊂ C, the results of [13] imply that the Loewner
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range of any evolution family of the unit disc is a domain in C (possibly C itself as in the
classical case). We first start with the following simple remark:

Remark 7.7. If M is simply connected (and non compact) then the Loewner range of
any algebraic evolution family of M is simply connected (and non compact). Indeed,
if ft : M → N is an associated algebraic Loewner chain, then the Loewner range is
biholomorphic to the union of ft(M) which is an increasing sequence of simply connected
domains.

In particular, if M = D the unit disc, then the Loewner range of any evolution family
on D is a simply connected non compact Riemann surface, thus, by the uniformization
theorem, the Loewner range is either the unit disc D or C.
In higher dimension the situation is however different: there exists an algebraic evo-

lution family (φs,t) on B3 which does not admit any associated algebraic Loewner chain
with range in C3 (see [4, Section 9.4]). The example is however not regular, and in fact
it is not known whether there exists a Ld-evolution family on Bn whose Loewner range
does not contain any open domain of Cn.

One can somehow try to understand the biholomorphic type of the Loewner range of
an evolution family (φs,t) by looking at the dynamics of the family itself. Philosophically
this makes sense if one consider the equation ft ◦ φs,t = fs as a sort of “bi-parametric
linearization”. The idea is the following: let φ : M → M be a univalent map. If
there exists a univalent map σ : M → N , called “intertwining map”, such that σ ◦ φ =
Φ ◦ σ, where Φ : N → N is an automorphism, one says that σ linearizes the map φ.
The automorphism Φ is generally very simple, but the image σ(M) in N might have a
complicated geometry, which reflects the dynamics of φ.
Starting from this considerations, it is natural to give some answers based on the

asymptotic behavior of the Kobayashi pseudometric under the corresponding evolution
family.

Definition 7.8. LetM be a complex manifold. TheKobayashi pseudometric κM : TM →
R+ is defined by

κM(z; v) := inf{r > 0 : ∃g : D → M holomorphic : g(0) = z, g′(0) =
1

r
v}.

The Kobayashi pseudometric has the remarkable property of being contracted by holo-
morphic maps, and its integrated distance is exactly the Kobayashi pseudodistance. We
refer the reader to [1] and [28] for details.

Definition 7.9. Let (φs,t) be an algebraic evolution family on a complex manifold M .
For v ∈ TzM and s ≥ 0 we define

(7.2) βs
z(v) := lim

t→∞
κM(φs,t(z); (dφs,t)z(v)).
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Since the Kobayashi pseudometric is contracted by holomorphic mappings the limit in
(7.2) is well defined.
The function β is the bridge between the dynamics of an algebraic evolution family

(φs,t) and the geometry of its Loewner range. Indeed, in [5] it is proved that, if N is a
representative of the Loewner range of (φs,t) and (ft : M → N) is an associated algebraic
Loewner chain, then for all z ∈ M and v ∈ TzM it follows

f ∗
s κN(z; v) = βs

z(v).

Remark 7.10. Let (φs,t) be an algebraic evolution family in the unit disc D. The previous
formula allows to determine the Loewner range: if βs

z(v) = 0 for some s > 0, z ∈ D (v can
be taken to be 1), then the Loewner range is C, otherwise it is D.

Such a result can be generalized to a complex manifold M . Let aut(M) denote the
group of holomorphic automorphisms of a complex manifold M . Using a result by J. E.
Fornæss and N. Sibony [21], in [5] it is shown that the previous formula implies

Theorem 7.11. Let M be a complete hyperbolic complex manifold and assume that
M/aut(M) is compact. Let (φs,t) be an algebraic evolution family on M . Then

(1) If there exists z ∈ M , s ≥ 0 such that βs
z(v) ̸= 0 for all v ∈ TzM with v ̸= 0 then

Lr(φs,t) is biholomorphic to M .
(2) If there exists z ∈ M , s ≥ 0 such that dimC{v ∈ TzM : βs

z(v) = 0} = 1 then
Lr(φs,t) is a fiber bundle with fiber C over a closed complex submanifold of M .

In particular one can apply the previous result to M = Bn (or even to the polydiscs in
Cn) and obtaining that any algebraic evolution family on the unit ball Bn such that for
some z ∈ Bn, s ≥ 0 it follows that dimC{v ∈ Cn : βs

z(v) = 0} ≤ 1, has an open domain in
Cn contained in its Loewner range.
Finally, we note that the Loewner range of an evolution family is strictly related to

the so called “abstract basin of attraction” of a family of random maps, as studied in
hyperbolic dynamics. We refer the reader to [7] for more about this.
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