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1 Introduction

The Löwner theory went through several periods of its development. It was born in
1923 in the seminal paper by Löwner [165], its formation was completed in 1965
in the paper by Pommerenke [189] and was finally formulated thoroughly in his
monograph [190] unifying Löwner’s ideas of semigroups and evolution equations
and Kufarev’s contribution [144, 146] of the t-parameter differentiability (in the
Carathéodory kernel) of a family of conformal maps of simply connected domains
˝.t/ onto the canonical domain D, the unit disk in particular, and of PDE for
subordination Löwner chains of general type. It is worth mentioning that the 20-year
period between papers [165] and [144] was illuminated by Goluzin’s impact [90]
on further applications of Löwner’s parametric method to extremal problems for
univalent functions, as well as works by Fekete and Szegö [75], Peschl [182],
Robinson [215], Komatu [135], Bazilevich [27, 28] related to this period.

The next period became applications of the parametric method to solving
concrete problems for conformal maps culminating at the de Branges proof [46]
of the celebrating Bieberbach conjecture [37] in 1984. During approximately 16
years after this proof the interest to univalent functions had been somehow decaying.
However, the modern period has been marked by burst of interest to stochastic
(Schramm)–Löwner evolution (SLE) which has implied an elegant description
of several 2D conformally invariant statistical physical systems at criticality by
means of a solution to the Cauchy problem for the Löwner equation with a
random driving term given by 1D Brownian motion, see [157, 230]. At the same
time, several connections with mathematical physics were discovered recently, in
particular, relations with a singular representation of the Virasoro algebra using
Löwner martingales in [24, 81, 82, 130] and with a Hamiltonian formulation and
a construction of the KP integrable hierarchies in [169–171].

2 Löwner

Karel Löwner was born on May 29, 1893 in Lány, Bohemia. He also used the
German spelling Karl of his first name until his immigration to the U.S.A. in 1939
after Nazis occupied Prague, when he changed it to Charles Loewner as a new
start in a new country. Although coming from a Jewish family and speaking Czech
at home, all of his education was in German, following his father’s wish. After
finishing a German Gimnasium in Prague in 1912 he entered the Charles University
of Prague and received his Ph.D. from this university in 1917 under the supervision
of Georg Pick.
After four and a half years in German Technical University in Prague where the
mathematical environment was not stimulating enough, Löwner took up a position
at the University of Berlin (now Humboldt Universität Berlin) with great enthusiasm
where he started to work surrounded by Schur, Brauer, Hopf, von Neumann, Szegö,
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K. Löwner

and other famous names. Following a brief lectureship at Cologne in 1928 Löwner
returned to the Charles University of Prague where he hold a chair in Mathematics
until the occupation of Czechoslovakia in 1939. When the Nazis occupied Prague,
he was put in jail. Luckily, after paying the “emigration tax” twice over he was
allowed to leave the country with his family and moved, in 1939, to the U.S.A. After
von Neumann arranged a position for him at the Louisville University, Löwner was
able to start from the bottom of his career. Following further appointments at the
Brown (1944) and Syracuse (1946) Universities, he moved in 1951 to his favorite
place, California, where he worked at the Stanford University until his death. His
former Ph.D. student in Prague, Lipman Bers, testifies [180] that Löwner was a man
whom everybody liked, a man at peace with himself, a man who was incapable of
malice. He was a great teacher, Lipman Bers, Adriano Garcia, Gerald Goodman,
Carl Fitzgerald, Roger Horn, Ernst Lammel, Charles Titus were his students among
26 in total. Löwner died as a Professor Emeritus in Stanford on January 8, 1968,
after a brief illness. For more about Löwner’s biography, see [2, 180].

G. Pick
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Löwner’s work covers wide areas of complex analysis and differential geometry
and displays his deep understanding of Lie theory and his passion for semigroup
theory. Perhaps it is worth to mention here two of his discoveries. First was
his introduction of infinitesimal methods for univalent mappings [165], where he
defined basic notions of semigroups of conformal maps of D and their evolution
families leading to the sharp estimate ja3j � 3 in the Bieberbach conjecture janj � n
in the class S of normalized univalent maps f .z/ D zCa2z2C: : : of the unit disk D.

It is wellknown that the Bieberbach conjecture was finally proven by de Branges
in 1984 [45, 46]. In his proof, de Branges introduced ideas related to Löwner’s but
he used only a distant relative of Löwner’s equation in connection with his main
apparatus, his own rather sophisticated theory of composition operators. However,
elaborating on de Branges’ ideas, FitzGerald and Pommerenke [76] discovered how
to avoid altogether the composition operators and rewrote the proof in classical
terms, applying the bona fide Löwner equation and providing in this way a direct
and powerful application of Löwner’s classical method.

The second paper [166], we want to emphasize on, is dedicated to properties
of n-monotonic matrix functions, which turned to be of importance for electrical
engineering and for quantum physics. Löwner was also interested in the problems
of fluid mechanics, see, e.g., [167], while working at Brown University 1944–1946
on a war-related program. Starting with some unusual applications of the theory of
univalent functions to the flow of incompressible fluids, he later applied his methods
to the difficult problems of the compressible case. This led him naturally to the
study of partial differential equations in which he obtained significant differential
inequalities and theorems regarding general conservation laws.

3 Kufarev

The counterpart subordination chains and the Löwner–Kufarev PDE for them were
introduced by Pavel Parfen’evich Kufarev (Tomsk, March 18, 1909–Tomsk, July 17,
1968). Kufarev entered the Tomsk State University in 1927, first, the Department
of Chemistry, and then, the Department of Mathematics, which he successfully
finished in 1931. After a year experience in industry in Leningrad he returned to
Tomsk in 1932 and all his academic life was connected with this university, the first
university in Siberia. Kufarev started to work at the Department of Mathematics led
by professor Lev Aleksandrovich Vishnevskiı̆ (1887–1937). At the same time, two
prominent Western mathematicians came to Tomsk.

One was Stefan Bergman (1895–1977). Being of Jewish origin he was forced
from his position in Berlin in 1933 due to the “Restoration of the civil service,” an
anti-Semitic Hitler’s law. Bergman came to Tomsk in 1934 and was working there
until 1936, then at Tbilisi in Georgia in 1937 and had to leave Soviet Union under
Stalin’s oppression towards foreign scientists. For 2 years he was working at the
Institute Henri Poincaré in Paris, and then, left France for the USA in 1939 because
of German invasion, he finally worked at Stanford from 1952 together with Löwner.
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S. Bergman

The history of the other one is more tragic. Fritz Noether (1884–1941), the
youngest son of Max Noether (1844–1921) and the younger brother of Emmy
Noether (1882–1935), came to Tomsk in the same year as Bergman, because of
the same reason, and remained there until 1937, when Vishnevskiı̆ and “his group”
were accused of espionage. Noether and Vishnevskiı̆ were arrested by NKVD (later
KGB) and Noether was transported to Orel concentration camp where he was jailed
until 1941. Nazis approached Orel in 1941 and many prisoners were executed on
September 10, 1941 (Stalin’s order from September 8, 1941). Fritz Noether was
among them following the official Soviet version of 1988, cf. [62].

Fitz’s wife Regine returned to Germany from Soviet Union in 1935 under
psychological depression and soon died. The same year his famous sister Emmy
died in Pennsylvania after a feeble operation. His two sons were deported from
Soviet Union. Fortunately, they were given refuge in Sweden as a first step.
However, many years later Evgeniy Berkovich and Boris M. Schein published a
correspondence [35], also [236], in which prof. Boris Shein referred to prof. Saveliı̆
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F. Noether

Vladimirovich Falkovich (1911–1982, Saratov), who met Fritz Noether in Moscow
metro in the late fall of 1941. Noether and Falkovich knew each other and Noether
talked his story on the arrest and tortures in Tomsk NKVD. In particular, NKVD
agents confiscated many of his things and books. Noether said that he finally was
released from Orel Central and went to Lubyanka (NKVD/KGB headquarters) for
some traveling documents to visit his family. Then the train stopped and their
conversation was interrupted. Since he did not come to Tomsk (his son’s Gottfried
Noether testimony), he most probably was arrested again. This ruins the official
Soviet version of Noether’s death and indicates that the story is not completed yet.1

One of the possible reasons is that several Jewish prisoners (first of all, originating
from Poland, e.g., Henrik Erlich and Victor Alter; and from Germany) were released
following Stalin’s plans of creating an Anti-Hitler Jewish Committee, which further
was not realized. Noether could be among them being rather known mathematician
himself and having support from Einstein and Weyl.

Kufarev was also accused of espionage being a member of Vishnevskiı̆’s
“terrorist group” together with Boris A. Fuchs, but they were not arrested in contrast
to Fritz Noether, see [38].

Bergman and Noether supported Kufarev’s thesis defense in 1936. Then Kufarev
was awarded the Doctor of Sciences degree (analogue of German habilitation) in
1943 and remained the unique mathematician in Siberia with this degree until 1957
when the Akademgorodok was founded and Mikhail A. Lavrentiev invited many
first-class mathematicians to Novosibirsk. Kufarev became a full professor of the
Tomsk State University in 1944, served as a dean of the Faculty of Mechanics and
Mathematics 1952–1955, and remained a professor of the university until his death
in 1968 after a hard illness.

1I have also some personal interest to this story because me, Falkovich and Shein worked in
different periods at the same Saratov State University. A. Vasil’ev
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The main interests of Kufarev were in the theory of univalent functions and
applications to fluid mechanics, in particular, in Hele-Shaw flows, see an overview
in [253]. His main results on the parametric method were published in two
papers [144, 146], where he considered subordination chains of general type and
wrote corresponding PDE for mapping functions, but he returned to this method all
the time together with his students, combining variational and parametric methods,
creating the parametric method for multiply connected domains, half-plane version
of the parametric method, etc.

4 Pommerenke and Unification of the Parametric Method

Christian Pommerenke (born December 17, 1933 in Copenhagen, Professor Emer-
itus at the Technische Universität Berlin) became that person who unified Löwner
and Kufarev’s ideas and thoroughly combined analytic properties of the ordering
of the images of univalent mappings of the unit disk with evolutionary aspects
of semigroups of conformal maps. He seems to have been the first one to use
the expression “Löwner chain” for describing the family of “increasing” univalent
mappings in Löwner’s theory.

Ch. Pommerenke

Recall that we denote the unit disk by D D f� W j�j < 1g and the class of
normalized univalent maps f WD! C, f .z/ D zC a2z2 C : : : by S. A t-parameter
family ˝.t/ of simply connected hyperbolic univalent domains forms a Löwner
subordination chain in the complex plane C, for 0 � t < � (where � may be1),
if ˝.t/ � ˝.s/, whenever t < s, and the family is continuous in the Carathéodory
sense. We suppose that the origin is a point of˝.0/.

A Löwner subordination chain ˝.t/ is described by a t-dependent family of
conformal maps z D f .�; t/ from D onto ˝.t/, normalized by f .�; t/ D a1.t/� C
a2.t/�

2 C : : : , a1.t/ > 0, Pa1.t/ > 0. Pommerenke [189, 190] described governing
evolution equations in partial and ordinary derivatives, known now as the Löwner–
Kufarev equations.
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One can normalize the growth of evolution of a subordination chain by the
conformal radius of ˝.t/ with respect to the origin setting a1.t/ D et .

We say that the function p is from the Carathéodory class if it is analytic in D,
normalized as p.�/ D 1C p1� C p2�2 C : : : ; � 2 D, and such that Rep.�/ > 0
in D. Given a Löwner subordination chain of domains ˝.t/ defined for t 2 Œ0; �/,
there exists a function p.�; t/, measurable in t 2 Œ0; �/ for any fixed z 2 D, and from
the Carathéodory class for almost all t 2 Œ0; �/, such that the conformal mapping
f WD! ˝.t/ solves the equation

@f .�; t/

@t
D � @f .�; t/

@�
p.�; t/; (1)

for � 2 D and for almost all t 2 Œ0; �/. Equation (1) is called the Löwner–Kufarev
equation due to two seminal papers: by Löwner [165] who considered the case when

p.�; t/ D eiu.t/ C �
eiu.t/ � � ; (2)

where u.t/ is a continuous function regarding t 2 Œ0; �/, and by Kufarev [144]
who proved differentiability of f in t for all � in the case of general p from the
Carathéodory class.

Let us consider a reverse process. We are given an initial domain ˝.0/ � ˝0

(and therefore, the initial mapping f .�; 0/ � f0.�/), and an analytic functionp.�; t/
of positive real part normalized by p.�; t/ D 1 C p1� C : : : . Let us solve (1)
and ask ourselves, whether the solution f .�; t/ defines a subordination chain of
simply connected univalent domains f .D; t/. The initial condition f .�; 0/ D f0.�/
is not given on the characteristics of the partial differential equation (1); hence,
the solution exists and is unique but not necessarily univalent. Assuming s as a
parameter along the characteristics we have

dt

ds
D 1; d�

ds
D ��p.�; t/; df

ds
D 0;

with the initial conditions t.0/ D 0, �.0/ D z, f .�; 0/ D f0.�/, where z is in
D. Obviously, we can assume t D s. Observe that the domain of � is the entire
unit disk. However, the solutions to the second equation of the characteristic system
range within the unit disk but do not fill it. Therefore, introducing another letter w
(in order to distinguish the function w.z; t/ from the variable �) we arrive at the
Cauchy problem for the Löwner–Kufarev equation in ordinary derivatives

dw

dt
D �wp.w; t/; (3)

for a function � D w.z; t/ with the initial condition w.z; 0/ D z. Equation (3) is a
nontrivial characteristic equation for (1). Unfortunately, this approach requires the
extension of f0.w�1.�; t// into the whole D (here w�1 means the inverse function
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in �) because the solution to (1) is the function f .�; t/ given as f0.w�1.�; t//,
where � D w.z; s/ is a solution of the initial value problem for the characteristic
equation (3) that maps D into D. Therefore, the solution of the initial value problem
for (1) may be nonunivalent.

On the other hand, solutions to (3) are holomorphic univalent functions
w.z; t/ D e�t .z C a2.t/z2 C : : : / in the unit disk that map D into itself. Every
function f from the class S can be represented by the limit

f .z/ D lim
t!1 etw.z; t/; (4)

where w.z; t/ is a solution to (3) with some function p.z; t/ of positive real part for
almost all t � 0 (see [190, pp. 159–163]). Each function p.z; t/ generates a unique
function from the class S. The reciprocal statement is not true. In general, a function
f 2 S can be obtained using different functions p.�; t/.

Now we are ready to formulate the condition of univalence of the solution to (1)
in terms of the limiting function (4), which can be obtained by combination of
known results of [190].

Theorem 1 ([190, 207]). Given a function p.�; t/ of positive real part normalized
by p.�; t/ D 1 C p1� C : : : , the solution to (1) is unique, analytic, and univalent
with respect to � for almost all t � 0, if and only if, the initial condition f0.�/ is
taken in the form (4), where the function w.�; t/ is the solution to (3) with the same
driving function p.

Concluding this section we remark that the Löwner and Löwner–Kufarev
equations are described in several monographs [4,14,57,72,93,108,122,190,218].

5 Half-plane Version

In 1946, Kufarev [145, Introduction] first mentioned an evolution equation in the
upper half-plane H analogous to the one introduced by Löwner in the unit disk and
was first studied by Popova [196] in 1954. In 1968, Kufarev et al. [151] introduced
a combination of Goluzin–Schiffer’s variational and parametric methods for this
equation for the class of univalent functions in the upper half-plane, which is known
to be related to physical problems in hydrodynamics. They showed its application
to the extremal problem of finding the range of fRe ei˛f .z/; Imf .z/g, Im z > 0.
Moreover, during the second half of the past century, the Soviet school intensively
studied Kufarev’s equations for H. We ought to cite here at least contributions by
Aleksandrov [14], Aleksandrov and Sobolev [15], Goryainov and Ba [101, 104].
However, this work was mostly unknown to many Western mathematicians, in
particular, because some of it appeared in journals not easily accessible from the
outside of the Soviet Union. In fact, some of Kufarev’s papers were not even
reviewed by Mathematical Reviews. Anyhow, we refer the reader to [7], which
contains a complete bibliography of his papers.



48 F. Bracci et al.

In order to introduce Kufarev’s equation properly, let us fix some notation. Let �
be a Jordan arc in the upper half-plane H with starting point �.0/ D 0. Then there
exists a unique conformal map gt W H n �Œ0; t �! H with the normalization

gt .z/ D zC c.t/

z
CO

�
1

z2

�
; z � 1:

After a reparametrization of the curve � , one can assume that c.t/ D 2t . Under this
normalization, one can show that gt satisfies the following differential equation:

dgt .z/

dt
D 2

gt .z/ � �.t/ ; g0.z/ D z: (5)

The equation is valid up to a time Tz 2 .0;C1� that can be characterized as the
first time t such that gt .z/ 2 R and where h is a continuous real-valued function.
Conversely, given a continuous function hW Œ0;C1/ ! R, one can consider the
following initial value problem for each z 2 H:

dw

dt
D 2

w � �.t/ ; w.0/ D z : (6)

Let t 7! wz.t/ denote the unique solution to this Cauchy problem and let
gt .z/ WD wz.t/. Then gt maps holomorphically a (not necessarily slit) subdomain
of the upper half-plane H onto H. Equation (6) is nowadays known as the chordal
Löwner differential equation with the function h as the driving term. The name is
due to the fact that the curve �Œ0; t � evolves in time as t tends to infinity into a
sort of chord joining two boundary points. This kind of construction can be used to
model evolutionary aspects of decreasing families of domains in the complex plane.
Equation (3) with the function p given by (2) in this context is called the radial
Löwner equation, because in the slit case, the tip of slit tends to the origin in the
unit disk.

Quite often it is presented the half-plane version considering the inverse of the
functions gt (see, i.e., [151]). Namely, the conformal mappings ft D g�1

t from H

onto H n ��Œ0; t/� satisfy the PDE

@ft .z/

@t
D �f 0

t .z/
2

z � �.t/ : (7)

We remark that using the Cayley transform T .z/ D zC1
1�z we obtain that

the chordal Löwner equation in the unit disk takes the form

@ht .z/

@t
D �h0

t .z/.1 � z/2p.z; t/; (8)

where Rep.z; t/ � 0 for all t � 0 and z 2 D. From a geometric point of view, the
difference between this family of parametric functions and those described by the
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Löwner–Kufarev equation (1) is clear: the ranges of the solutions of (8) decrease
with t while in the former equation (1) increase. This duality “decreasing” versus
“increasing” has recently been analyzed in [54] and, roughly speaking, we can say
that the “decreasing” setting can be deduced from the “increasing” one.

The stochastic version of (6) with a random entry � will be discussed in Sect. 13.
Analogues of the Löwner–Kufarev methods appeared also in the theory of planar

quasiconformal maps but only few concrete problems were solved using them,
see [233] and [87].

G. M. Goluzin

6 Applications to Extremal Problems: Optimal Control

After Löwner himself, one of the first who applied Löwner’s method to extremal
problems in the theory of univalent functions in 1936 was Gennadiı̆ Mikhailovich
Goluzin (1906–1952, St. Petersburg–Leningrad, Russia) [90, 91] and Ernst Peschl
(1906, Passau–1986, Eitorf, Germany) [182]. Goluzin was a founder of Leningrad
school in geometric function theory, a student of Vladimir I. Smirnov. He obtained
in an elegant way several new and sharp estimates. The most important of them is
the sharp estimate in the rotation theorem. Namely, if f 2 S, then

j argf 0.z/j �
8<
:
4 arcsin jzj if 0 < jzj � 1p

2
,

� C log jzj2
1�jzj2 if 1p

2
< jzj < 1.

Goluzin himself proved [91] sharpness only for the case 0 < jzj � 1p
2
,

Bazilevich [27] completed the proof for 1p
2
< jzj < 1 later during the same year.
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E. Peschl (right) with H. Weyl

Ernst Peschl was a student of Constantin Carathéodory and obtained his doctorate
at Munich in 1931. He spent 2 years 1931–1933 in Jena working with Robert König,
then moved to Münster, Bonn, Braunschweig and finally returned to the Rheinische
Friedrich-Wilhelms University in Bonn where he worked until his retirement in
1974. In contrast to other heroes of our story Peschl remained in Germany under
Nazi and even was a member of the Union of National Socialist Teachers 1936–
1938 (he was thrown out of the Union of National Socialist Teachers since he
had not paid his membership fees), however, it was only in order to continue his
academic career. Being fluent in French, Peschl served as a military interpreter
during the II-nd World War until 1943. Peschl [182] applied Löwner’s method
to prove the following statement. If f 2 S and f .z/ D z C a2z2 C : : : , then
2˚

�
Re a2

2

� � 1 � Re .a3 � a22/ � 1, where

˚.x/ D x2

'2.x/
.2'.x/ � 1/;

where '.x/ is a unique solution to the equation x C 'e1�' D 0. The result
is sharp. The paper is much deeper than only this inequality and became the
first serious treatment of the problem of description of the coefficient body
.a2; a3; : : : ; an/ in the class S , which was later treated in a nice monograph by
Schaeffer and Spencer [226]. Let us mention that the above inequality was repeated
by Goryainov [97] in 1980 who also presented all possible extremal functions.

Related result is a nice matter of the paper by Fekete and Szegö [75], see also [72,
p. 104] who ingeniously applied Löwner’s method in order to disprove a conjecture
jc2nC1j � 1 by Littlewood and Paley [164] on coefficients of odd univalent functions
S.2/ 	 S defined by the expansion h.z/ D zC c3z3 C c5z5 C : : : .
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Theorem 2 ([75]). Suppose that f 2 S and 0 < ˛ < 1. Then

ja3 � ˛a22j � 1C 2�2˛=.1�˛/:

This bound is sharp for all 0 < ˛ < 1.

The choice ˛ D 1
4

and a simple recalculation of coefficients of functions from
S.2/ versus S

c3 D 1

2
a2; c5 D 1

2

�
a3 � 1

4
a2
�
;

lead to the corollary jc5j � 1
2
C e�2=3 D 1:013 : : :. Since the result is sharp, there

exist odd univalent functions with coefficients bigger than 1. Using similar method
Robertson [213] proved that jc3j2 C jc5j2 � 2, which is a particular case of his
conjecture

Pn
kD1 jc2k�1j2 � n for the class S.2/ with c1 D 1.

Among other papers on coefficient estimates, let us distinguish the first proof of
the Bieberbach conjecture for n D 4 by Garabedian and Schiffer [85] in 1955 where
Löwner’s method was also used. Walter Hayman wrote in his review on this paper
that the method “not only carries Bieberbach’s conjecture one step further from the
point where Löwner placed it over 30 years ago, but also gives a hope, in principle
at least, to prove the conjecture for the next one or two coefficients by an increase
in labour, rather than an essentially new method.” Finally, the complete proof of the
Bieberbach conjecture by de Branges [45, 46] in 1984 used the parametric method.
It is worth mentioning that the coefficient problem for the inverse functions is much
simpler and was solved by Löwner in the same 1923 paper.

Theorem 3 ([165]). Suppose that f 2 S and that

z D 	.w/ D f �1.w/ D wC b2w2 C : : :

is the inverse function. Then

jbnj � 1 � 3 � 5 � � � .2n � 1/
.nC 1/Š 2n;

with the equality for the function f .z/ D z
.1Cz/2

.

Let us just mention that most of the elementary estimates of functionals in the
class S, such as jf .z/j, j arg f .z/

z j, jf 0.z/j, can be obtained by Löwner’s method, see,
e.g., [14, 72, 122, 190]. In particular, the sharp estimate

ˇ̌̌
ˇ arg

zf 0.z/
f .z/

ˇ̌̌
ˇ � log

1C jzj
1 � jzj

implies that for every 0 < r �tanh.�=4/ the disk jzj < r is mapped by f 2 S onto
a starlike domain with respect to the origin. The constant tanh.�=4/ is sharp and is
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called the radius of starlikeness. Krzyż [143] used the Löwner method to obtain the
radius of close-to-convexity 0.80. . . in the class S.

In 1950–1952, Kufarev and his student Fales [148–150] solved a Lavrentiev
problem on the weighted product of the conformal radii of two non-overlapping
domains in D using his parametric method. Namely, let z1 and z2 be two points in
D and let 
 be a Jordan curve splitting D into two domains B1 and B2 such that
z1 2 B1 and z2 2 B2. Let f1 and f2 be two conformal maps of D onto B1 and B2,
respectively, fk.0/ D zk , f 0

k .0/ > 0, k D 1; 2. The problem is to find 
 which
maximizes the functional J.
 I z1; z2/ D jf 0

1 .0/j˛jf 0
2 .0/jˇ, where ˛; ˇ � 0. For

˛ D ˇ the maximum is attained if 
 is the non-Euclidean line in D which bisects
orthogonally the non-Euclidean segment which connects the two points z1 and z2.
This was obtained by Lavrentiev [154] himself by different approach. For ˛ ¤ ˇ

the answer is much more complicated.
After Kufarev, the Tomsk school in geometric function theory was led by

Igor Aleksandrovich Aleksandrov (born May 11, 1932, Novosibirsk, Russia) who
completed his Ph.D. in the Tomsk State University in 1958 under supervision
by Kufarev. Together with his students, he developed the parametric method
combining it with the Goluzin–Schiffer variational method in 1960 and solved
several important extremal problems. In 1963 he defended the Doctor of Sciences
degree. This time specialists in univalent functions turned from estimation of
functionals on the class S to evaluation of ranges of systems of functionals. One
of the natural systems is I.f / D flog f .z/

z ; log zf 0.z/
f .z/ g for a chosen branch of log,

such that I.id/ D .0; 0; 0; 0/. When f runs over S, the range B D fI.f /Wf 2 Sg
of I.f / fills a closed bounded set in R

4. The boundary of this set was completely
described by Popov [194], Gutlyanskiı̆ [115], Goryainov and Gutlyanskiı̆ [96] (for
the subclass SM of bounded functions jf .z/j � M from S). Goryainov [98–100]
moreover obtained the uniqueness of the extremal functions for the boundary of

I. A. Aleksandrov

B and their form. Goryainov, based on Löwner–Kufarev equations and on results
by Pommerenke [190] and Gutlyanskiı̆ [115] on representation of functions from S
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by (4), created a method of determination of all boundary functions for this and other
systems of functionals, see also [97]. It was time when a part of mathematicians led
by prof. Georgiı̆ Dmitrievich Suvorov moved from Tomsk to Donetsk (Ukraine)
to a newly established (1966) Institute of Applied Mathematics of the Academy
of Sciences of the Ukraine. Vladimir Ya. Gutlyanskiı̆ was a student of Aleksandrov,
Georgiı̆ D. Suvorov of Kufarev, and Victor V. Goryainov of Gutlyanskiı̆. There were
several related works on studying B, its projections, generalizations to other similar
results for the classes of univalent functions by Chernetskiı̆, Astakhov, and other
members of this active group. Let us mention earlier works by Aleksandrov and
Kopanev [9] who determined the domain of variability logf 0.z/ for functions in S
for each fixed z by Löwner–Kufarev method. Earlier Arthur Grad [226, pp. 263–
291] obtained this domain by variational method. The same authors [8] found the
range of the system of functionals flog j f .z/z j; log jf 0.z/jg in the class S.

That time several powerful methods for solution of extremal problems competed.
Most known are the variational method of Schiffer and Goluzin [226, 227], area
principle [159], method of extremal metrics [153]. The problem is hard first of
all because the univalence condition for the class S makes it a nonlinear manifold
and all variational methods must be very special. In this situation, a considerable
progress was achieved when a general optimization principle [192] appeared in
1964, now known as the Pontryagin maximum principle (PMP). It turned out that
the Löwner and Löwner–Kufarev equations being viewed as evolution equations
give controllable systems of differential equations where the driving term or control
function is provided by the Carathéodory functionp. Perhaps it was Löwner himself
who first noticed all advantages of combination of his parametric method with PMP.
His last student Gerald S. Goodman [94, 95] first explicitly stated this combination
in 1966. However, he did not return to this topic, and later (and independently)
Aleksandrov and Popov [10] gave a real start to investigations in this direction.
Further applications of this combination were performed in [11] finding the range
of the system of functionals fRe .ei˛a2/;Re .a3 � a22/g in the class S, ˛ 2 Œ0; �=2�.
We observe that during this period Vladimir Ivanovich Popov was a real driving
force of this process, see, e.g., [195]. However, after some first success [12, 13]
with already known problems or their modifications, some insuperable difficulties
did not allow to continue with a significant progress although the ideas were rather
clear. Real breakthrough happened in 1984 when Dmitri Prokhorov [199] started a
series of papers in which he solved several new problems by applying PMP together
with the Löwner–Kufarev equation (3). Let us describe a typical application of
PMP in the Löwner–Kufarev theory. As an example we consider one of the most
difficult problems in the theory of univalent functions, namely, description of the
boundary of the coefficient body in the class S. A beautiful book by Schaeffer
and Spenser [226] can be our starting point. If Vn denotes the nth coefficient body,
Vn D Vn.f / D fa2; a3; : : : ; ang, f D z C a2z2 C a3z3 C : : : in the class S, then
the first nontrivial body V3 was completely described in [226]. The authors also
give some qualitative description of general Vn. Several qualitative results on @Vn
were obtained in the monograph [39]. In particular, Bobenko developed a method
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D. V. Prokhorov

of second variation more general than that by Duren and Schiffer [71] and proved
that @Vn is smooth except sets of smaller dimension.

Now let f .z; t/ D etw.z; t/, where w.z; t/ is a solution to the Löwner
equation (3) with the function p given by (2). We introduce the matrix A.t/ and
the vector a.t/ as

A.t/ D

0
BBBBB@

0 0 : : : 0 0

a1.t/ 0 : : : 0 0

a2.t/ a1.t/ : : : 0 0
:::

:::
: : :

:::
:::

an�1.t/ an�2.t/ : : : a1.t/ 0

1
CCCCCA
; a.t/ D

0
BBBBB@

a1.t/

a2.t/

a3.t/
:::

an.t/

1
CCCCCA
;

where a1.t/ � 1 and a2.t/, a3.t/, : : : are the coefficients of the function f .z; t/.
Substituting f .z; t/ in (3) we obtain a controllable system

da.t/

dt
D �2

n�1X
kD1

e�k.tCiu.t//Ak.t/a.t/; (9)

with the initial condition aT .0/ D .1; 0; 0; : : : ; 0/. The coefficient body Vn is a
reachable set for the controllable system (9).

The results concerning the structure and properties of Vn include

(i) Vn is homeomorphic to a .2n � 2/-dimensional ball and its boundary @Vn is
homeomorphic to a .2n � 3/-dimensional sphere;

(ii) every point x 2 @Vn corresponds to exactly one function f 2 S which will be
called a boundary function for Vn;

(iii) with the exception for a set of smaller dimension, at every point x 2 @Vn there
exists a normal vector satisfying the Lipschitz condition;
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(iv) there exists a connected open set X1 on @Vn, such that the boundary @Vn is an
analytic hypersurface at every point of X1. The points of @Vn corresponding to
the functions that give the extremum to a linear functional belong to the closure
of X1.

It is worth noticing that all boundary functions have a similar structure. They
map the unit disk D onto the complex plane C minus piecewise analytic Jordan arcs
forming a tree with a root at infinity and having at most n � 1 tips. This assertion
underlines the importance of multi-slit maps in the coefficient problem for univalent
functions.

Solutions a.t/ to (9) for different control function u.t/ (piecewise continuous, in
general) represent all points of @Vn as t ! 1. The trajectories a.t/, 0 � t < 1,
fill Vn so that every point of Vn belongs to a certain trajectory a.t/. The endpoints
of these trajectories can be interior or else boundary points of Vn. This way, we set
Vn as the closure of the reachable set for the control system (9).

According to property (ii) of Vn, every point x 2 @Vn is attained by exactly one
trajectory a.t/ which is determined by a choice of the piecewise continuous control
function u.t/. The function f 2 S corresponding to x is a multi-slit map of D.
If the boundary tree of f has only one tip, then there is a unique continuous control
function u.t/ in t 2 Œ0;1/ that corresponds to f . Otherwise one obtains multi-slit
maps for piecewise continuous control u.

In order to reach a boundary point x 2 @Vn corresponding to a one-slit map, the
trajectory a.t/ has to obey extremal properties, i.e., to be an optimal trajectory. The
continuous control function u.t/ must be optimal, and hence it satisfies a necessary
condition of optimality. PMP is a powerful tool to be used that provides a joint
interpretation of two classical necessary variational conditions: the Euler equations
and the Weierstrass inequalities (see, e.g., [192]).

To realize the maximum principle we consider an adjoint vector (or momenta)

 .t/ D

0
BBBBB@

 1.t/

�
�
�

 n.t/

1
CCCCCA
;

with the complex-valued coordinates  1; : : : ;  n, and the Hamiltonian function

H.a; ; u/ D Re

2
4
 
�2

n�1X
kD1

e�k.tCiu.t//Ak.t/a.t/
!T
N 
3
5 ;

where N means the vector with complex conjugate coordinates. To come to the
Hamiltonian formulation for the coefficient system we require that N satisfies the
adjoint system of differential equations
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d N 
dt
D �@H

@a
; 0 � t <1: (10)

Taking into account (9) we rewrite (10) as

d N 
dt
D 2

n�1X
kD1

�
e�k.tCiu.t//.k C 1/.AT /k� N ;  .0/ D �: (11)

The maximum principle states that any optimal control function u�.t/ possesses
a maximizing property for the Hamiltonian function along the corresponding
trajectory, i.e.,

max
u
H.a�.t/;  �.t/; u/ D H.a�.t/; N �.t/; u�/; t � 0; (12)

where a� and  � are solutions to the system (9), (11) with u D u�.t/.
The maximum principle (12) yields that

@H.a�.t/;  �.t/; u/
@u

ˇ̌
ˇ̌
uDu�.t/

D 0: (13)

Evidently, (9), (10), and (13) imply that

d H.a�.t/;  �.t/; u�.t//
dt

D 0; (14)

for an optimal control function u�.t/.
If the boundary function f gives a point at the boundary hypersurface @Vn, then

its rotation is also a boundary function. The rotation operation f .z/! e�i˛f .ei˛z/
gives a curve on @Vn and establishes a certain symmetry of the boundary hypersur-
face and a change of variables u! uC ˛,  ! ei˛ . This allows us to normalize
the adjoint vector as Im n D 0 and  n D ˙1, which corresponds to the projection
of Vn onto the hypersurface Im an D 0 of dimension 2n � 3. By abuse of notation,
we continue to write Vn for this projection. Further study reduces to investigation of
critical points of the equation @

@uH.a.t/;  .t/; u/ D 0, and search and comparison
of local extrema. In the case when two local maxima coincide, the Gamkrelidze
theory [84] of sliding regimes comes into play. Then one considers the generalized
Löwner equation in which the function p takes the form

p.z; t/ D
nX

kD1
�k
eiuk.t/ C z

eiuk.t/ � z
;

nX
kD1

�k D 1; (15)

where uk.t/ is a continuous functions regarding t 2 Œ0;1/, and �k � 0 are constant.
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Theorem 4 ([200, 202]). Let f 2 S give a nonsingular boundary point of the set
Vn and let f map the unit disk onto the plane with piecewise-analytic slits havingm
finite tips. Then there exist m real-valued functions u1; : : : ; um continuous on Œ0;1/
and positive numbers �1; : : : ; �m,

mP
kD1

�k D 1, such that a solution w D w.z; t/

to the Cauchy problem for the generalized Löwner differential equation (3,15)
represents f according to the formula f .z/ D limt!1 f .z; t/. This representation
is unique.

The boundary @Vn is then parametrized by the initial conditions � in (11). If (11)
allows to choose only one optimal control u�, then the boundary point is given by a
boundary function that maps the unit disk onto the plane with piecewise-analytic
slit having a unique finite tips. If the Hamiltonian function has some m equal
local maximums, then this case is called the sliding regime, and it is provided by
m � 1 equations with respect to �, which determine the equality of the values of
the Hamiltonian function at m critical points. The constants �k represent additional
controls of the problem.

Therefore, the sliding regime of the optimal control problem with m maximum
points of the Hamiltonian function is realized when � 2 Mm, where the manifold
Mm of dimension 2n � 3 � m is defined by m � 1 equations for the values of
the Hamiltonian function at m critical points for t D 0. It is shown in [202] that
the sliding regime with m maximum points of function H at t D 0 preserves this
property for t > 0. The number of maximum points may only decrease and only
because of the joining of some of them at certain instants t .

Theorem 5 ([200, 202]). The boundary hypersurface @Vn, n � 2, is a union of the
sets ˝1; : : : ;˝n�1, every pair of which does not have mutual interior points. Each
set ˝m, 1 � m � n� 1, corresponds to the manifold Mm, M1 D R

2n�4, so that the
parametric representation

˝m D
(
a.1; �; �/W � 2MmI �n D ˙1I �1; : : : ; �m � 0I

mX
kD1

�k D 1
)

holds, where a.1; �; �/ is the manifold coordinate of the system of bicharacteristics
a; for the Hamiltonian system (9), (11) with continuous branches of the optimal
controls given by (13).

This theorem can be used in investigations of topologic, metric, smooth, and
analytic properties of the boundary hypersurface @Vn. In particular, the qualitative
results in [39, 226] can be obtained as corollaries. Equally, this method work for
the subclass SM of bounded functions jf .z/j �M from S. In this case, one stops at
the moment t D logM .

Let us here mention a slightly different approach proposed by Friedland and
Schiffer [79, 80] in 1976–1977 to the problem of description of Vn. Instead of
the ordinary Löwner differential equation (3), they considered the Löwner partial
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differential equation (1) with the function p in the form (2). Their main conclusion
states that if the initial condition for (1) is a boundary function for Vn, then the
solutions to (1) form a one-parameter curves on @Vn (for special choice of u).
The conclusions on the special character of the Koebe functions reflect the angular
property of the corresponding points at the boundary hypersurface.

Besides these general results on the coefficient body several concrete problems
and conjectures were solved by this method. In particular,several projections of
V3 were described in [250]. The range of the system of set of functionals
ff .r1/; f .r2/g, 0 < r1 < r2 < 1, was given in [252] in the subclass SR of
functions from S with real coefficients. Prokhorov [201] described V4 in the class
SMR D SR \ SM generalizing and improving Tammi’s results [246, 247]. The range
of the system of functionals ff .r/; a2; a3g was described in [251] in the class SMR .

We would like to mention here some conjectures which were confirmed or
disproved by the above described method. First let us introduce the so-called
Pick function that plays in the class SM a role analogous to the Koebe function
k� .z/ D z

.1�ei� z/2
in the class S. The Pick function p�.z/ satisfies the equation

M2p�

.M � p�/2 D k� .z/; M > 1; z 2 D:

The coefficients of p0.z/ D z C p2.M/z2 C : : : we denote by pn.M/. The
Jakubowski conjecture says that the estimate janj � pn.M/ holds for even n in
the class SM for sufficiently large M . This conjecture was proved in [203]. As
for odd coefficients of univalent functions, it is easy to verify that the necessary
maximality conditions for the Pick functions fail for largeM , see [203].

Bombieri [40] in 1967 posed the problem to find

�mn WD lim inf
f!K;f 2S

n � Ran

m � Ram
; m; n � 2;

f ! K locally uniformly in U . We call �mn the Bombieri numbers. He conjectured
that �mn D Bmn, where

Bmn D min
�2Œ0;2�/

n sin � � sin.n�/

m sin � � sin.m�/
:

and proved that �mn � Bmn for m D 3 and n odd. It is noteworthy that Bshouty
and Hengartner [47] proved Bombieri’s conjecture for functions from S having real
coefficients in their Taylor’s expansion. Continuing this contribution by Bshouty and
Hengartner, the conjecture for the whole class S has been disproved by Greiner and
Roth [112] for n D 2, m D 3, f 2 S . Actually, they have got the sharp Bombieri
number �32 D .e � 1/=4e < 1=4 D B32.

It is easily seen that �43 D B43 D �23 D B23 D 0. Applying Löwner’s
parametric representation for univalent functions and the optimal control method
we found [208] the exact Bombieri numbers �42; �24; �34 and their numerical
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approximations �42 
 0:050057 : : : , �24 
 0:969556 : : : , and �34 
 0:791557 : : :

(the Bombieri conjecture for these permutations of m; n suggests B42 D 0:1,
B24 D 1, B34 D 0:828427 : : : ). Of course, our method permits us to reprove the
result of [112] about �32.

Our next target is the fourth coefficient a4 of a function from SM . The sharp
estimate ja2j � 2.1�1=M/D p2.M/ in the class SM is rather trivial and has been
obtained by Pick [186] in 1917. The next coefficient a3 was estimated independently
by Schaeffer and Spencer [225] in 1945 and Tammi [244] in 1953. The Pick function
does not give the maximum to ja3j and the estimate is much more difficult. Schiffer
and Tammi [228] in 1965 found that ja4j � p4.M/ for any f 2 SM withM > 300.
This result was repeated by Tammi [246, p. 210] in a weaker form (M > 700) and
there it was conjectured that this constant could be decreased until 11. The case
of function with real coefficients is simpler: the Pick function gives the maximum
to ja4j for M � 11 and this constant is sharp (see [245], [247, p. 163]). By our
suggested method we showed [208] that the Pick function locally maximizes ja4j
on SM if M > M0 D 22:9569 : : : and does not for 1 < M < M0. This disproves
Tammi’s conjecture.

Among other results obtained by PMP we mention here the Charzyński–Tammi
conjecture on functions from SM close to identity (or M close to 1). The suggested
extremal function analogous to the Koebe and Pick functions is n � 1-symmetric
function

QM
n�1.z/ D

�
pM

n�1

0 .zn�1/
�1=.n�1/

:

The conjecture proved by Schiffer and Tammi [228] and Siewierski [237] states that
the coefficient of the functionQM

n�1.z/ gives the extremum to the coefficient an of a
function from SM , namely

janj � 2

n � 1
�
1 � 1

Mn�1

�
; n � 2:

Prokhorov [204] found an asymptotic estimate in the above problem in terms of
log2 M asM is close to 1. ForM !1, Prokhorov and Nikulin [206] obtained also
asymptotic estimates in the coefficient problem for the class SM with. In particular,

janj � n � n.n
2 � 1/
3

1

M
C o

�
1

M

�
; M !1:

More about coefficient problems solved by PMP and Löwner–Kufarev theory,
see [205].
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7 One-Slit Maps

It is interesting that in spite of many known properties of the Löwner equations
several geometric questions remained unclear until recently.

Let us return to the original Löwner equation (3) with the driving function p
given by (2)

dw

dt
D �w

eiu.t/ C w

eiu.t/ � w
; w.z; 0/ � z; (16)

Solutions w.z; t/ to (16) map D onto˝.t/ 	 D. If˝.t/ D Dn�.t/, where �.t/ is a
Jordan curve in D except one of its endpoints, then the driving term u.t/ is uniquely
defined and we call the corresponding map w a slit map. However, from 1947 [147]
it is known that solutions to (16) with continuous u.t/ may give non-slit maps, in
particular,˝.t/ can be a family of hyperbolically convex digons in D.

Marshall and Rohde [173] addressed the following question: Under which
condition on the driving term u.t/ the solution to (16) is a slit map? Their result
states that if u.t/ is Lip(1/2) (Hölder continuous with exponent 1/2), and if for
a certain constant CD > 0, the norm kuk1=2 is bounded kuk1=2 < CD, then
the solution w is a slit map, and moreover, the Jordan arc �.t/ is s quasislit (a
quasiconformal image of an interval within a Stolz angle). As they also proved,
a converse statement without the norm restriction holds. The absence of the norm
restriction in the latter result is essential. On the one hand, Kufarev’s example [147]
contains kuk1=2 D 3

p
2, which means that CD � 3

p
2. On the other hand, Kager

et al. [129] constructed exact slit solutions to the half-plane version of the Löwner
equation with arbitrary norms of the driving term.

Reminding the half-plane version of the Löwner equation let H D fz W Im z > 0g,
R D @H. The functions h.z; t/, normalized near infinity by h.z; t/ D z � 2t=z C
b�2.t/=z2 C : : : , solving the equation

dh

dt
D �2
h� �.t/ ; h.z; 0/ � z; (17)

where �.t/ is a real-valued continuous driving term, map H onto a subdomain of H.
The difference in the sign between (17) and (6) is because in (6) the equation is for
the inverse mapping. In some papers, e.g., [129, 162], the authors work with (16),
(17) changing (�) to (C) in their right-hand sides, and with the mappings of slit
domains onto D or H. However, the results remain the same for both versions.

The question about the slit mappings and the behavior of the driving term �.t/

in the case of the half-plane H was addressed by Lind [162]. The techniques used
by Marshall and Rohde carry over to prove a similar result in the case of (17), see
[173, p. 765]. Let us denote by CH the corresponding bound for the norm k�k1=2.
The main result by Lind is the sharp bound, namely CH D 4.
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Marshall and Rohde [173] remarked that there exist many examples of driving
terms u.t/ which are not Lip(1/2), but which generate slit solutions with simple arcs
�.t/. In particular, if �.t/ is tangent to T, then u.t/ is never Lip(1/2).

Our result [209] states that if �.t/ is a circular arc tangent to R, then the driving
term �.t/ 2Lip(1/3). Besides, we prove that CD D CH D 4 and consider properties
of singular solutions to the one-slit Löwner equation. Moreover, examples of non-
slit solutions filling the whole spectrum Œ4;1/ were given in [127, 163].

The authors analyzed in [163] Löwner traces �.t/ driven by �.t/ asymptotic
to k
p
1 � t . They proved a form of stability of the self-intersection for such �.t/.

Being slightly rephrased it reads as follows.

Theorem 6 ([163]). Let the driving term �W Œ0; 1�! R be sufficiently regular with
the above asymptotic of �.t/

lim
t!1

j�.1/� �.t/jp
1 � t D k > 4:

Then �.1 � 0/ exists, is real, and � intersects R at the same angle as the trace for
� D kp1 � t .
Namely,

lim
t!1

arg.�.t/ � �.1// D � 1 �
p
1 � 16=k2

1Cp1 � 16=k2 :

The method of proof of the above theorem also applies to the case jkj < 4. In this
case the trace � driven by � is a Jordan arc, and � is asymptotically similar to the
logarithmic spiral at �.1/ 2 H.

Another our result [127] states that an analytic orthogonal slit requires the 1/2
Lipschitz vanishing norm, exactly as in Kadanoff’s et al. examples [129] with a
line-slit and a circular slit. In this case the conformal radius approaching the origin
is of order Lip 1/2 (compare with Earle and Epstein [73]).

8 Univalence Criteria

Several important univalence criteria can be obtained by means of the Löwner–
Kufarev differential equation. For example, a function f .z/ D zC : : : analytic in D

is spirallike of type ˛ 2 .��=2; �=2/ (and therefore, univalent) if and only if

Re

�
ei˛z

f 0.z/
f .z/

�
> 0; in D;
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see [214, 242] and [190, p. 172]. Spirallikeness means that a function f .z/ is
analytic, univalent, and if w 2 f .D/, � � 0, then we�e�i˛ � 2 f .D/. If ˛ D 0,
then we obtain the usual class of starlike functions S�.

Next criterion is obtained by integration of the Löwner–Kufarev equation (3)
with a special choice of the driving function p from the Carathéodory class. Let us
choose

p.z; t/ D 1

h.z/C th0.z/
; h0.z/ D iˇ C ˛ zg0.z/

g.z/
; g 2 S�:

Integrating (3) as a Bernoulli-type equation, and letting t !1 leads to the limiting
function

f .z/ D
�
˛ C iˇ
1C i˛

Z z

0

h.z/ziˇ�1g˛.z/ dz

�1=.˛Ciˇ/
D zC : : : ;

˛ > 0, ˇ 2 R, which is the Bazilevich class B˛;ˇ introduced in [29, 30].
Prokhorov [198] and Sheil-Small [235] proved that the class B˛;ˇ is characterized
by the condition

Z �2

�1

ReF.rei� / d� > ��; 0 < r < 1; 0 < �2 � �1 < 2�;

F.z/ D 1C z
f 00.z/
f 0.z/

C .˛ � 1C iˇ/zf
0.z/
f .z/

;

under the additional assumption that f .z/f 0.z/=z ¤ 0 on T D @D. Moreover, the
boundary of f .D/ is accessible from outside by the curves w D a.1C bt/1=.˛Ciˇ/.

In 1972, Becker [31] assumed that the driving function p in (3) satisfied the
inequality

ˇ̌
ˇ̌p.z; t/ � 1
p.z; t/C 1

ˇ̌
ˇ̌ � k < 1; z 2 D; 0 � t <1:

Then the solutions in the form (4) have k-quasiconformal extension to the Riemann
sphere OC. This allowed him to show that the inequality

.1 � jzj2/
ˇ̌
ˇ̌zf 00.z/
f 0.z/

ˇ̌
ˇ̌ � k < 1

in D for an analytic function f .z/ D zC : : : implies that f is univalent and has a
k-quasiconformal extension to OC. This improves a result of Duren et al. [68]. Later
in 1984 Becker and Pommerenke [32] established the criteria
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.1 � jzj2/jzf 00.z/=f 0.z/j � 1; f 0.0/ ¤ 0 .z 2 D/

2Re zjf 00.z/=f 0.z/j � 1 .z 2 H/

.jzj2 � 1/jzf 00.z/=f 0.z/j � 1 .z 2 D
�/;

where H is the right half-plane and D
� is the exterior of D. In all inequalities the

constant 1 is the best possible. The first criterium implies that the boundary of f .D/
is Jordan whereas the second and the third do not necessary imply this. Various
univalence conditions were obtained later, see [5] for more complete list of them.

9 Semigroups

Looking at the classical radial Löwner–Kufarev equation (3) and the classical
chordal Löwner–Kufarev equation (6), one notices that there is a similitude between
the two. Indeed, we can write both equations in the form

dz.t/

dt
D G.z; t/;

with

G.z; t/ D .� � z/.1 � �z/p.z; t/;

where � D 0; 1 and Rep.z; t/ � 0 for all z 2 D and t � 0.
The reason for the previous formula is not at all by chance, but it reflects a

very important feature of “Herglotz vector fields” (see Sect. 10 for the definition).
In order to give a rough idea of what we are aiming, consider the case � D 0 (the
radial case). Fix t0 2 Œ0;C1/. Consider the holomorphic vector field G.z/ WD
G.z; t0/. Let g.z/ WD jzj2. Then,

dgz.G.z// D 2Re hG.z/; zi D �jzj2Rep.z; t0/ � 0; 8z 2 D: (18)

This Lyapunov-type inequality has a deep geometrical meaning. Indeed, (18) tells
that G points toward the center of the level sets of g, which are concentric circles
centered at 0. For each z0 2 D, consider then the Cauchy problem

(
dw.t/

dt D G.w.t//;
w.0/ D z0

(19)

and let wz0 W Œ0; ı/! D be the maximal solution (such a solution can propagate also
in the “past,” but we just consider the “future” time). Since G points inward with
respect to all circles centered at 0, the flow t 7! wz0 .t/ cannot escape from the circle
of radius g.z0/. Therefore, the flow is defined for all future times, namely, ı D C1.
This holds for all z0 2 D.
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Hence, the vector field G has the feature to be R
C-semicomplete, that is, the

maximal solution of the initial value problem (19) is defined in the interval Œ0;C1/.
To understand how one can unify both radial and chordal Löwner theory, we
dedicate this section to such vector fields and their flows.

A family of holomorphic self-maps of the unit disk .	t / is a (one-parameter)
semigroup (of holomorphic functions) if 	W .RC;C/ ! Hol.D;D/ is a continuous
homomorphism between the semigroup of nonnegative real numbers and the
semigroup of holomorphic self-maps of the disk with respect to composition,
endowed with the topology of uniform convergence on compact sets. In other
words:

• 	0 D idD;
• 	tCs D 	s ı 	t for all s, t � 0;
• 	t converges to 	t0 uniformly on compact sets as t goes to t0.

It can be shown that if .	t / is a semigroup, then 	t is univalent for all t � 0.
Semigroups of holomorphic maps are a classical subject of study, both as

(local/global) flows of continuous dynamical systems and from the point of view of
“fractional iteration,” the problem of embedding the discrete set of iterates generated
by a single self-map into a one-parameter family (a problem that is still open even in
the disk). It is difficult to exactly date the birth of this notion but it seems that the first
paper dealing with semigroups of holomorphic maps and their asymptotic behavior
is due to Tricomi in 1917 [248]. Semigroups of holomorphic maps also appear
in connection with the theory of Galton–Watson processes (branching processes)
started in the 1940s by Kolmogorov and Dmitriev [118]. An extensive recent survey
[106] gives a complete overview on details. Furthermore, they are an important tool
in the theory of strongly continuous semigroups of operators between spaces of
analytic functions (see, for example, [239]).

A very important contribution to the theory of semigroups of holomorphic self-
maps of the unit disk is due to Berkson and Porta [36]. They proved that:

Theorem 7 ([36]). A semigroup of holomorphic self-maps of the unit disk .	t / is
in fact real-analytic in the variable t , and is the solution of the Cauchy problem

@	t .z/

@t
D G.	t .z//; 	0.z/ D z ; (20)

where the map G, the infinitesimal generator of the semigroup, has the form

G.z/ D .z � �/.�z� 1/p.z/ (21)

for some � 2 D and a holomorphic function pWD! C with Rep � 0.
Conversely, any vector field of the form (21) is semicomplete and if, for z 2 D,

we take wz the solution of the initial value problem
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dw

dt
D G.w/; w.0/ D z;

then 	t.z/ WD wz.t/ is a semigroup of analytic functions.

Expression (21) of the infinitesimal generator is known as its Berkson–Porta
decomposition. Other characterizations of vector fields which are infinitesimal
generators of semigroups can be seen in [41] and references therein.

The dynamics of the semigroup .	t / are governed by the analytical properties
of the infinitesimal generator G. For instance, all the functions of the semigroup
have a common fixed point at � (in the sense of non-tangential limit if � belongs
to the boundary of the unit disk) and asymptotically tends to � , which can thus be
considered a sink point of the dynamical system generated by G.

When � D 0, it is clear that (21) is a particular case of (3), because the infinitesi-
mal generatorG is of the form�wp.w/, where p belongs to the Carathéodory class.
As a consequence, when the semigroup has a fixed point in the unit disk (which, up
to a conjugation by an automorphism of the disk, amounts to taking � D 0), once
differentiability in t is proved Berkson–Porta’s theorem can be easily deduced from
Löwner’s theory. However, when the semigroup has no common fixed points in the
interior of the unit disk, Berkson–Porta’s result is really a new advance in the theory.

We have already remarked that semigroups give rise to evolution families; they
also provide examples of Löwner chains. Indeed, Heins [123] and Siskasis [238]
have independently proved that if .	t / is a semigroup of holomorphic self-maps of
the unit disk, then there exists a (unique, when suitably normalized) holomorphic
function hWD ! C, the Königs function of the semigroup, such that h.	t.z// D
mt.h.z// for all t � 0, where mt is an affine map (in other words, the semigroup is
semiconjugated to a semigroup of affine maps). Then it is easy to see that the maps
ft .z/ WD m�1

t .h.z//, for t � 0, form a Löwner chain (in the sense explained in the
next section).

The theory of semigroups of holomorphic self-maps has been extensively
studied and generalized: to Riemann surfaces (in particular, Heins [123] has shown
that Riemann surfaces with non-Abelian fundamental group admit no nontrivial
semigroup of holomorphic self-maps); to several complex variables; and to infinitely
dimensional complex Banach spaces, by Baker, Cowen, Elin, Goryainov, Poggi-
Corradini, Pommerenke, Reich, Shoikhet, Siskakis, Vesentini, and many others. We
refer to [41] and the books [1] and [212] for references and more information on the
subject.

10 General Theory: Herglotz Vector Fields, Evolution
Families, and Löwner Chains

Although the chordal and radial versions of the Löwner theory share common
ideas and structure, on their own they can only be regarded as parallel but
independent theories. The approach of [70, 101–105] does show that there can be
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(and actually are) much more independent variants of Löwner evolution bearing
similar structures, but does not solve the problem of constructing a unified theory
covering all the cases.

Recently a new unifying approach has been suggested by Gumenyuk and the
three first authors [20, 42, 43, 53]. In the previous section we saw that the vector
fields which appear in radial and chordal Löwner equations have the property to
be infinitesimal generators for all fixed times. We will exploit such a fact to define
a general family of Herglotz vector fields. Thus, relying partially on the theory of
one-parametric semigroups, which can be regarded as the autonomous version of
Löwner theory, we can build a new general theory.

Definition 1 ([42]). Let d 2 Œ1;C1�. A weak holomorphic vector field of order d
in the unit disk D is a functionG W D� Œ0;C1/! C with the following properties:

WHVF1. for all z 2 D, the function Œ0;C1/ 3 t 7! G.z; t/ is measurable,
WHVF2. for all t 2 Œ0;C1/, the function D 3 z 7! G.z; t/ is holomorphic,
WHVF3. for any compact set K 	 D and any T > 0 there exists a nonnegative

function kK;T 2 Ld.Œ0; T �;R/ such that

jG.z; t/j � kK;T .t/

for all z 2 K and for almost every t 2 Œ0; T �.
We say that G is a (generalized) Herglotz vector field of order d if, in addition to
conditions WHVF1–WHVF3 above, for almost every t 2 Œ0;C1/ the holomorphic
function G.�; t/ is an infinitesimal generator of a one-parametric semigroup in
Hol.D;D/.

Herglotz vector fields in the unit disk can be decomposed by means of Herglotz
functions (and this the reason for the name). We begin with the following definition:

Definition 2. Let d 2 Œ1;C1�. A Herglotz function of order d is a function p W
D � Œ0;C1/ 7! C with the following properties:

1. For all z 2 D, the function Œ0;C1/ 3 t 7! p.z; t/ 2 C belongs to
Ldloc.Œ0;C1/;C/;

2. For all t 2 Œ0;C1/, the function D 3 z 7! p.z; t/ 2 C is holomorphic;
3. For all z 2 D and for all t 2 Œ0;C1/, we have Rep.z; t/ � 0.

Then we have the following result which, using the Berkson–Porta formula, gives
a general form of the classical Herglotz vector fields:

Theorem 8 ([42]). Let � W Œ0;C1/ ! D be a measurable function and let p W
D � Œ0;C1/ ! C be a Herglotz function of order d 2 Œ1;C1/. Then the map
G�;p W D � Œ0;C1/! C given by

G�;p.z; t/ D .z� �.t//.�.t/z � 1/p.z; t/;
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for all z 2 D and for all t 2 Œ0;C1/, is a Herglotz vector field of order d on the
unit disk.

Conversely, if G W D � Œ0;C1/ ! C is a Herglotz vector field of order d 2
Œ1;C1/ on the unit disk, then there exist a measurable function � W Œ0;C1/ ! D

and a Herglotz function p W D � Œ0;C1/ ! C of order d such that G.z; t/ D
G�;p.z; t/ for almost every t 2 Œ0;C1/ and all z 2 D.

Moreover, if Q� W Œ0;C1/ ! D is another measurable function and Qp W D �
Œ0;C1/ ! C is another Herglotz function of order d such that G D GQ�; Qp for
almost every t 2 Œ0;C1/, then p.z; t/ D Qp.z; t/ for almost every t 2 Œ0;C1/ and
all z 2 D and �.t/ D Q�.t/ for almost all t 2 Œ0;C1/ such that G.�; t/ 6� 0.

Remark 1. The generalized Löwner–Kufarev equation

dw

dt
D G.w; t/; t � s; w.s/ D z; (22)

resembles the radial Löwner–Kufarev ODE when � � 0 and p.0; t/ � 1.
Furthermore, with the help of the Cayley map between D and H, the chordal Löwner
equation appears to be the special case of (22) with � � 1.

We also give a generalization of the concept of evolution families in the whole
semigroup Hol.D;D/ as follows:

Definition 3. ([42]) A family .'s;t /t�s�0 of holomorphic self-maps of the unit disk
is an evolution family of order d with d 2 Œ1;C1� if

EF1. 's;s D IdD for all s � 0,
EF2. 's;t D 'u;t ı 's;u whenever 0 � s � u � t < C1,
EF3. for every z 2 D and every T > 0 there exists a nonnegative function kz;T 2
Ld .Œ0; T �;R/ such that

j's;u.z/ � 's;t .z/j �
Z t

u
kz;T .�/d�

whenever 0 � s � u � t � T .

Condition EF3 is to guarantee that any evolution family can be obtained via
solutions of an ODE which resembles both the radial and chordal Löwner–Kufarev
equations. The vector fields that drive this generalized Löwner–Kufarev ODE are
referred to as Herglotz vector fields.

Remark 2. Definition 3 does not require elements of an evolution family to be
univalent. However, this condition is satisfied. Indeed, by Theorem 9, any evolution
family .'s;t / can be obtained via solutions to the generalized Löwner–Kufarev ODE.
Hence the univalence of 's;t ’s follows from the uniqueness of solutions to this ODE.
For an essentially different direct proof, see [43, Proposition 3].
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Remark 3. Different notions of evolution families considered previously in the
literature can be reduced to special cases of Ld -evolution families defined above.

The Schwarz lemma and distortion estimates imply that solutions of the classical
Löwner–Kufarev equation (3) are evolution families of order 1. Also, it can be
proved that for all semigroups of analytic maps .	t /, the biparametric family
.'s;t / WD .	t�s/ is also an evolution family of order1.

Equation (22) establishes a 1-to-1 correspondence between evolution families of
order d and Herglotz vector fields of the same order. Namely, the following theorem
takes place.

Theorem 9 ([42, Theorem 1.1]). For any evolution family .'s;t / of order d 2
Œ1;C1� there exists an (essentially) unique Herglotz vector field G.z; t/ of order
d such that for every z 2 D and every s � 0 the function Œs;C1/ 3 t 7! wz;s.t/ WD
's;t .z/ solves the initial value problem (22).

Conversely, given any Herglotz vector field G.z; t/ of order d 2 Œ1;C1�, for
every z 2 D and every s � 0 there exists a unique solution Œs;C1/ 3 t 7! wz;s.t/

to the initial value problem (22). The formula 's;t .z/ WD wz;s.t/ for all s � 0, all
t � s, and all z 2 D, defines an evolution family .'s;t / of order d .

Here by essential uniqueness we mean that two Herglotz vector fields G1.z; t/ and
G2.z; t/ corresponding to the same evolution family must coincide for a.e. t � 0.

The strong relationship between semigroups and evolution families on the one
side and Herglotz vector fields and infinitesimal generators on the other side is very
much reflected by the so-called product formula in convex domains of Reich and
Shoikhet [212]. Such a formula can be rephrased as follows: letG.z; t/ be a Herglotz
vector field. For almost all t � 0, the holomorphic vector field D 3 z 7! G.z; t/
is an infinitesimal generator. Let .	tr/ be the associated semigroups of holomorphic
self-maps of D. Let .'s;t / be the evolution family associated with G.z; t/. Then,
uniformly on compacta of D it holds

	rt D lim
m!1'ım

t;tC r
m
D lim

m!1 .'t;tC r
m
ı : : : ı 't;tC r

m
/„ ƒ‚ …

m

:

Using such a formula for the case of the unit disk D, in [44] it has been proved the
following result which gives a description of semigroups-type evolution families:

Theorem 10. Let G.z; t/ be a Herglotz vector field of order d in D and let .'s;t / be
its associated evolution family. The following are equivalent:

1. there exists a function g 2 Ldloc.Œ0;C1/;C/ and an infinitesimal generator H
such that G.z; t/ D g.t/H.z/ for all z 2 D and almost all t � 0,

2. 's;t ı 'u;v D 'u;v ı 's;t for all 0 � s � t and 0 � u � v.
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In order to end up the picture started with the classical Löwner theory, we should
put in the frame also the Löwner chains. The general notion of a Löwner chain has
been given2 in [53].

Definition 4 ([53]). A family .ft /t�0 of holomorphic maps of D is called a Löwner
chain of order d with d 2 Œ1;C1� if it satisfies the following conditions:

LC1. each function ft W D! C is univalent,
LC2. fs.D/ 	 ft .D/ whenever 0 � s < t < C1,
LC3. for any compact set K 	 D and any T > 0 there exists a nonnegative

function kK;T 2 Ld.Œ0; T �;R/ such that

jfs.z/ � ft .z/j �
Z t

s

kK;T .�/d�

whenever z 2 K and 0 � s � t � T .

This definition of (generalized) Löwner chains matches the abstract notion of
evolution family introduced in [42]. In particular the following statement holds.

Theorem 11 ([53, Theorem 1.3]). For any Löwner chain .ft / of order d 2
Œ1;C1�, if we define

's;t WD f �1
t ı fs whenever 0 � s � t;

then .'s;t / is an evolution family of the same order d . Conversely, for any evolution
family .'s;t / of order d 2 Œ1;C1�, there exists a Löwner chain .ft / of the same
order d such that

ft ı 's;t D fs whenever 0 � s � t:

In the situation of this theorem we say that the Löwner chain .ft / and the evolution
family .'s;t / are associated with each other. It was proved in [53] that given an
evolution family .'s;t /, an associated Löwner chain .ft / is unique up to conformal
maps of [t�0ft .D/. Thus there are essentially one two different types of Löwner
chains: those such that [t�0ft .D/ D C and those such that [t�0ft .D/ is a simply
connected domain different from C (see [53] for a characterization in terms of the
evolution family associated with).

Thus in the framework of the approach described above the essence of Löwner
theory is represented by the essentially 1-to-1 correspondence among Löwner
chains, evolution families, and Herglotz vector fields.

2See also [20] for an extension of this notion to complex manifolds and with a complete different
approach even in the unit disk. The construction of a Löwner chain associated with a given
evolution family proposed there differs essentially from the one we used in [53, Theorems 1.3
and 1.6].
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Once the previous correspondences are established, given a Löwner chain .ft / of
order d , the general Löwner–Kufarev PDE

@ft .z/

@t
D �G.z; t/@ft .z/

@z
: (23)

follows by differentiating the structural equation

dz

dt
D G.z; t/; z.0/ D z: (24)

Conversely, given a Herglotz vector field G.z; t/ of order d , one can build the
associated Löwner chain (of the same order d ), solving (23) by means of the
associated evolution family.

The Berkson–Porta decomposition of a Herglotz vector field G.z; t/ also gives
information on the dynamics of the associated evolution family. For instance, when
�.t/ � � 2 D, the point � is a (common) fixed point of .'s;t / for all 0 � s � t <
C1. Moreover, it can be proved that, in such a case, there exists a unique locally
absolutely continuous function �W Œ0;C1/ ! C with �0 2 Ldloc.Œ0;C1/;C/,
�.0/ D 0 and Re�.t/ � Re�.s/ � 0 for all 0 � s � t < C1 such that for
all s � t

' 0
s;t .�/ D exp.�.s/ � �.t//:

A similar characterization holds when �.t/ � � 2 @D (see [41]).
Let us summarize this section. In the next scheme we show the main three notions

of Löwner theory we are dealing with in this paper and the relationship between
them:

Löwner chains .ft/
's;tDf �1

t ıfs ������! Evolution families .'s;t/

Löwner–Kufarev PDE

@ft .z/
@t
D �G.z; t/ @ft .z/

@z

" "

# #

Löwner–Kufarev ODE

dw
dt D G.w; t/; w.s/ D z

's;t .z/ D w.t/

Herglotz vector fields G.w; t/ D .w � �.t//.�.t/w � 1/p.w; t/

where p is a Herglotz function.
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11 Extensions to Multiply Connected Domains

Y. Komatu
(from Oberwolfach Photo Collection)

Yûsaku Komatu (1914–2004), in 1942 [135], was the first to generalize Löwner’s
parametric representation to univalent holomorphic functions defined in a circular
annulus and with images in the exterior of a disc. Later, Goluzin [92] gave a much
simpler way to establish Komatu’s results. With the same techniques, Li [161]
considered a slightly different case, when the image of the annulus is the complex
plane with two slits (ending at infinity and at the origin, respectively). See also
[116, 136, 158]. The monograph [14] contains a self-contained detailed account on
the Parametric Representation in the multiply connected setting.

Another way of adapting Löwner’s method to multiply connected domains was
developed by Kufarev and Kuvaev [152]. They obtained a differential equation
satisfied by automorphic functions realizing conformal covering mappings of the
unit disc onto multiply connected domains with a gradually erased slit. This
differential approach has also been followed by Tsai [249]. Roughly speaking, these
results can be considered as a version for multiply connected domains of the slit-
radial Löwner equation. In a similar way, Bauer and Friedrich have developed a
slit-chordal theory for multiply connected domains. Moreover, they have even dealt
with stochastic versions of both the radial and the chordal cases. In this framework
the situation is more subtle than in the simply connected case, because moduli
spaces enter the picture [25, 26].

Following the guide of the new and general approach to Löwner theory in the unit
disk as described in Sect. 9, the second and the third author of this survey jointly with
Pavel Gumenyuk have developed a global approach to Löwner theory for double
connected domains which give a uniform framework to previous works of Komatu,
Goluzin, Li en Pir, and Lebedev. More interestingly, this abstract theory shows some
phenomena not considered before and also poses many new questions.

Besides the similarities between the general approach for simple and double
connected domains, there are a number of significative differences both in concepts
and in results. For instance, in order to develop an interesting substantial theory



72 F. Bracci et al.

for the double connected case, instead of a static reference domain D, one has to
consider a family of expanding annuli Dt D Ar.t/ WD fz W r.t/ < jzj < 1g, where
r W Œ0;C1/! Œ0; 1/ is non-increasing and continuous. The first who noticed this
fact, in a very special case, was already Komatu [135]. Such a family .Dt /, it is
usually called a canonical domain system of order d , whenever��= log.r/ belongs
to ACd .Œ0;C1/;R/.

This really non-optional dynamic context forces to modify the definitions of
(again) the three basic elements of the general theory: semicomplete vector fields,
evolution families, and Löwner chains. Nevertheless, there is still a (essentially)
one-to-one correspondence between these three notions.

As in the unit disk, (weak) vector fields are introduced in this picture bearing in
mind Carathéodory’s theory of ODEs.

Definition 5. Let d 2 Œ1;C1�. A function G W D ! C is said to be a weak
holomorphic vector field of order d in the domain

D WD f.z; t/ W t � 0; z 2 Dt g;

if it satisfies the following three conditions:

WHVF1. For each z 2 C the function G.z; �/ is measurable in Ez WD ft W .z; t/ 2
Dg.

WHVF2. For each t 2 E the function G.�; t/ is holomorphic in Dt .
WHVF3. For each compact set K 	 D there exists a nonnegative function

kK 2 Ld
�
prR.K/;R

�
; prR.K/ WD ft 2 E W 9 z 2 C .z; t/ 2 Kg;

such that

jG.z; t/j � kK.t/; for all .z; t/ 2 K:

Given a weak holomorphic vector field G in D and an initial condition .z; s/ 2
D , it is possible to consider the initial value problem,

Pw D G.w; t/; w.s/ D z: (25)

A solution to this problem is any continuous function w W J ! C such that J 	 E
is an interval, s 2 J , .w.t/; t/ 2 D for all t 2 J and

w.t/ D zC
Z t

s

G.w.�/; �/ d�; t 2 J: (26)

When these kinds of problems have solutions well defined globally to the right for
any initial condition, the vector field G is called semicomplete.
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Putting together the main properties of the flows generated by semicomplete
weak vector fields, we arrive to the concept of evolution families for the doubly
connected setting.

Definition 6. A family .'s;t /0�s�t<C1 of holomorphic mappings 's;t W Ds ! Dt

is said to be an evolution family of order d over .Dt / (in short, an Ld -evolution
family) if the following conditions are satisfied:

EF1. 's;s D idDs ,
EF2. 's;t D 'u;t ı 's;u whenever 0 � s � u � t < C1,
EF3. for any closed interval I WD ŒS; T � 	 Œ0;C1/ and any z 2 DS there exists

a nonnegative function kz;I 2 Ld
�
ŒS; T �;R

�
such that

j's;u.z/� 's;t .z/j �
Z t

u
kz;I .�/d�

whenever S � s � u � t � T .

As expected, there is a one-to-one correspondence between evolution families
over canonical domain systems and semicomplete weak holomorphic vector fields,
analogous to the correspondence between evolution families and Herglotz vector
fields in the unit disk.

Theorem 12 ([55, Theorem 5.1]). The following two assertions hold:

(A) For anyLd -evolution family .'s;t / over the canonical domain system .Dt / there
exists an essentially unique semicomplete weak holomorphic vector field G W
D ! C of order d and a null-set N 	 Œ0;C1/ such that for all s � 0 the
following statements hold:

(i) the mapping Œs;C1/ 3 t 7! 's;t 2 Hol .Ds;C/ is differentiable for all
t 2 Œs;C1/ nN ;

(ii) d's;t=dt D G.�; t/ ı 's;t for all t 2 Œs;C1/ nN .

(B) For any semicomplete weak holomorphic vector field G W D ! C of order d
the formula 's;t .z/ WD w�

s .z; t/, t � s � 0, z 2 Ds , where w�
s .z; �/ is the unique

non-extendable solution to the initial value problem

Pw D G.w; t/; w.s/ D z; (27)

defines an Ld -evolution family over the canonical domain system .Dt /.

With the corresponding perspective, there is also a true version of the non-
autonomous Berkson–Porta description of Herglotz vector fields. Now, the role
played by functions associated with Scharwz kernel is fulfilled by a natural class
of functions associated with the Villat kernel (see [55, Theorem 5.6]).

Löwner chains in the double connected setting are introduced in a similar way as
it was done in the case of the unit disc.
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Definition 7. A family .ft /t�0 of holomorphic functions ft W Dt ! C is called a
Loewner chain of order d over .Dt / if it satisfies the following conditions:

LC1. each function ft W Dt ! C is univalent,
LC2. fs.Ds/ 	 ft .Dt / whenever 0 � s < t < C1,
LC3. for any compact interval I WD ŒS; T � 	 Œ0;C1/ and any compact set
K 	 DS there exists a nonnegative function kK;I 2 Ld .ŒS; T �;R/ such that

jfs.z/� ft .z/j �
Z t

s

kK;I .�/d�

for all z 2 K and all .s; t/ such that S � s � t � T .

The following theorem shows that every Löwner chain generates an evolution
family of the same order.

Theorem 13 ([56, Theorem 1.9]). Let .ft / be a Löwner chain of order d over a
canonical domain system .Dt / of order d . If we define

's;t WD f �1
t ı fs; 0 � s � t <1; (28)

then .'s;t / is an evolution family of order d over .Dt /.

An interesting consequence of this result is that any Löwner chain over a canon-
ical system of annuli satisfies a PDE driven by a semicomplete weak holomorphic
vector field. Moreover, the concrete formulation of this PDE clearly resembles the
celebrated Löwner–Kufarev PDE appearing in the simple connected case.

The corresponding converse of the above theorem is more subtle than the one
shown in the simple connected setting. Indeed, for any evolution family .'s;t / there
exists a (essentially unique) Löwner chain .ft / of the same order such that (28) holds
but the selection of this fundamental chain is affected by the different conformal
types of the domains Dt as well as the behavior of their elements with the index
I.�/ (with respect to zero) of certain closed curves � 	 Dt .

Theorem 14 ([56, Theorem 1.10]). Let .'s;t / be an evolution family of order d 2
Œ1;C1� over the canonical domain system Dt WD Ar.t/ with r.t/ > 0 (a non-
degenerate system). Let r1 WD limt!C1 r.t/. Then there exists a Löwner chain
.ft / of order d over .Dt / such that

1. fs D ft ı 's;t for all 0 � s � t < C1, i.e. .ft / is associated with .'s;t /;
2. I.ft ı �/ D I.�/ for any closed curve � 	 Dt and any t � 0;
3. If 0 < r1 < 1, then [t2Œ0;C1/ft .Dt / D Ar1;
4. If r1 D 0, then [t2Œ0;C1/ft .Dt / is either D�, C n D, or C�.

If .gt / is another Löwner chain over .Dt / associated with .'s;t /, then there is a
biholomorphism F W [t2Œ0;C1/gt .Dt / ! [t2Œ0;C1/ft .Dt / such that ft D F ı gt
for all t � 0.
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In general, a Löwner chain associated with a given evolution family is not unique.
We call a Löwner chain .ft / to be standard if it satisfies conditions (2)–(4) from
Theorem 14. It follows from this theorem that the standard Löwner chain .ft /
associated with a given evolution family is defined uniquely up to a rotation (and
scaling if [t2Œ0;C1/ft .Dt / D C

�).
Furthermore, combining Theorems 13 and 14 one can easily conclude that for

any Löwner chain .gt / of order d over a canonical domain system .Dt / there exists
a biholomorphism F W [t2Œ0;C1/gt .Dt / ! LŒ.gt /�, where LŒ.gt /� is either D�,
C n D, C�, or A
 for some 
 > 0, and such that the formula ft D F ı gt , t � 0,
defines a standard Löwner chain of order d over the canonical domain system .Dt /.
Hence, the conformal type of any Löwner chain [t2Œ0;C1/gt .Dt / can be identified
with D

�, C n D, C�, or A
 for some 
 > 0. Moreover, it is natural (well defined) to
say that the (conformal) type of an evolution family .'s;t / is the conformal type of
any Löwner chain associated with it.

The following statement characterizes the conformal type of a Löwner chain via
dynamical properties of two associated evolution families over .Dt /. One of them
is the usual one .'s;t / and the other one is defined as follows: for each s � 0 and
t � s,

Q's;t .z/ WD r.t/='s;t .r.s/=z/:

It is worth mentioning that at least one of the families .'0;t / and . Q'0;t / converges
to 0 as t ! C1 provided r1 D limt!C1 r.t/ D 0.

Theorem 15 ([56, Theorem 1.13]). Let
�
.Dt /; .'s;t /

�
be a non-degenerate evolu-

tion family and denote as before r1 WD limt!C1 r.t/. In the above notation, the
following statements hold:

(i) the conformal type of the evolution family .'s;t / is A
 for some 
 > 0 if and
only if r1 > 0;

(ii) the conformal type of evolution family .'s;t / is D� if and only if r1 D 0 and
'0;t does not converge to 0 as t ! C1;

(iii) the conformal type of evolution family .'s;t / is C nD if and only if r1 D 0 and
Q'0;t does not converge to 0 as t ! C1;

(iv) the conformal type of evolution family .'s;t / is C� if and only if r1 D 0 and
both '0;t ! 0 and Q'0;t ! 0 as t ! C1.

12 Integrability

In this section we plan to reveal relations between contour dynamics tuned by
the Löwner–Kufarev equations and the Liouville (infinite dimensional) integrabil-
ity, which was exploited actively since establishment of the Korteweg–de Vries
equation as an equation for spectral stability in the Sturm–Liouville problem, and
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construction of integrable hierarchies in a series of papers by Gardner, Green,
Kruskal, Miura, Zabusky, et al., see, e.g., [86, 262], and exact integrability results
by Zakharov and Faddeev [263]. In this section we mostly follow our results in
[170, 171].

Recently, it has become clear that one-parameter expanding evolution families
of simply connected domains in the complex plane in some special models has
been governed by infinite systems of evolution parameters, conservation laws. This
phenomenon reveals a bridge between a nonlinear evolution of complex shapes
emerged in physical problems, dissipative in most of the cases, and exactly solvable
models. One of such processes is the Laplacian growth, in which the harmonic
(Richardson’s) moments are conserved under the evolution, see, e.g., [114, 174].
The infinite number of evolution parameters reflects the infinite number of degrees
of freedom of the system and clearly suggests to apply field theory methods as a
natural tool of study. The Virasoro algebra provides a structural background in most
of field theories, and it is not surprising that it appears in soliton-like problems, e.g.,
KP, KdV, or Toda hierarchies, see [74, 88].

Another group of models, in which the evolution is governed by an infinite
number of parameters, can be observed in controllable dynamical systems, where
the infinite number of degrees of freedom follows from the infinite number of
driving terms. Surprisingly, the same algebraic structural background appears again
for this group. We develop this viewpoint here.

One of the general approaches to the homotopic evolution of shapes starting from
a canonical shape, the unit disk in our case, is given by the Löwner–Kufarev theory.
A shape evolution is described by a time-dependent conformal parametric map from
the canonical domain onto the domain bounded by the shape at any fixed instant. In
fact, these one-parameter conformal maps satisfy the Löwner–Kufarev differential
equation (3), or an infinite dimensional controllable system, for which the infinite
number of conservation laws is given by the Virasoro generators in their covariant
form.

Recently, Friedrich and Werner [82], and independently Bauer and Bernard [24],
found relations between SLE (stochastic or Schramm–Löwner evolution) and the
highest weight representation of the Virasoro algebra. Moreover, Friedrich devel-
oped the Grassmannian approach to relate SLE to the highest weight representation
of the Virasoro algebra in [81].

All the above results encourage us to conclude that the Virasoro algebra is a
common algebraic structural basis for these and possibly other types of contour
dynamics and we present the development in this direction here. At the same time,
the infinite number of conservation laws suggests a relation with exactly solvable
models.

The geometry underlying classical integrable systems is reflected in Sato’s and
Segal–Wilson’s constructions of the infinite dimensional Grassmannian Gr. Based
on the idea that the evolution of shapes in the plane is related to an evolution in a
general universal space, the Segal–Wilson Grassmannian in our case, we provide an
embedding of the Löwner–Kufarev evolution into a fiber bundle with the cotangent
bundle over F0 as a base space, and with the smooth Grassmannian Gr1 as a
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typical fiber. Here F0 	 S denotes the space of all conformal embeddings f of the
unit disk into C normalized by f .z/ D z

�
1CP1

nD1 cnzn
�

smooth on the boundary
S1, and under the smooth Grassmannian Gr1 we understand a dense subspace Gr1
of Gr defined further on.

So our plan is as follows. We will

– Consider homotopy in the space of shapes starting from the unit disk: D! ˝.t/

given by the Löwner–Kufarev equation;
– Give its Hamiltonian formulation;
– Find conservation laws;
– Explore their algebraic structure;
– Embed Löwner–Kufarev trajectories into a moduli space (Grassmannian);
– Construct �-function, Baker–Akhiezer function, and finally KP hierarchy.

Finally we present a class of solutions to KP hierarchy, which are preserving their
form along the Löwner–Kufarev trajectories.

Let us start with two useful lemmas [170, 171].

Lemma 1. Let the function w.z; t/ be a solution to the Cauchy problem (3). If the
driving function p.�; t/, being from the Carathéodory class for almost all t � 0, is
C1 smooth in the closure OD of the unit disk D and summable with respect to t , then
the boundaries of the domains˝.t/ D w.D; t/ 	 D are smooth for all t and w.�; t/
extended to S1 is injective on S1.

Lemma 2. With the above notations let f .z/ 2 F0. Then there exists a function
p.�; t/ from the Carathéodory class for almost all t � 0, and C1 smooth in OD, such
that f .z/ D limt!1 f .z; t/ is the final point of the Löwner–Kufarev trajectory with
the driving term p.z; t/.

12.1 Witt and Virasoro Algebras

The complex Witt algebra is the Lie algebra of holomorphic vector fields defined on
C

� D C n f0g acting by derivation over the ring of Laurent polynomials CŒz; z�1�.
It is spanned by the basis Ln D znC1 @

@z , n 2 Z. The Lie bracket of two basis vector
fields is given by the commutator ŒLn; Lm� D .m � n/LnCm. Its central extension
is the complex Virasoro algebra virC with the central element c commuting with all
Ln, ŒLn; c� D 0, and with the Virasoro commutation relation

ŒLn; Lm� D .m � n/LnCm C c

12
n.n2 � 1/ın;�m; n;m 2 Z;

where c 2 C is the central charge denoted by the same character. These algebras
play important role in conformal field theory. In order to construct their representa-
tions one can use an analytic realization.
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12.2 Segal–Wilson Grassmannian

Sato’s (universial) Grassmannian appeared first in 1982 in [222] as an infinite
dimensional generalization of the classical finite dimensional Grassmannian mani-
folds and they are described as “the topological closure of the inductive limit of” a
finite dimensional Grassmanian as the dimensions of the ambient vector space and
its subspaces tend to infinity.

M. Sato

It turned out to be a very important infinite dimensional manifold being related
to the representation theory of loop groups, integrable hierarchies, micrological
analysis, conformal and quantum field theories, the second quantization of fermions,
and to many other topics [59,177,224,259]. In the Segal and Wilson approach [224]
the infinite dimensional Grassmannian Gr.H/ is taken over the separable Hilbert
space H . The first systematic description of the infinite dimensional Grassmannian
can be found in [197].

We present here a general definition of the infinite dimensional smooth Grass-
mannian Gr1.H/. As a separable Hilbert space we take the space L2.S1/ and
consider its dense subspace H D C1

k�k2 .S
1/ of smooth complex-valued functions

defined on the unit circle endowed with L2.S1/ inner product hf; gi D 1
2�

R
S1

f Ng dw,

f; g 2 H . The orthonormal basis of H is fzkgk2Z D feik� gk2Z, ei� 2 S1.
Let us split all integers Z into two sets Z

C D f0; 1; 2; 3; : : : g and Z
� D

f: : : ;�3;�2;�1g, and let us define a polarization by

HC D spanH fzk; k 2 Z
Cg; H� D spanH fzk; k 2 Z

�g:
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Here and further span is taken in the appropriate space indicated as a subscription.
The Grassmanian is thought of as the set of closed linear subspacesW ofH , which
are commensurable with HC in the sense that they have finite codimension in both
HC and W . This can be defined by means of the descriptions of the orthogonal
projections of the subspaceW 	 H to HC and H�.

Definition 8. The infinite dimensional smooth Grassmannian Gr1.H/ over the
space H is the set of subspaces W of H , such that

1. the orthogonal projection prCWW ! HC is a Fredholm operator,
2. the orthogonal projection pr�WW ! H� is a compact operator.

The requirement that prC is Fredholm means that the kernel and cokernel of
prC are finite dimensional. More information about Fredholm operators the reader
can find in [64]. It was proved in [197], that Gr1.H/ is a dense submanifold
in a Hilbert manifold modeled over the space L2.HC;H�/ of Hilbert–Schmidt
operators fromHC to H�, that itself has the structure of a Hilbert space, see [210].
AnyW 2 Gr1.H/ can be thought of as a graphWT of a Hilbert–Schmidt operator
T WW ! W ?, and points of a neighborhoodUW ofW 2 Gr1.H/ are in one-to-one
correspondence with operators from L2.W;W

?/.

G. Segal

Let us denote by S the set of all collections S 	 Z of integers such that S n ZC
and Z

C n S are finite. Thus, any sequence S of integers is bounded from below and
contains all positive numbers starting from some number. It is clear that the sets
HS D spanH fzk; k 2 Sg are elements of the Grassmanian Gr1.H/ and they are
usually called special points. The collection of neighborhoods fUSgS2S,

US D fW j there is an orthogonal projection �WW ! HS that is an isomorphismg
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forms an open cover of Gr1.H/. The virtual cardinality of S defines the virtual
dimension (v.d.) of HS, namely:

virtcard.S/ D virtdim.HS/ D dim.N n S/� dim.S nN/ D ind.prC/: (29)

The expression ind.prC/ D dim ker.prC/�dim coker.pr�/ is called the index of the
Fredholm operator prC. According to their virtual dimensions the points of Gr1.H/
belong to different components of connectivity. The Grassmannian is the disjoint
union of connected components parametrized by their virtual dimensions.

12.3 Hamiltonian Formalism

Let the driving term p.z; t/ in the Löwner–Kufarev ODE (3) be from the
Carathéodory class for almost all t � 0, C1-smooth in OD, and summable with
respect to t as in Lemma 1. Then the domains ˝.t/ D f .D; t/ D etw.D; t/ have
smooth boundaries @˝.t/ and the function f is injective on S1, i.e.; f 2 F0. So
the Löwner–Kufarev equation can be extended to the closed unit disk OD D D [ S1.

Let us consider the sections  of T �F0 ˝ C, that are from the class C1
k�k2 of

smooth complex-valued functions S1 ! C endowed with L2 norm,

 .z/ D
X
k2Z

 kzk�1; jzj D 1:

We also introduce the space of observables on T �F0 ˝ C, given by integral
functionals

R.f; N ; t/ D 1

2�

Z
z2S1

r.f .z/; N .z/; t/dz

iz
;

where the function r.�; �; t/ is smooth in variables �; � and measurable in t .
We define a special observable, the time-dependent pseudo-Hamiltonian H , by

H .f; N ;p; t/ D 1

2�

Z
z2S1
Nz2f .z; t/.1 � p.e�t f .z; t/; t// N .z; t/dz

iz
; (30)

with the driving function (control) p.z; t/ satisfying the above properties. The
Poisson structure on the space of observables is given by the canonical brackets

fR1;R2g D 2�
Z

z2S1
z2
�
ıR1

ıf

ıR2

ı N �
ıR1

ı N 
ıR2

ıf

�
dz

iz
;

where ı
ıf

and ı

ı 
are the variational derivatives, ı

ıf
R D 1

2�
@
@f
r , ı

ı 
R D 1

2�
@

@ 
r .
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Representing the coefficients cn and N m of f and N as integral functionals

cn D 1

2�

Z
z2S1
NznC1f .z; t/

dz

iz
; N m D 1

2�

Z
z2S1

zm�1 N .z; t/dz

iz
;

n 2 N, m 2 Z, we obtain fcn; N mg D ın;m, fcn; ckg D 0, and f N l; N mg D 0, where
n; k 2 N, l; m 2 Z.

The infinite dimensional Hamiltonian system is written as

dck
dt
D fck;H g; ck.0/ D 0; (31)

d N k
dt
D f N k;H g;  k.0/ D �k; (32)

where k 2 Z and c0 D c�1 D c�2 D � � � D 0, or equivalently, multiplying by
corresponding powers of z and summing up,

df .z; t/

dt
D f .1� p.e�t f; t// D 2� ıH

ı 
z2 D ff;H g; f .z; 0/ � z; (33)

d N 
dt
D �.1 � p.e�t f; t/ � e�t fp0.e�t f; t// N D �2� ıH

ıf
z2 D f N ;H g; (34)

where  .z; 0/ D �.z/ D P
k2Z �kzk�1 and z 2 S1. So the phase coordinates

.f; N / play the role of the canonical Hamiltonian pair and the coefficients �k are
free parameters. Observe that the Eq. (33) is the Löwner–Kufarev equation (3) for
the function f D etw.

Let us set up the generating function G .z/ DPk2Z Gkzk�1, such that

NG .z/ WD f 0.z; t/ N .z; t/:

Consider the “nonpositive” . NG .z//�0 and “positive” . NG .z//>0 parts of the Laurent
series for NG .z/:

. NG .z//�0 D . N 1 C 2c1 N 2 C 3c2 N 3 C : : : /C . N 2 C 2c1 N 3 C : : : /z�1 C : : :

D
1X
kD0
NGkC1z�k :

. NG .z//>0 D . N 0 C 2c1 N 1 C 3c2 N 2 C : : : /zC . N �1 C 2c1 N 0 C 3c2 N 1 : : : /z2 C : : :

D
1X
kD1
NG�kC1zk:
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Proposition 1. Let the driving term p.z; t/ in the Löwner–Kufarev ODE be from
the Carathéodory class for almost all t � 0, C1-smooth in OD, and summable with
respect to t . The functions G .z/, .G .z//<0, .G .z//�0, and all coefficients Gn are
time-independent for all z 2 S1.
Proof. It is sufficient to check the equality PNG D f NG ;H g D 0 for the function G ,
and then, the same holds for the coefficients of the Laurent series for G . ut
Proposition 2. The conjugates NGk, k D 1; 2; : : :, to the coefficients of the gener-
ating function satisfy the Witt commutation relation f NGm; NGng D .n � m/ NGnCm for
n;m � 1, with respect to our Poisson structure.

The isomorphism � W N k ! @k D @
@ck

, k > 0, is a Lie algebra isomorphism

.T �.0;1/
f F0; f ; g/! .T

.1;0/

f F0; Œ ; �/:

It makes a correspondence between the conjugates NGn of the coefficients Gn of

.G .z//�0 at the point .f; N / and the Kirillov vectors LnŒf � D @n C
1P
kD1
.k C

1/ck@nCk , n 2 N, see [133]. Both satisfy the Witt commutation relations

ŒLn; Lm� D .m � n/LnCm:

12.4 Curves in Grassmannian

Let us recall that the underlying space for the universal smooth Grassmannian
Gr1.H/ isH D C1

k�k2.S
1/with the canonicalL2 inner product of functions defined

on the unit circle. Its natural polarization

HC D spanH f1; z; z2; z3; : : : g; H� D spanH fz�1; z�2; : : : g;

was introduced before. The pseudo-Hamiltonian H .f; N ; t/ is defined for an
arbitrary  2 L2.S1/, but we consider only smooth solutions of the Hamiltonian
system, therefore,  2 H . We identify this space with the dense subspace of
T �
f F0 ˝ C, f 2 F0. The generating function G defines a linear map NG from

the dense subspace of T �
f F0˝C to H , which being written in a block matrix form

becomes
0
@ NG>0
NG�0

1
A D

0
@C1;1 C1;2

0 C1;1

1
A
0
@ N >0
N �0

1
A ; (35)
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where

0
@C1;1 C1;2

0 C1;1

1
A D

0
BBBBBBBBBBBBBBBBBBB@

: : :
: : :

: : :
: : :

: : :
: : :

: : :
: : :

: : :
: : :

� � � 0 1 2c1 3c2 4c3 5c4 6c5 7c6 � � �
� � � 0 0 1 2c1 3c2 4c3 5c4 6c5 � � �
� � � 0 0 0 1 2c1 3c2 4c3 5c4 � � �
� � � 0 0 0 0 1 2c1 3c2 4c3 � � �
� � � 0 0 0 0 0 1 2c1 3c2 � � �
� � � 0 0 0 0 0 0 1 2c1 � � �
: : :

: : :
: : :

: : :
: : :

: : :
: : :

: : :
: : :

: : :

1
CCCCCCCCCCCCCCCCCCCA

:

Proposition 3. The operator C1;1WHC ! HC is invertible.

The generating function also defines a map G WT �F0 ˝ C! H by

T �F0 ˝ C 3 .f .z/;  .z// 7! G D Nf 0.z/ .z/ 2 H:

Observe that any solution
�
f .z; t/; N .z; t/� of the Hamiltonian system is mapped

into a single point of the space H , since all Gk , k 2 Z are time-independent by
Proposition 1.

Consider a bundle �WB ! T �F0 ˝ C with a typical fiber isomorphic to
Gr1.H/. We are aimed at construction of a curve 
 W Œ0; T �! B that is traced by
the solutions to the Hamiltonian system, or in other words, by the Löwner–Kufarev
evolution. The curve 
 will have the form


 .t/ D
�
f .z; t/;  .z; t/;WTn .t/

�

in the local trivialization. Here WTn is the graph of a finite rank operator TnWHC !
H�, such thatWTn belongs to the connected component ofUHC

of virtual dimension
0. In other words, we build a hierarchy of finite rank operators TnWHC ! H�,
n 2 Z

C, whose graphs in the neighborhoodUHC
of the point HC 2 Gr1.H/ are

Tn..G .z//>0/ D Tn.G1;G2; : : : ;Gk; : : : / D

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

G0.G1;G2; : : : ;Gk; : : : /

G�1.G1;G2; : : : ;Gk; : : : /

: : :

G�nC1.G1;G2; : : : ;Gk; : : : /;
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with G0z�1CG�1z�2C : : :CG�nC1z�n 2 H�. Let us denote by Gk D Gk , k 2 N.
The elements G0;G�1; G�2; : : : are constructed so that all f NGkg1kD�nC1 satisfy the
truncated Witt commutation relations

f NGk; NGlgn D
(
.l � k/ NGkCl ; for k C l � �nC 1;
0; otherwise;

and are related to Kirilov’s vector fields [133] under the isomorphism �. The
projective limit as n  1 recovers the whole Witt algebra and the Witt
commutation relations. Then the operators Tn such that their conjugates are NTn D
. QB.n/ C C .n/

2;1 / ı C�1
1;1 , are operators from HC to H� of finite rank and their graphs

WTn D .idCTn/.HC/ are elements of the component of virtual dimension 0 in
Gr1.H/. We can construct a basis fe0; e1; e2; : : : g in WTn as a set of Laurent
polynomials defined by means of operators Tn and NC1;1 as a mapping

f 1; 2; : : : g
NC1;1�! fG1;G2; : : : g id CTn�! fG�nC1; G�nC2; : : : ; G0;G1;G2; : : : g;

of the canonical basis f1; 0; 0; : : : g, f0; 1; 0; : : : g, f0; 0; 1; : : : g,. . .
Let us formulate the result as the following main statement.

Proposition 4. The operator Tn defines a graph WTn D spanfe0; e1; e2; : : : g in the
Grassmannian Gr1 of virtual dimension 0. Given any

 D
1X
kD0

 kC1zk 2 HC 	 H;

the function

G.z/ D
1X

kD�n
GkC1zk D

1X
kD0

 kC1ek;

is an element of WTn .

Proposition 5. In the autonomous case of the Cauchy problem (3), when the
function p.z; t/ does not depend on t , the pseudo-Hamiltonian H plays the role
of time-dependent energy and H .t/ D NG0.t/ C const , where NG0

ˇ̌
tD0 D 0.

The constant is defined as
P1

nD1 pk N k.0/.
Remark 4. The Virasoro generator L0 plays the role of the energy functional in
CFT. In view of the isomorphism �, the observable NG0 D ��1.L0/ plays an
analogous role.

Thus, we constructed a countable family of curves 
nW Œ0; T �! B in the trivial
bundle B D T �F0 ˝ C � Gr1.H/, such that the curve 
n admits the form
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n.t/ D
�
f .z; t/;  .z; t/;WTn .t/

�
, for t 2 Œ0; T � in the local trivialization. Here�

f .z; t/; N .z; t/� is the solution of the Hamiltonian system (31–32). Each operator
Tn.t/WHC ! H� that maps G>0 to

�
G0.t/; G�1.t/; : : : ; G�nC1.t/

�

defined for any t 2 Œ0; T �, n D 1; 2; : : :, is of finite rank and its graph WTn.t/ is a
point in Gr1.H/ for any t . The graphsWTn belong to the connected component of
the virtual dimension 0 for every time t 2 Œ0; T � and for fixed n. The coordinates
.G�nC1; : : : ; G�2; G�1; G0;G1;G2; : : :/ of a point in the graphWTn considered as a
function of  are isomorphic to the Kirilov vector fields

.L�nC1; : : : ; L�2; L�1; L0; L1; L1; L2; : : :/

under the isomorphism �.

12.5 �-Function

Remind that any function g holomorphic in the unit disc, nonvanishing on the
boundary and normalized by g.0/ D 1 defines the multiplication operator g',
'.z/ DPk2Z 'kzk , that can be written in the matrix form

�
a b

0 d

��
'�0
'<0

�
: (36)

All these upper triangular matrices form a subgroup GLC
res of the group of automor-

phisms GLres of the Grassmannian Gr1.H/.
With any function g and any graph WTn constructed in the previous section

(which is transverse to H�) we can relate the �-function �WTn .g/ by the following
formula

�WTn .g/ D det.1C a�1bTn/;

where a; b are the blocks in the multiplication operator generated by g�1.
If we write the function g in the form g.z/ D exp.

P1
nD1 tnzn/ D 1CP1

kD1 Sk.t/zk ,
where the coefficients Sk.t/ are the homogeneous elementary Schur polynomials,
then the coefficients t D .t1; t2; : : : / are called generalized times. For any fixedWTn

we get an orbit in Gr1.H/ of curves 
n constructed in the previous section under
the action of the elements of the subgroup GLC

res defined by the function g. On the
other hand, the �-function defines a section in the determinant bundle over Gr1.H/
for any fixed f 2 F0 at each point of the curve 
n.
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12.6 Baker–Akhiezer Function, KP Flows, and KP Equation

Let us consider the component Gr0 of the Grassmannian Gr1 of virtual dimension
0, and let g be a holomorphic function in D considered as an element of GLC

res
analogously to the previous section. Then g is an upper triangular matrix with 1s on
the principal diagonal. Observe that g.0/ D 1 and g does not vanish on S1. Given a
pointW 2 Gr0 let us define a subset 
 C 	 GLC

res as


 C D fg 2 GLC
res W g�1W is transverse to H�g:

Then there exists [224] a unique function�W Œg�.z/ defined on S1, such that for each
g 2 
 C, the function �W Œg� is in W , and it admits the form

�W Œg�.z/ D g.z/
 
1C

1X
kD1

!k.g;W /
1

zk

!
:

The coefficients !k D !k.g;W / depend both on g 2 
 C and on W 2 Gr0,
besides they are holomorphic on 
 C and extend to meromorphic functions on GLC

res.
The function �W Œg�.z/ is called the Baker–Akhiezer function of W .

Henry Frederick Baker (1866–1956) was British mathematician known for his
contribution in algebraic geometry, PDE, and Lie theory. Naum Ilyich Akhiezer
(1901–1980) was a Soviet mathematician known for his contributions in approx-
imation theory and the theory of differential and integral operators, mathematical
physics and history of mathematics. His brother Alexander was known theoretical
physicist.

The Baker–Akhiezer function plays a crucial role in the definition of the KP
(Kadomtsev–Petviashvili) hierarchy which we will define later. We are going to
construct the Baker–Akhiezer function explicitly in our case.

Let W D WTn be a point of Gr0 defined in Proposition 4. Take a function g.z/ D
1C a1zC a2z2 C � � � 2 
 C, and let us write the corresponding bi-infinite series for
the Baker–Akhiezer function �W Œg�.z/ explicitly as

�W Œg�.z/ D
X
k2Z

Wkzk D .1 C a1zC a2z2 C : : : /
�
1C !1

z
C !2

z2
C : : :

�

D : : : C .a2 C a3!1 C a4!2 C a5!3 C : : : /z2
C .a1 C a2!1 C a3!2 C a4!3 C : : : /z
C .1C a1!1 C a2!2 C a3!3 C : : : /

C .!1 C a1!2 C a2!3 C : : : /1
z

C .!2 C a1!3 C a2!4 C : : : / 1
z2
C : : :

: : : C .!k C a1!kC1 C a2!kC2 C : : : / 1
zk
C : : :
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The Baker–Akhiezer function for g and WTn must be of the form

�WTn Œg�.z/ D g.z/
 
1C

nX
kD1

!k.g/
1

zk

!
D

1X
kD�n

Wkzk:

For a fixed n 2 N we truncate this bi-infinite series by putting !k D 0

for all k > n. In order to satisfy the definition of WTn , and determine the
coefficients !1; !2; : : : ; !n, we must check that there exists a vector f 1; 2; : : : g,
such that �WTn Œg�.z/ D

P1
kD0 ek kC1. First we express  k as linear functions

 k D  k.!1; !2; : : : ; !n/ by

. 1;  2;  3; : : : / D NC�1
1;1

�
W0.!1; !2; : : : ; !n/;W1.!1; !2; : : : ; !n/; : : :

�
: (37)

Using Wronski formula we can write

 1 D W0 � 2 Nc1W1 � .3 Nc2 � 4 Nc21/W2 � .4 Nc3 � 12 Nc2 Nc1 C 8 Nc31/W3 C : : : ;
 2 D W1 � 2 Nc1W2 � .3 Nc2 � 4 Nc21/W3 � .4 Nc3 � 12 Nc2 Nc1 C 8 Nc31/W4 C : : : ;
 3 D W2 � 2 Nc1W3 � .3 Nc2 � 4 Nc21/W4 � .4 Nc3 � 12 Nc2 Nc1 C 8 Nc31/W5 C : : : ;
: : : : : : : : :

Next we define !1; !2; : : : ; !n as functions of g and WTn , or in other words, as
functions of ak; Nck by solving linear equations

!1 D Nc1 1 C 2 Nc2 2 C : : : k Nck k C : : : ;

!2 D
1X
kD1

�
.k C 2/ NckC1 � 2 Nc1 Nck

�
 k;

: : : : : : : : :

where  k are taken from (37). The solution exists and is unique because of the
general fact of the existence of the Baker–Akhiezer function. It is quite difficult task
in general, however, in the case n D 1, it is possible to write the solution explicitly
in the matrix form. If

A D

0
BB@
: : :

3 Nc3
2 Nc2
Nc1

1
CCA
T

NC�1
1;1

0
BB@
: : :

a3

a2
a1

1
CCA ; B D

0
BB@
: : :

3 Nc3
2 Nc2
Nc1

1
CCA
T

NC�1
1;1

0
BB@
: : :

a2

a1
1

1
CCA :

then !1 D B
1�A .
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In order to apply further theory of integrable systems we need to change variables
an ! an.t/, n > 0, t D ft1; t2; : : : g in the following way

an D an.t1; : : : ; tn/ D Sn.t1; : : : ; tn/;
where Sn is the n-th elementary homogeneous Schur polynomial

1C
1X
kD1

Sk.t/zk D exp

 1X
kD1

tkzk
!
D e�.t;z/:

In particular,

S1 D t1; S2 D t21
2
C t2; S3 D t31

6
C t1t2 C t3;

S4 D t41
24
C t22
2
C t21 t2

2
C t1t3 C t4:

Then the Baker–Akhiezer function corresponding to the graph WTn is written as

�WTn Œg�.z/ D
1X

kD�n
Wkzk D e�.t;z/

 
1C

nX
kD1

!k.t;WTn/

zk

!
;

and t D ft1; t2; : : : g is called the vector of generalized times. It is easy to see that

@tk am D 0; for all m D 1; 2 : : : ; k � 1;
@tk am D 1 and

@tk am D am�k; for all m > k:

In particular, B D @t1A. Let us denote @ WD @t1 . Then in the case n D 1 we have

!1 D @A

1 �A: (38)

Now we consider the associative algebra of pseudo-differential operators A DPn
kD�1 ak@

k over the space of smooth functions, where the derivation symbol
@ satisfies the Leibniz rule and the integration symbol and its powers satisfy
the algebraic rules @�1@ D @@�1 D 1 and @�1a is the operator @�1a DP1

kD0.�1/k.@ka/@�k�1 (see, e.g., [63]). The action of the operator @m, m 2 Z, is
well defined over the function e�.t;z/, where �.t; z/ DP1

kD1 tkzk , so that the function
e�.t;z/ is the eigenfunction of the operator @m for any integer m, i.e., it satisfies the
equation

@me�.t;z/ D zme�.t;z/; m 2 Z; (39)

see, e.g., [22, 63]. As usual, we identify @ D @t1 , and @0 D 1.
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Let us introduce the dressing operator� D 	@	�1 D @CP1
kD1 �k@�k , where 	

is a pseudo-differential operator 	 D 1CP1
kD1 wk.t/@�k . The operator� is defined

up to the multiplication on the right by a series 1 C P1
kD1 bk@�k with constant

coefficients bk . The m-th KP flow is defined by making use of the vector field

@m	 WD ��m
<0	; @m D @

@tm
;

and the flows commute. In the Lax form the KP flows are written as

@m� D Œ�m�0;��: (40)

If m D 1, then @� D Œ@;�� D P1
kD1.@�k/@�k , which justifies the identification

@ D @t1 .
Thus, the Baker–Akhiezer function �WTn Œg�.z/ admits the form

�WTn Œg�.z/ D 	 exp.�.t; z//;

where 	 is a pseudo-differential operator 	 D 1 C Pn
kD1 !k.t;WTn/@

�k .
The function �WTn Œg�.z/ becomes the eigenfunction of the operator �m, namely
�mw D zmw, for m 2 Z. Besides, @mw D �m

>0w. In view of (39) we can write this
function as previously,

�WTn Œg�.z/ D
�
1C

nX
kD1

!k.t;WTn/z
�k�e�.t;z/:

Proposition 6. Let n D 1, and let the Baker–Akhiezer function be of the form

�WTn Œg�.z/ D e�.t;z/
�
1C !

z

�
;

where ! D !1 is given by the formula (38). Then

@! D @2A

1 � A C
�

@A

1 � A
�2

is a solution to the KP equation with the Lax operator L D @2 � 2.@!/.
Remark 5. Observe that the condition Rep > 0 in D defines a Löwner–Kufarev
cone of trajectories in the class F0 of univalent smooth functions which allowed us
to construct Löwner–Kufarev trajectories in the neighborhoodUHC

, which is a cone
in the Grassmannian Gr1. The form of solutions to the KP hierarchy is preserved
along the Löwner–Kufarev trajectories. The solutions are parametrized by the initial
conditions in the system (32).
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Of course, one can express the Baker–Akhiezer function directly from the
�-function by the Sato formula

�WTn Œg�.z/ D e�.t;z/
�WTn .t1 � 1

z ; t2 � 1
2z2
; t3 � 1

3z3
; : : : /

�WTn .t1; t2; t3 : : : /
;

or applying the vertex operator V acting on the Fock space CŒt� of homogeneous
polynomials

�WTn Œg�.z/ D
1

�WTn
V �WTn ;

where

V D exp

 1X
kD1

tkzk
!

exp

 
�

1X
kD1

1

k

@

@tk
z�k

!
:

In the latter expression exp denotes the formal exponential series and z is another
formal variable that commutes with all Heisenberg operators tk and @

@tk
. Observe that

the exponents in V do not commute and the product of exponentials is calculated
by the Baker–Campbell–Hausdorff formula. The operator V is a vertex operator
in which the coefficient Vk in the expansion of V is a well-defined linear operator
on the space CŒt�. The Lie algebra of operators spanned by 1; tk; @

@tk
, and Vk , is

isomorphic to the affine Lie algebra Osl.2/. The vertex operator V plays a central role
in the highest weight representation of affine Kac–Moody algebras [128, 176] and
can be interpreted as the infinitesimal Bäcklund transformation for the Korteweg–de
Vries equation [58].

The vertex operator V recovers the Virasoro algebra in the following sense.
Taken in two close points zC�=2 and z��=2 the operator product can be expanded
in to the following formal Laurent–Fourier series

W V.zC �

2
/V.z � �

2
/ WD

X
k2Z

Wk.z/�
k;

where W ab W stands for the bosonic normal ordering. Then W2.z/ D T .z/ is the
stress–energy tensor which we expand again as

T .z/ D
X
n2Z

Ln.t/zn�2;

where the operators Ln are the Virasoro generators in the highest weight represen-
tation over CŒt�. Observe that the generators Ln span the full Virasoro algebra with
central extension and with the central charge 1. This can also be interpreted as a
quantization of the shape evolution. We shall define a representation over the space
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of conformal Fock space fields based on the Gaussian free field (GFF) in the next
section.

Remark 6. Let us remark that the relation of Löwner equation to the integrable hier-
archies of nonlinear PDE was noticed by Gibbons and Tsarev [89]. They observed
that the chordal Löwner equation plays an essential role in the classification of
reductions of Benney’s equations. Later Takebe, Teo, and Zabrodin [243] showed
that the chordal and radial Löwner PDE serve as consistency conditions for one-
variable reductions of dispersionless KP and Toda hierarchies, respectively.

Remark 7. We also mention here relations between Löwner half-plane multi-
slit equations and the estimates of spectral gaps of changing length for the
periodic Zakharov–Shabat operators and for Hamiltonians in KdV and nonlinear
Schrödinger equations elaborated in [137–139].

13 Stochastic Löwner Evolutions, Schramm,
and Connections to CFT

13.1 SLE

This section we dedicate to the stochastic counterpart of the Löwner–Kufarev theory
first recalling that one of the last (but definitely not least) contributions to this
growing theory was the description by Oded Schramm in 1999–2000 [230] of the
stochastic Löwner evolution (SLE), also known as the Schramm–Löwner evolution.

O. Schramm

The SLE is a conformally invariant stochastic process; more precisely, it is a family
of random planar curves generated by solving Löwner’s differential equation with



92 F. Bracci et al.

the Brownian motion as a driving term. This equation was studied and developed
by Oded Schramm together with Greg Lawler and Wendelin Werner in a series of
joint papers that led, among other things, to a proof of Mandelbrot’s conjecture
about the Hausdorff dimension of the Brownian frontier [157]. This achievement
was one of the reasons Werner was awarded the Fields Medal in 2006. Sadly, Oded
Schramm, born 10 December 1961 in Jerusalem, died in a tragic hiking accident
on 01 September 2008 while climbing Guye Peak, north of Snoqualmie Pass in
Washington.

The (chordal) stochastic Löwner evolution with parameter k � 0 (SLEk) starting
at a point x 2 R is the random family of maps .gt / obtained from the chordal
Löwner equation (5) by letting �.t/ D p

kBt , where Bt is a standard one-
dimensional Brownian motion such that

p
kB0 D x. Namely, let us consider the

equation

dgt .z/

dt
D 2

gt .z/� �.t/ ; g0.z/ D z; (41)

where �.t/ D p
kBt D

p
kBt .!/, Bt.!/ is the standard one-dimensional

Brownian motion defined on the standard filtered probability space .˝;G ; .Gt /; P /
of Brownian motion with the sample space ! 2 ˝ , and t 2 Œ0;1/, B0 D 0.
The solution to (41) exists as long as gt .z/ � h.t/ remains away from zero and we
denote by Tz the first time such that limt!Tz�0.gt .z/ � h.t// D 0. The function
gt satisfies the hydrodynamic normalization at infinity gt .z/ D z C 2t

z C : : : . Let

Kt D fz 2 OHWTz � tg and let Ht be its complement H n Kt D fz 2 HWTz > tg.
The set Kt is called SLE hull. It is compact, Ht is a simply connected domain
and gt maps Ht onto H. SLE hulls grow in time. The trace �t is defined as
limz!�.t/ g

�1
t .z/, where the limit is taken in H. The unbounded component of Hn�t

is Ht . The Hausdorff dimension of the SLEk trace is min.1 C 8
k
; 2/, see [33].

Similarly, one can define the radial stochastic Löwner evolution. The terminology
comes from the fact that the Löwner trace tip tends almost surely to a boundary
point in the chordal case (1 in the half-plane version) or to the origin in the disk
version of the radial case.

Chordal SLE enjoys two important properties: scaling invariance and the Marko-
vian property. Namely,

– gt .z/ and 1
�
g�2t .�z/ are identically distributed;

– ht .z/ D gt .z/ � �.t/ possesses the Markov property. Furthermore, hs ı h�1
t is

distributed as hs�t for s > t .

The SLEk depends on the choice of ! and it comes in several flavors depending
on the type of Brownian motion exploited. For example, it might start at a fixed
point or start at a uniformly distributed point, or might have a built in drift and so
on. The parameter k controls the rate of diffusion of the Brownian motion and the
behavior of the SLEk critically depends on the value of k.
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The SLE2 corresponds to the loop-erased random walk and the uniform spanning
tree. The SLE8=3 is conjectured to be the scaling limit of self-avoiding random
walks. The SLE3 is proved [52] to be the limit of interfaces for the Ising model
(another Fields Medal 2010 awarded to Stanislav Smirnov), while the SLE4
corresponds to the harmonic explorer and the GFF. For all 0 � k � 4 SLE gives slit
maps. The SLE6 was used by Lawler, Schramm, and Werner in 2001 [157] to prove
the conjecture of Mandelbrot (1982) that the boundary of planar Brownian motion
has fractal dimension 4=3. Moreover, Smirnov [240] proved the SLE6 is the scaling
limit of critical site percolation on the triangular lattice. This result follows from
his celebrated proof of Cardy’s formula. SLE8 corresponds to the uniform spanning
tree. For 4 < k < 8 the curve intersects itself and every point is contained in a loop
but the curve is not space-filling almost surely. For k � 8 the curve is almost sure
space-filling. This phase change is due to the Bessel process interpretation of SLE,
see (42).

y

x

H

0

η

ξ

Ht

0

γt

gt(z)

g−t (0) g+t (0)

An invariant approach to SLE starts with probability measures on non-self-
crossing random curves in a domain ˝ connecting two given points a; b 2 @˝
and satisfying the properties of

– Conformal invariance. Consider a triple .˝; a; b/ and a conformal map 	. If �
is a trace SLEk.˝; a; b/, then 	.�/ is a trace SLEk.	.˝/; 	.a/; 	.b//.;

– Domain Markov property. Let fFtgt�0 be the filtration in F by fBt gt�0 and let
gt be a Löwner flow generated by �.t/ D pkBt . Then the hulls .gt .KsCt\Ht /�
�t /s�0 are also generated by SLEk and independent of the sigma-algebra F .

The expository paper [155] is perhaps the best option to start an exploration
of this fascinating branch of mathematics. Nice papers [216, 217] give up-to-date
exposition of developments of SLE so we do not intend to survey SLE in detail
here. Rather, we are going to show relations with CFT and other related stochastic
variants of Löwner (generalized) evolution.

Here let us also mention the work by Carleson and Makarov [49] studying
growth processes motivated by diffusion-limited aggregation (DLA) via Löwner’s
equations.
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In this section we review the connections between conformal field theory (CFT)
and Schramm–Löwner evolution (SLE) following, e.g., [24, 82, 130]. Indeed, SLE,
being, e.g., a continuous limit of CFT’s archetypical Ising model at its critical point,
gives an approach to CFT which emphasizes CFT’s roots in statistical physics.

Equation (41) is deterministic with a random entry and we solve it for every
fixed !. The corresponding stochastic differential equation (SDE) in the Itô form
for the function ht .z/ D gt .z/ � �.t/ is

dht .z/ D 2

ht .z/
dt �
p
kdBt ; (42)

where �ht=
p
k represents a Bessel process (of order .4C k/=k). For any holomor-

phic functionM.z/ we have the Itô formula

.dM/.ht / D �d�tL�1M.ht /C dt.
k

2
L 2�1 � 2L�2/M.ht/; (43)

where Ln D �znC1@. From the form of (42) one can see immediately that ht is
a (time-homogeneous) diffusion, i. e., a continuous strong Markov process. The
infinitesimal generator of ht is given by A D . k

2
L 2�1 � 2L�2/ and this operator

appears here for the first time. This differential operator makes it possible to
reformulate many probabilistic questions about ht in the language of PDE theory. If
we consider ht .z/ with fixed z, then (42) for ht describes the motion of particles in
the time-dependent field v with dv D �d�tL�1 C dtA. For instance, if we denote
by ut .z/ the mean function of ht .z/

ut .z/ D Eht .z/;

then it follows from Kolmogorov’s backward equation that ut satisfies

(
@ut
@t
D Aut ;

u0.z/ D z;
z 2 H:

The kernel of the operator A describes driftless observables with time-independent
expectation known as local martingales or conservation (in mean) laws of the
process.

13.2 SLE and CFT

A general picture of the connections between SLE and CFT can be viewed as
follows. The axiomatic approach to CFT grew up from the Hilbert sixth problem
[258], and the Euclidean axioms were suggested by Osterwalder and Schrader [181].
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They are centered around group symmetry, relative to unitary representations of Lie
groups in Hilbert space. They define first correlators (complex values amplitudes)
dependent on n complex variables, and a Lie group of conformal transformations
of the correlators under the Möbius group. This can be extended at the infinitesimal
level of the Lie algebra to invariance under infinitesimal conformal transforms, and
therefore, to the so-called Ward identities. The adjoint representation of this group
is given with the help of the enveloping algebra of an algebra of special operators,
that act on a Fock space of fields. The existence of fields and relation between
correlators and fields are given by a reconstruction theorem, see, e.g., [229]. The
boundary version of this approach BCFT, i.e., CFT on domains with boundary, was
developed by Cardy [48]. SLE approach starts with a family of statistical fields
generated by nonrandom central charge modification of the random fields defined
initially by the GFF and the algebra of Fock space fields, and then, defines SLE
correlators, which turn to be local martingales after coupling of modified GFF on
SLE random domains. These correlators satisfy the axiomatic properties of BCFT
in which the infinitesimal boundary distortion leads to Ward identities involving a
special boundary changing operator of conformal dimension that depends on the
amplitude

p
k of the Brownian motion in SLE.

N. G. Makarov

Connections between SLE and CFT were considered for the first time by Bauer
and Bernard [23]. General motivation was as follows. Belavin et al. [34] defined
in 1984 a class of conformal theories “minimal models,” which described some
discrete models (Ising, Potts, etc.) at criticality. Central theme is universality,
i.e., the properties of a system close to the critical point are independent of its
microscopic realization. Universal classes are characterized by a special parameter,
central charge. Schramm’s approach is based on a special evolution of conformal
maps describing possible candidates for the scaling limit of interface curves. How
these approaches are related? BPZ conjectured that the behavior of the system at
criticality should be described by critical exponents identified as highest weights
of degenerate representations of infinite dimensional Lie algebras, Virasoro in our
case.
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In order to make a bridge to CFT, let us address the definition of fields under
consideration, which will be in fact Fock space fields and nonrandom martingale-
observables following Kang and Makarov exposition [130], see also [221] for
physical encouragement. The underlying idea is to construct the representation Fock
space based on the GFF. GFF is a particular case of the Lévy Brownian motion
(1947) [160] as a space extension of the classical Brownian motion. Nelson (1973)
[178] considered relations of Markov properties of generalized random fields and
QFT, in particular, he proved that GFF possesses the Markov property. Albeverio
and Høegh-Krohn [6] and Röckner [219, 220] proved the Markov property of
measure-indexed GFF and revealed relations of GFF to potential theory. Difficulty
in the approach described below comes from the fact that in the definition of the
Markov property, the domain of reference is chosen to be random which requires
a special coupling between random fields and domains, which was realized by
Schramm and Sheffield [232] and Dubédat [69].

GFF ˚.z/ is defined on a simply connected domain D with the Dirichlet
boundary conditions, i.e., GFF is indexed by the Hilbert space E .D/, the completion
of test functions f 2 C1

0 .D/ (with compact support inD) equipped with the norm

kf k2 D
Z
D

Z
D

f .�/ Nf .z/G.z; �/d�dz;

where G.z; �/ is the Green function of the domain D, so ˚ WE .D/ ! L2.˝/.

For example, if H D D, then G.z; �/ D 1
2�

log

ˇ̌̌
ˇ ��Nz
��z

ˇ̌̌
ˇ. One can think of GFF as

a generalization of the Brownian motion to complex time; however, such analogy
is very rough since for a fixed z 2 D the expression ˚.z/ is not well defined as a
random variable, e.g., the correlation is E.˚.z/˚.�// D G.z; �/, but the variance
does not exist in a usual sense. Instead, in terms of distributions .˚; f / over the
space E .D/ we have covariances

Cov..˚; f1/; .˚; f2// D 1

2�

Z
D

Z
D

f1.�/ Nf2.z/G.z; �/d�dz:

The distributional derivatives J D @˚ and NJ D N@˚ are well defined as, e.g.,
J.f / D �˚.@f /, J WE .D/ ! L2.˝/. They are again Gaussian distributional
fields.

The tensor nth symmetric product of Hilbert spaces H .D/ we denote by H ˇn,
H ˇ0 D C and the Fock symmetric space is defined as the direct sum

L1
nD0H ˇn.

Here the sign ˇ of the Wick product (defined below) denotes an isomorphism
to the symmetric tensor algebra multiplication. Gian Carlo Wick (1909–1992)
introduced originally the product W � W� ˇ in [256] in 1950, in order to provide
useful information of infinite quantities in Quantum Field Theory. In physics, Wick
product is related to the normal ordering of operators over a representation space,
namely, in terms of annihilation and creation operators all the creation operators
appear to the left of all annihilation operators. The Wick product ˇ of random
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variables xj is a random variable, commutative, and is defined formally as W WD 1,
@
@xj
.x1ˇ� � �ˇxn/ D .x1ˇ� � �ˇxj�1ˇxjC1ˇ� � �ˇxn/, E.x1ˇ� � �ˇxn/ D 0 for

any k � 1. For example, W x WD ˇx D x � E.x/. However, we have to understand
that ˚.z/ and its derivatives are not random variables in the usual sense and must
be think of as distributional random variables. Besides, ˇ˚ D ˚ . The mean of the
field E˚ is harmonic.

The Fock space correlation functionals are defined as span of basis correlation
functionals 1 and X.z1/ ˇ � � � ˇ X.zn/, z1; : : : ; zn 2 D, Xk D @˛ N@ˇ˚ as well as
infinite combinations (exponentials) which will play a special role in the definition
of the vertex operator. We have @N@˚ 
 0, i.e., E..@N@˚.z/Y.�// D 0, for any
functional Y.�/, � ¤ z. In view of this notation�˚ 
 0.

The basis Fock space fields are formal Wick products of the derivatives of the
GFF 1, ˚ , ˚ˇ˚ , @˚ˇ˚ , etc. Again, since GFF and its derivatives are understood
in distributional sense, the above Wick product is formal. A Fock space field FD is
a linear combination of basis Fock space fields over the ring of smooth functions in
D. If F1; : : : ; Fn are Fock space fields and z1; : : : ; zn are distinct points of D, then
F1.z1/ : : : Fn.zn/ is a correlation functional and E.F1.z1/ : : : Fn.zn// is a correlation
function of simply correlator. The product here is thought of as a tensor product
defined by the Wick formula over Feynman diagrams.

Being formally defined all these objects can be recovered through approximation
by well-defined objects (scaling limit of lattice GFF) and expectations and correla-
tors can be calculated.

We continue specifying the Markov property of domains and fields. For a shrink-
ing deterministic subordination D.t/ 	 D.s/ for t < s, the Markov property of
fD.t/gt�0 means that domains D.t/

ˇ̌
D.s/ and Dt�s coincide in law, which simply

means in the Löwner case that if 't WHt ! H preserves 1, and such that the tip
�.t/ ! 0, then 's ı gt and gt�s satisfy the same equation fixing s. In the random
case we have that the domainsD.t/

ˇ̌
D.s/ and Dt�s coincide in law in the sense of

distribution, or Law(D.s/
ˇ̌
D.t/) = Law(Ds�t ). For more thorough treatment of the

Markov property of domains, see [156].
In order to formulate the Markov property for fields and domains, we coming at

coupling of fD.t/gt�0 SLE and GFF to be defined on the same probability space
.˝;G ; .Gt /; P /, see [69, 231].

Let us start with a toy example of a classical real-valued field FD defined on a
simply connected domainD. Similarly to the Markov property of gt , we say that F
possesses the Markov property if for a decreasing t-dependent family of domains
Dt , FDt

ˇ̌
Ds.z/ D FDs�t , where 0 < s < t , D0 D D. If in (41) we put k D 0,

then the family of domains Ht is the family Dt D H n �.t/, �.t/ D .0; 2i
p
t �. As

a trivial example, construct the field FDt .z/ D arg' 0
t .z/, where 't D z2 C 4t2. The

function 't mapsDt onto C n Œ0;1/ and FDt satisfies the Markov property.
A collection F D fFkg of random holomorphic Fock space fields defined onDt

is said to satisfy the Markov property, if the process

Mt.z1; : : : ; zn/ WD EŒFt1.z1/ : : : Ftn.zn/
ˇ̌
Dt �;
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is a local martingale. Here Ft .zj / is push-forward of F.zj / with respect to a
conformal map D ! Dt . That is, let Aut.D; p; q/ is the group of confor-
mal automorphisms of D fixing p; q 2 @D (0;1 for H or �.t/;1 for Ht ).
The first requirement is that F is invariant under Aut.D; p; q/. The second is
that if 't WDt ! D is a conformal map fixing q, then primary fields F are
.�; N�/-forms, i.e., Ft .z/ D .' 0

t /
�.' 0

t /
N�F.'t .z//. A Schwarzian form F satisfies

Ft .z/ D .' 0
t /
2F .'t .z//C �S't .z/, etc.

The space of conformal Fock space fields is a graded commutative differential
algebra over the ring of nonrandom conformal fields. Conformal invariance in D
is assumed for nonrandom conformal fields, and for random conformal fields this
means that all correlations are conformally invariant as nonrandom conformal fields.
Observe that all definitions can be given for Riemann surfaces as in [130]. The
nonrandom field M.z1; : : : ; zn/ WD M0.z1; : : : ; zn/ is called an SLE martingale-
observable.

Now we want to use some Fock space fields as states and others as observables
acting on states by operator product expansion (OPE). OPE is defined being based
on the expansion for GFF

˚.�/˚.z/ D log
1

j� � zj2 C 2 logRD.z/C˚.z/ˇ ˚.z/C o.1/; as � ! z;

where RD.z/ is the conformal radius of D with respect to z. The product
˚.�/˚.z/ is defined as a tensor product and is given by the Wick formula, see,
e.g., [183, Sect. 4.3]. A Fock space field F.z/ is called holomorphic if E.F.z/Y.�//
is a holomorphic function of z for any field Y.�/, z ¤ �. The OPE of a holomorphic
field is given as a Laurent series

F.�/Y.z/ D
X
n2Z

Cn.z/.� � z/n; as � ! z:

Obviously, OPE is neither commutative nor associative unless one of the fields is
nonrandom. The coefficients Cn are also Fock space fields. We denote F � Y D C0
and F �.n/ Y D Cn for holomorphic Fock space fields. This product satisfies the
Leibniz rule.

The complex Virasoro algebra was introduced in Sect. 12.1. Let us define a
special field, Virasoro field of GFF, T .z/ by the equality T D � 1

2
J �J . In particular,

J.�/J.z/ D � 1

.� � z/2
� 2T .z/C o.1/; as � ! z in H;

where J.z/ D @˚.z/.
Let us define a nonrandom modification˚.b/ on a simply connected domainD of

the GFF ˚.0/ D ˚ onD parametrized by a real constant b, ˚.b/ D ˚.0/ � 2b arg' 0,
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where 'WD ! D fixing a point 2 @D. Then J.b/ D J.0/Cib '00

'0 is a pre-Schwarzian

form and T.b/ D T.0/ � b2S' is a Schwarzian form. The modified families of Fock
space fields F.b/ have the central charge c D 1�12b2. In order to simplify notations
we omit subscript writing simply T WD T.b/, J WD J.b/, etc.

The field T becomes a stress–energy tensor in Quantum Field Theory and
satisfies the equality

T .�/T .z/ D c=2

.� � z/4
C 2T .z/

.� � z/2
C @T .z/

� � z
C o.1/;

It is not a primary field and changes under conformal change of variables as T .� 0/ D
T .�/� c

12
S�0.�/, where S�0.�/, as usual, is the Schwarzian derivative of � 0.�/.

The Virasoro field has the expansion

T .�/X.z/ D
X
n2Z

LnX.z/

.� � z/nC2 ;

for any Fock space field X.z/. This way the Virasoro generators act on a field
X : LnX D T �.�n�2/ X and can be viewed as operators over the space of Fock
space fields. The result is again a Fock space field and one can define iteratively
the field LnkLnk�1

: : : Ln1X � LnkLnk�1
: : : Ln1 jXi, understanding Lj WD Lj�

as operators acting on a “vector” X , where we adapt Dirac’s notations “bra” and
“ket” for vectors, operators and correlators. So we obtained a representation of the
Virasoro algebra on Fock space fields

ŒLn; Lm� D Ln �Lm�Lm �Ln D .n�m/LnCmC c

12
n.n2�1/ın;�m; n;m 2 Z:

Let us recall that a fieldX is called primary of conformal weight .�; N�/ ifX.z/ D
X.	.z//.	0/�. N	0/N�. The Virasoro primary field jV i of conformal dimension �, or
(.�; N�), is defined to satisfy LnjV i D 0, n > 0, L0jV i D �jV i and L�1jV i D
@jV i. Analogously, the conjugate part of this definition is valid for the dimension N�.
Further on we omit the conjugate part because of its complete symmetry with the
non-conjugate one. The Virasoro–Verma module V .�; c/ is constructed spanning
and completing the basis vectors LnkLnk�1

: : : Ln1 jV i, where nk < nk�1 < � � � <
n1 < 0, and jV i is taken to be the highest weight vector. We have a decomposition

V .�; c/ D
1M
mD0

Vm.�; c/;

where the level m space Vm.�; c/ is the eigenspace of L0 with eigenvalue � C m.
A singular vector jXi by definition lies in some Vm.�; c/ and LnjXi D 0 for
any n > 0. The Virasoro–Verma module is generically irreducible, having only
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singular-generated submodules. The Virasoro primary field becomes the highest
weight vector in the representation of the Virasoro algebra virC.

Proposition 7. Let jV i be a Virasoro primary field in F of conformal dimension �
with central charge c. Then the field

ŒL�mC�1L�1ŒL�mC1C�2L�1ŒL�mC2C� � �C�m�2L�1ŒL�2C�m�1L2�1� : : : �jV i

is a primary singular field of dimension .�Cm/, if and only if �1; : : : ; �m�1, c, and
� satisfy a system of m linear equations.

For example, if m D 2, then the singular field is

ŒL�2 C �1L2�1�jV i; (44)

and

(
3C 2�1 C 4�1� D 0;
c C 8�C 12�1� D 0;

if m D 3, then the singular field is ŒL�3 C �2L�1L�2 C �1�2L3�1�jV i and

8̂
<̂
ˆ̂:
2C .�C 2/�2 D 0;
1C 4.�C 1/�1 D 0;
5C .4�C c

2
C 3/�2 C 6.3�C 1/�1�2 D 0:

Now we consider the “holomorphic part” of GFF 	.z/ D R z
J.z/, where J.z/ D

@˚ . Of course the definition requires more work because the field constructed this
way is ramified at all points. However, in correlation with a Fock space functional,
the monodromy group is well-defined and finitely generated. A vertex operator is
a field V ˛

? .z/ D e�i˛	.z/. It is a primary field of conformal dimension � D ˛2

2
C

˛

q
1�c
12

. Considering an infinitesimal boundary distortion w".z/ D zC "
z�� C o."/

is equivalent to the insertion operator jX.z/i ! T .�/jX.z/i. The Ward identity
implies the BCFT Cardy equation

.L 2�1 � 2˛2L�2/E
�
V ˛
? .�/jX.z/i

	 D 0; for ˛

 
˛ C

r
1 � c
12

!
D 1: (45)

Here the representation of the Virasoro algebra is

Ln D �.z� �/nC1@ � �.nC 1/.z� �/n:
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Merging the form of the infinitesimal generator A in (43), Virasoro primary
singular field (44) and the Cardy equation (45) we arrive at the SLE numerology

� D �2˛2, ˛ D
p
k
2

,

c D .6 � k/.3k � 8/
2k

; � D 6 � k
2k

;

with the unique free parameter k.
Given a Fock space field X.z/, its push-forward Xt.z/ generically does not

possess the Markov property. However, summarizing above, we can formulate the
following statement.

Proposition 8. For SLE evolution we have

– V ˛
? is a Virasoro primary field;

– V D V ˛
?;t .�t /Xt.z/ possesses the Markov property, �t D

p
kBt ;

– M.z/ D E
�
V ˛
? .0/X.z/

	
is a one-point martingale-observable;

– The process Mt.z/ D E
�
V ˛
?;t .�t /Xt .z/

ˇ̌
Dt

	
is a one-point martingale;

– . k
2
L2�1 � 2L�2/jV ˛

? i is Virasoro primary singular field of level 2;
– . k

2
L 2�1 � 2L�2/M.z/ D 0 is the Cardy equation for the SLE martingale

observables.

As a simple example, consider the Fock space field V D V ˛
? .0/T .z/. Then

M.z/ D E
�
V ˛
? .0/T .z/

	
is a one-point martingale-observable and M.z/ D 1=z2.

If k D 8=3, thenMt.z/ D .h0
t .z/=ht .z//

2 is a local martingale.
More general construction including multi-point observables requires more tech-

nical work related to a vertex field V and boundary condition changing operators,
see [130, Sect. 8.4]. Examples of martingale observables were found, e.g., by
Friedrich and Werner [82] and Schramm and Sheffield [231, 232]. A radial version
of SLE and relations to conformal field theory one can find in [131].

Another construction of the stress–energy tensor of CFT comes as a local
observable of the conformal loop ensemble (CLE) (see, e.g., [234]) loops for any
central charge, see [65, 66]. More general construction is performed on a groupoid
of conformal maps of a simply connected domain, a natural generalization of the
finite dimensional conformal group. The underlying manifold structure is Fréchet.
Similarly to moduli (Teichmüller) spaces, the elements of the cotangent bundle are
analogues of quadratic differentials, see [67]. It is shown there that the stress–energy
tensor of CFT is exactly such a quadratic differential.

13.3 Generalized Löwner–Kufarev Stochastic Evolution

Another attempt to construct random interfaces different from SLE has been
launched by conformal welding in [21].

We considered a setup [126] in which the sample paths are represented by the
trajectories of a point (e.g., the origin) in the unit disk D evolving randomly under
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the generalized Löwner equation. The driving mechanism differs from SLE. In the
SLE case the Denjoy–Wolff attracting point (1 in the chordal case or a boundary
point of the unit disk in the radial case) is fixed. In our case, the attracting point is
the driving mechanism and the Denjoy–Wolff point is different from it. Relation
with this model to CFT is the subject of a forthcoming paper. Let us consider
the generalized Löwner evolution driven by a Brownian particle on the unit circle.
In other words, we study the following initial value problem.

(
d
dt	t.z; !/ D .�.t;!/�	t .z;!//2

�.t;!/
p.	t .z; !/; t; !/;

	0.z; !/ D z;
t � 0; z 2 D; ! 2 ˝: (46)

The function p.z; t; !/ is a Herglotz function for each fixed ! 2 ˝ . In order for
	t .z; !/ to be an Itô process adapted to the Brownian filtration, we require that the
function p.z; t; !/ is adapted to the Brownian filtration for each z 2 D. Even though
the driving mechanism in our case differs from that of SLE, the generated families
of conformal maps still possess the important time-homogeneous Markov property.

For each fixed ! 2 ˝ , (46) similarly to SLE, may be considered as a determin-
istic generalized Löwner equation with the Berkson–Porta data .�.�; !/; p.�; �; !//.
In particular, the solution 	t.z; !/ exists, is unique for each t > 0 and ! 2 ˝ , and
moreover, is a family of holomorphic self-maps of the unit disk.

The equation in (46) is an example of a so-called random differential equation
(see, for instance, [241]). Since for each fixed ! 2 ˝ it may be regarded as an
ordinary differential equation, the sample paths t 7! 	t .z; !/ have continuous
first derivatives for almost all !. See an example of a sample path of 	t .0; !/ for
p.z; t/ D �.t/Cz

�.t/�z , �.t/ D eikBt , k D 5, t 2 Œ0; 30� in the figure to the left.

In order to give an explicitly solvable example let p.z; t; !/ D �.t;!/

�.t;!/�z D
eikBt .!/

eikBt .!/�z
. It makes (46) linear:

d

dt
	t .z; !/ D eikBt .!/ � 	t .z; !/;
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and a well-known formula from the theory of ordinary differential equation yields

	t .z; !/ D e�t
�

zC
Z t

0

eseikBs.!/ds

�
:

Taking into account the fact that EeikBt .!/ D e� 1
2 tk

2
, we can also write the

expression for the mean function E	t .z; !/

E	t .z; !/ D
8<
:
e�t .zC t/; k2 D 2;
e�t zC e�tk2=2�e�t

1�k2=2 ; otherwise.
(47)

Thus, in this example all maps 	t and E	t are affine transformations (composi-
tions of a scaling and a translation).

In general, solving the random differential equation (46) is much more compli-
cated than solving its deterministic counterpart, mostly because of the fact that for
almost all ! the function t 7! �.t; !/ is nowhere differentiable.

If we assume that the Herglotz function has the form p.z; t; !/ D Qp.z=�.t; !//,
then it turns out that the process 	t.z; !/ has an important invariance property, that
were crucial in development of SLE.

Let s > 0 and introduce the notation

Q	t .z/ D 	sCt .z/
�.s/

:

Then Q	t .z/ is the solution to the initial-value problem
8<
:
d
dt
Q	t .z; !/ D .Q�.t;!/� Q	t .z;!//2

Q�.t;!/ Qp � Q	t .z; !/= Q�.t/� ;
Q	0.z; !/ D 	s.z; !/= Q�.s/;

where Q�.t/ D �.s C t/=�.s/ D eik.BsCt�Bs/ is again a Brownian motion on T

(because QBt D BsCt � Bs is a standard Brownian motion). In other words, the
conditional distribution of Q	t given 	r , r 2 Œ0; s� is the same as the distribution
of 	t .

By the complex Itô formula, the process 1
�.t;!/

D e�ikBt satisfies the equation

de�ikBt D �ike�ikBt dBt � k
2

2
e�ikBt dt:

Let us denote 	t .z;!/
�.t;!/

by �t.z; !/. Applying the integration by parts formula to �t ,
we arrive at the following initial value problem for the Itô SDE

8<
:
d�t D �ik�tdBt C

�
� k2

2
�t C .�t � 1/2p.�teikBt .!/; t; !/

�
dt;

�0.z/ D z:
(48)
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A numerical solution to this equation for a specific choice for p.z; t/ � i , k D 1,
and t 2 Œ0; 2�, is shown in the figure to the right.

Analyzing the process 	t .z;!/
�.t;!/

instead of the original process 	t .z; !/ is in many
ways similar to one of the approaches used in SLE theory.

The image domains �t.D; !/ differ from 	t.D; !/ only by rotation. Due to the
fact that j�t.z; !/j D j	t.z; !/j, if we compare the processes 	t .0; !/ and �t.0; !/,
we note that their first hit times of the circle Tr with radius r < 1 coincide, i. e.,

infft � 0; j	t.0; !/j D rg D infft � 0; j�t.0; !/j D rg:

In other words, the answers to probabilistic questions about the expected time of
hitting the circle Tr , the probability of exit from the disk Dr D fz W jzj < rg, etc. are
the same for 	t .0; !/ and �t.0; !/.

If the Herglotz function has the form p.z; t; !/ D Qp.z=�.t; !//, then (48)
becomes

8<
:
d�t D �ik�tdBt C

�
� k2

2
�t C .�t � 1/2 Qp.�t /

�
dt;

�0.z/ D z;
(49)

and may be regarded as an equation of a two-dimensional time-homogeneous real
diffusion written in complex form. This implies, in particular, that �t is a time-
homogeneous strong Markov process. By construction, �t.z/ always stays in the
unit disk.

Analogously to SLE we can consider random conformal Fock space fields
defined on D changing correspondingly the definition using the Green function
for D instead of H. Coupling of (46) and the GFF in D we define the correlators
ft .z1; : : : ; zn/ D f .z1; : : : ; zn/

ˇ̌
Dt

as martingale-observables.
For a smooth function f .z/ defined in D we derive the Itô differential in the

complex form

df .�t / D �ikdBt .L�1 � NL�1/f .�t /C dtAf .�t /;
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where A is the infinitesimal generator of �t ,

A D
�
�k

2

2
zC .z � 1/2 Qp.z/

�
@

@z
� 1
2
k2z2

@2

@z2

C
�
�k

2

2
NzC .Nz � 1/2 Qp.z/

�
@

@Nz �
1

2
k2Nz2 @

2

@Nz2 C k
2jzj2 @

2

@z@Nz :

In particular, if f is holomorphic, then

A D
�
�k

2

2
zC .z � 1/2 Qp.z/

�
@

@z
� 1
2
k2z2

@2

@z2
: (50)

If f .z/ is a martingale-observable, then Af D 0.
In [126] we proved the existence of a unique stationary point of �t in terms of

the stochastic vector field

d

dt
�t.z; !/ D G0.�t .z; !//;

where the Herglotz vector field G0.z; !/ is given by

G0.z; !/ D �ikzWt.!/ � k
2

2
zC .z � 1/2 Qp.z/:

Here, Wt.!/ denotes a generalized stochastic process known as white noise. Also
nth moments were calculated and the boundary diffusion on the unit circle was
considered, which corresponds, in particular, to North–South flow, see, e.g., [50].

14 Related Topics

14.1 Hele-Shaw Flows, Laplacian Growth

One of the most influential works in fluid dynamics at the end of the nineteenth
century was a series of papers, see, e.g., [124] written by Henry Selby Hele-Shaw
(1854–1941). There Hele-Shaw first described his famous cell that became a subject
of deep investigation only more than 50 years later. A Hele-Shaw cell is a device
for investigating two-dimensional flow (Hele-Shaw flow or Laplacian growth) of a
viscous fluid in a narrow gap between two parallel plates.

This cell is the simplest system in which multi-dimensional convection is present.
Probably the most important characteristic of flows in such a cell is that when
the Reynolds number based on gap width is sufficiently small, the Navier–Stokes
equations averaged over the gap reduce to a linear relation for the velocity similar
to Darcy’s law and then to a Laplace equation for the fluid pressure. Different
driving mechanisms can be considered, such as surface tension or external forces
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H. S. Hele-Shaw

(e.g., suction, injection). Through the similarity in the governing equations, Hele-
Shaw flows are particularly useful for visualization of saturated flows in porous
media, assuming they are slow enough to be governed by Darcy’s law. Nowadays,
the Hele-Shaw cell is used as a powerful tool in several fields of natural sciences and
engineering, in particular, soft condensed matter physics, materials science, crystal
growth and, of course, fluid mechanics. See more on historical and scientific account
in [253].

The century-long development connecting the original Hele-Shaw experiments,
the conformal mapping formulation of the Hele-Shaw flow by Pelageya Yakovlevna
Polubarinova-Kochina (1899–1999) and Lev Aleksandrovich Galin (1912–1981)
[83, 187, 188], and the modern treatment of the Hele-Shaw evolution based on
integrable systems and on the general theory of plane contour motion, was marked
by several important contributions by individuals and groups.

The main idea of Polubarinova-Kochina and Galin was to apply the Riemann
mapping from an appropriate canonical domain (the unit disk D in most situations)
onto the phase domain in order to parameterize the free boundary. The evolution
equation for this map, named after its creators, allows to construct many explicit
solutions and to apply methods of conformal analysis and geometric function theory
to investigate Hele-Shaw flows. In particular, solutions to this equation in the case
of advancing fluid give subordination chains of simply connected domains which
have been studied by Löwner and Kufarev. The resulting equation for the family
of functions f .z; t/ D a1.t/z C a2.t/z2 C : : : from D onto domains occupied by
viscous fluid is

Re Œ Pf .�; t/�f 0.�; t/� D Q

2�
; j�j D 1: (51)
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P. Ya. Polubarinova-Kochina

The corresponding equation in D is a first-order integro-PDE

Pf .�; t/ D �f 0.�; t/
Z 2�

0

Q

4�2jf 0.ei� ; t/j2
ei� C �
ei� � � d�; j�j < 1:

L. A. Galin

Here Q is positive in the case of injection of negative in the case of suction.
The Polubarinova–Galin and the Löwner–Kufarev equations, having some evident
geometric connections, are of somewhat different nature. While the evolution of the
Laplacian growth given by the Polubarinova–Galin equation is completely defined
by the initial conditions, the Löwner–Kufarev evolution depends also on an arbitrary
control function. The Polubarinova–Galin equation is essentially nonlinear and the
corresponding subordination chains are of rather complicated nature. The treatment
of classical Laplacian growth was given in the monograph [114].
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The newest direction in the development of Hele-Shaw flow is related to
Integrable Systems and Mathematical Physics, as a particular case of a contour
dynamics. This story started in 2000 with a short note [174] by Mineev-Weinstein,
Wiegmann, and Zabrodin, where the idea of the equivalence of 2D contour dynamics
and the dispersionless limit of the integrable 2-D Toda hierarchy appeared for the
first time. A list of complete references to corresponding works would be rather long
so we only list the names of some key contributors: Wiegmann, Mineev-Weinstein,
Zabrodin, Krichever, Kostov, Marshakov, Takebe, Teo et al., and some important
references: [140–142, 172, 175, 243, 257]. Let us consider an “exterior” version of

0

y

x

Ω−

Ω+

– M−k = −
Ω+
z−kdσz ;

– M0 = |Ω−|;
– Mk =

Ω−
zkdσz;

– k ≥ 1;
– t =M0/ /π; tk =Mk πk

generalized times.

the process when source/sink of viscous fluid is at1 and the bounded domain ˝�
is occupied by the inviscid one. Then the conformal map f of the exterior of the
unit disk onto˝C

f .�; t/ D b.t/� C b0.t/C
1X
kD1

bj .t/

�k
; b.t/ > 0I

satisfies the analogous boundary equation

Re Œ Pf .�; t/�f 0.�; t/� D �Q; (52)

Following the definition of Richardson’s moments let us define interior and exterior
moments as in the above figure. The integrals for k D 1; 2 are assumed to be
properly regularized. Then the properties of the moments are

– M0.t/ DM0.0/�Qt is “physical time”;
– Mk are conserved for k � 1;
– M0 and fMkgk�1 determine the domain˝C locally (given @˝C is smooth);
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– fMkgk<0 evolve in time in a quite complicated manner;
– M0 and fMkgk�1 can be viewed as local parameters on the space of “shapes”;

Suppose 
 D @˝� D @˝C is analytic and 	.x1; x2; t/ D 0 is an implicit
representation of the free boundary 
 .t/. Substituting x1 D .z C Nz/=2 and x2 D
.z � Nz/=2i into this equation and solving it for Nz we obtain that 
 D fz W S.z; t/ D
Nzg. is given by the Schwarz function S.z; t/ which is defined and analytic in a
neighborhood of 
 . The Schwarz function can be constructed by means of the
Cauchy integral

g.z/ D � 1

2�i

Z
@˝

N�d�
� � z

:

Define the analytic functions, ge.z/, in˝C and gi .z/, in˝�. On 
 D @˝ the jump
condition is

ge.z/ � gi .z/ D Nz; z 2 @˝:

Then the Schwarz function S.z/ is defined formally by S.z/ D ge.z/ � gi .z/.
The Cauchy integral implies the Cauchy transform of ˝C

ge.z/ D � 1

2�i

Z
@˝

N�d�
� � z

D � 1
�

Z

˝C

d��

� � z
;

with the Laurent expansion

ge.z/ D
1X
kD0

Mk

zkC1 ; z � 1:

Similarly for gi .z/

gi .z/ D �
1X
kD1

M�kzk�1; z � 0I

So formally

S.z/ D
1X

kD�1

Mk

zkC1 D
1X
kD1

M�kzk�1 C M0

z
C

1X
kD1

Mk

zkC1 :

Let us write the logarithmic energy as

F .˝C/ D � 1

�2

Z
C

Z
C

log jz � �jd�zd��;
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where �z is a measure supported in ˝C. It is the potential for the momens

1

k
M�k.˝/ D @F .˝/

@Mk

:

So (see, e.g., [174]) the moments satisfy the 2-D Toda dispersionless lattice
hierarchy

@M�k
@tj

D @M�j
@tk

;
@M�k
@Ntj D @ NM�j

@tk
:

The function exp.F .˝C// DW �.˝C/ D �.t/ is the �-function, and t D M0=� ,. . . ,
tk DMk=�k are generalized times.

The real-valued �-function becomes the solution to the Hirota equation

Sf �1 .z/ D 6

z2

1X
k;nD1

1

znCk
@2log �

@tk@tn
;

where z D f .�/ is the parametric map of the unit disk onto the exterior phase
domain and Sf �1 .z/ denotes the Schwarzian derivative of the inverse to f .

M�k
�
D @ log �

@tk
;

NM�k
�
D @ log �

@Ntk ; k � 1:

The �-function introduced by the “Kyoto School” as a central element in the
description of soliton equation hierarchies.

If � D ei� , M0.t/ DM0.0/�Qt , then the derivatives are

@f

@�
D i� @f

@�
;

@f

@t
D Q @f

@M0

:

Let f �.�/ D f .1= N�/, and let

ff; gg D � @f
@�

@g

@M0

� � @g
@�

@f

@M0

:

In view of this the Polubarinova–Galin equation (52) can be rewritten as
ff; f �g D 1. This equation is known as the string constraint. The equation for
the �-function with a proper initial condition provided by the string equation
solves the inverse moments problem for small deformations of a simply connected
domain with analytic boundary. Indeed, define the Schwarzian derivative SF D
F 000

F 00
� 3

2

�
F 00

F 0

�2
, F D f �1. If we know the Schwarzian derivative S.�/, we know
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the conformal map w D F.�/ D �1=�2 normalized accordingly, where �1 and �2
are linearly independent solutions to the Fuchs equation

w00 C 1

2
S.�/w D 0:

The connection extends to the Lax–Sato approach to the dispersionless 2-D Toda
hierarchy. In this setting it is shown that a Laurent series for a univalent function that
provides an invertible conformal map of the exterior of the unit circle to the exterior
of the domain can be identified with the Lax function. The �-function appears to be
a generating function for the inverse map. The formalism allows one to associate a
notion of �-function to the analytic curves.

The conformal map

f .�; t/ D b.t/� C b0.t/C
1X
kD1

bj .t/

�k
; b.t/ > 0

obeys the relations

@f

@tk
D fHk; f g; @f

@Ntk D f
NHk; f g;

where

– Hk D .f k.�//C C 1
2
.f k.�//0,

– NHk D . Nf k.1=�//� C 1
2
. Nf k.1=�//0.

In the paper [142], an analog of this theory for multiply-connected domains is
developed. The answers are formulated in terms of the so-called Schottky double of
the plane with holes. The Laurent basis used in the simply connected case is replaced
by the Krichever–Novikov basis. As a corollary, analogs of the 2-D Toda hierarchy
depend on standard times plus a finite set of additional variables. The solution of the
Dirichlet problem is written in terms of the �-function of this hierarchy. The relation
to some matrix problems is briefly discussed.

14.2 Fractal Growth

Benoît Mandelbrot (1924, Warsaw, Poland–2010, Cambridge, Massachusetts,
United States) brought to the world’s attention that many natural objects simply
do not have a preconceived form determined by a characteristic scale. He [168]
first saw a visualization of the set named after him, at IBM’s Thomas J. Watson
Research Center in upstate New York.

Many of the structures in space and processes reveal new features when
magnified beyond their usual scale in a wide variety of natural and industrial
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B. Mandelbrot

processes, such as crystal growth, vapor deposition, chemical dissolution, corrosion,
erosion, fluid flow in porous media and biological growth a surface or an interface,
biological processes. A fractal, a structure coined by Mandelbrot in 1975 (“fractal”
from Latin “fractus”), is a rough or fragmented geometric shape that can be
subdivided into parts, each of which is (at least approximately) a reduced-size copy
of the whole. Fractals are generally self-similar, independent of scale, and have
(by Mandelbrot’s own definition) the Hausdorff dimension strictly greater than the
topological dimension. There are many mathematical structures that are fractals,
e.g., the Sierpinski triangle, the Koch snowflake, the Peano curve, the Mandelbrot
set, and the Lorenz attractor. One of the ways to model a fractal is the process of
fractal growth that can be either stochastic or deterministic. A nice overview of
fractal growth phenomena is found in [254].

Many models of fractal growth patterns combine complex geometry with
randomness. A typical and important model for pattern formation is DLA (see a
survey in [119]). Considering colloidal particles undergoing Brownian motion in
some fluid and letting them adhere irreversibly on contact with another one bring
us to the basics of DLA. Fix a seed particle at the origin and start another one form
infinity letting it perform a random walk. Ultimately, that second particle will either
escape to infinity or contact the seed, to which it will stick irreversibly. Next another
particle starts at infinity to walk randomly until it either sticks to the two-particle
cluster or escapes to infinity. This process is repeated to an extent limited only by
modeler’s patience. The clusters generated by this process are highly branched and
fractal, see figure to the left.

The DLA model was introduced in 1981 by Witten and Sander [260,261]. It was
shown to have relation to dielectric breakdown [179], one-phase fluid flow in porous
media [51], electro-chemical deposition [113], medical sciences [223], etc. A new
conformal mapping language to study DLA was proposed by Hastings and Levitov
[120, 121]. They showed that two-dimensional DLA can be grown by iterating
stochastic conformal maps. Later this method was thoroughly handled in [60].
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For a continuous random walk in 2-D the diffusion equation provides the law for
the probability u.z; t/ that the walk reaches a point z at the time t ,

@u

@t
D ��u;

where � is the diffusion coefficient. When the cluster growth rate per surface site
is negligible compared to the diffusive relaxation time, the time dependence of the
relaxation may be neglected (see, e.g., [261]). With a steady flux from infinity and
the slow growth of the cluster the left-hand side derivative can be neglected and we
have just the Laplacian equation for u. If K.t/ is the closed aggregate at the time t
and ˝.t/ is the connected part of the complement of K.t/ containing infinity, then
the probability of the appearance of the random walker in C n ˝.t/ is zero. Thus,
the boundary condition u.z; t/

ˇ̌

 .t/
D 0, 
 .t/ D @˝.t/ is set. The only source of

time dependence of u is the motion of 
 .t/. The problem resembles the classical
Hele-Shaw problem, but the complex structure of 
 .t/ does not allow us to define
the normal velocity in a good way although it is possible to do this in the discrete
models.

Now let us construct a Riemann conformal map f W D
� ! OC, D

� D
fzW jzj > 1g, which is meromorphic in D

�, f .�; t/ D ˛.t/� C a0.t/C a1.t/

�
C : : : ,

˛.t/ > 0, and mapsD� onto˝.t/. The boundary
 .t/ need not even be a quasidisk,
as considered earlier. While we are not able to construct a differential equation
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analogous to the Polubarinova–Galin one on the unit circle, the retracting Löwner
subordination chain still exists, and the function f .�; t/ satisfies the equation

Pf .�; t/ D �f 0.�; t/pf .�; t/; � 2 D
�; (53)

where pf .�; t/ D p0.t/Cp1.t/=�C : : : is a Carathéodory function: Rep.z; t/ > 0
for all � 2 D

� and for almost all t 2 Œ0;1/. A difference from the Hele-Shaw
problem is that the DLA problem is well posed on each level of discreteness by
construction. An analogue of DLA model was treated by means of Löwner chains
by Carleson and Makarov in [49]. In this section we follow their ideas as well as
those from [125].

Of course, the fractal growth phenomena can be seen without randomness.
A simplest example of such growth is the Koch snowflake (Helge von Koch, 1870–
1924).DLA-like fractal growth without randomness can be found, e.g., in [61].

Returning to the fractal growth we want to study a rather wide class of models
with complex growing structure. We note that ˛.t/ D capK.t/ D cap
 .t/. Let
M.0; 2�/ be the class of positive measures � on Œ0; 2��. The control function
pf .�; t/ in (53) can be represented by the Riesz–Herglotz formula

pf .�; t/ D
2�Z
0

ei� C �
ei� � � d�t .�/;

and p0.t/ D k�tk, where �t .�/ 2 M.0; 2�/ for almost all t � 0 and
absolutely continuous in t � 0. Consequently, P̨ .t/ D ˛.t/k�tk. There is a one-
to-one correspondence between one-parameter (t) families of measures �t and
Löwner chains ˝.t/ (in our case of growing domains C n ˝.t/ we have only
surjective correspondence).

Example 1. Suppose we have an initial domain ˝.0/. If the derivative of the
measure �t with respect to the Lebesgue measure is the Dirac measure d�t.�/ �
ı�0.�/d� , then

pf .�; t/ � ei�0 C �
ei�0 � � ;

and ˝.t/ is obtained by cutting ˝.0/ along a geodesic arc. The preimage of the
endpoint of this slit is exactly ei�0 . In particular, if ˝.0/ is a complement of a disk,
then ˝.t/ is ˝.0/ minus a radial slit.

Example 2. Let ˝.0/ be a domain bounded by an analytic curve 
 .t/. If the
derivative of the measure �t with respect to the Lebesgue measure is

d�t.�/

d�
D 1

2�jf 0.ei� ; t/j2 ;
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then

pf .�; t/ D 1

2�

2�Z
0

1

jf 0.ei� ; t/j2
ei� C �
ei� � � d�;

and letting � tend to the unit circle we obtain Re Œ Pf �f 0� D 1, which corresponds to
the classical Hele-Shaw case, for which the solution exists locally in time.

In the classical Hele-Shaw process the boundary develops by fluid particles
moving in the normal direction. In the discrete DLA models either lattice or with
circular patterns the attaching are developed in the normal direction too. However,
in the continuous limit it is usually impossible to speak of any normal direction
because of the irregularity of 
 .t/.

In [49, Sect. 2.3] this difficulty was circumvented by evaluating the derivative of
f occurring in �t in the above Löwner model slightly outside the boundary of the
unit disk.

Let˝.0/ be any simply connected domain,1 2 ˝.0/, 0 62 ˝.0/. The derivative
of the measure �t with respect to the Lebesgue measure is

d�t.�/

d�
D 1

2�jf 0..1C "/ei� ; t/j2 ;

with sufficiently small positive ". In this case the derivative is well defined.
It is worth to mention that the estimate

@cap
 .t/

@t
D P̨ .t/ . 1

"

would be equivalent to the Brennan conjecture (see [191, Chap. 8]) which is still
unproved. However, Theorem 2.1 [49] states that if

R.t/ D max
�2Œ0;2�/

jf ..1C "/ei� ; t/j;

then

lim sup
�t!0

R.t C�t/ �R.t/
�t

� C

"
;

for some absolute constant C . Carleson and Makarov [49] were, with the above
model, able to establish an estimate for the growth of the cluster or aggregate given
as a lower bound for the time needed to multiply the capacity of the aggregate by a
suitable constant. This is an analogue of the upper bound for the size of the cluster
in two-dimensional stochastic DLA given by [132].
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14.3 Extension to Several Complex Variables

Pfaltzgraff in 1974 was the first one who extended the basic Löwner theory to C
n

with the aim of giving bounds and growth estimates to some classes of univalent
mappings from the unit ball of C

n. The theory was later developed by Poreda,
Graham, Kohr, Kohr, Hamada, and others (see [111] and [43]).

Since then, a lot of work was devoted to successfully extend the theory to several
complex variables, and finally, it has been accomplished. The main and dramatic
difference between the one-dimensional case and the higher dimensional case is
essentially due to the lack of a Riemann mapping theorem or, which is the same, to
the existence of the so-called Fatou–Bieberbach phenomena, that is, the existence
of proper open subsets of Cn, n � 2, which are biholomorphic to C

n. This in turn
implies that there are no satisfactory growth estimates for univalent functions on the
ball (nor in any other simply connected domain) of Cn, n � 2.

The right way to proceed is then to look at the Löwner theory in higher dimension
as a discrete complex dynamical system, in the sense of random iteration, and to
consider abstract basins of attraction as the analogous of the Löwner chains. In order
to state the most general results, we first give some definitions and comment on that.

Most estimates in the unit disc can be rephrased in terms of the Poincaré distance,
which gives a more intrinsic point of view. In higher dimension one can replace
the Poincaré distance with the Kobayashi distance. First, we recall the definition
of Kobayashi distance (see [134] for details and properties). Let M be a complex
manifold and let z;w 2 M . A chain of analytic discs between z and w is a finite
family of holomorphic mappings fj W D!M , j D 1; : : : ; m and points tj 2 .0; 1/
such that

f1.0/ D z; f1.t1/ D f2.0/; : : : ; fm�1.tm�1/ D fm.0/; fm.tm/ D w:

We denote by Cz;w the set of all chains of analytic discs joining z to w. Let L 2 Cz;w.
The length of L, denoted by `.L/, is given by

`.L/ WD
mX
jD1

!.0; tj / D
mX
jD1

1

2
log

1C tj
1� tj :

We define the Kobayashi (pseudo)distance kM .z;w/ as follows:

kM .z;w/ WD inf
L2Cz;w

`.L/:

If M is connected, then kM.z;w/ < C1 for all z;w 2 M . Moreover, by construc-
tion, it satisfies the triangular inequality. However, it might be that kM.z;w/ D 0

even if z ¤ w (a simple example is represented by M D C, where kC � 0). In the
unit disc D, kD coincides with the Poincaré distance.
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Definition 9. A complex manifold M is said to be (Kobayashi) hyperbolic if
kM.z;w/ > 0 for all z;w 2 M such that z ¤ w. Moreover, M is said complete
hyperbolic if kM is complete.

Important examples of complete hyperbolic manifolds are given by bounded
convex domains in C

n.
The main property of the Kobayashi distance is the following: let M;N be two

complex manifolds and let f W M ! N be holomorphic. Then for all z;w 2 M it
holds

kN .f .z/; f .w// � kM .z;w/:

It can be proved that if M is complete hyperbolic, then kM is Lipschitz
continuous (see [18]). IfM is a bounded strongly convex domain in C

n with smooth
boundary, Lempert (see, e.g., [134]) proved that the Kobayashi distance is of class
C1 outside the diagonal. In any case, even if kM is not smooth, one can consider
the differential dkM as the Dini-derivative of kM , which coincides with the usual
differential at almost every point in M �M .

As it is clear from the one-dimensional general theory of Löwner’s equations,
evolution families and Herglotz vector fields are pretty much related to semigroups
and infinitesimal generators. Kobayashi distance can be used to characterize
infinitesimal generators of continuous semigroups of holomorphic self-maps of
complete hyperbolic manifolds. The following characterization of infinitesimal
generators is proved for strongly convex domains in [41], and in general in [18]:

Theorem 16. LetM be a complete hyperbolic complex manifold and letH WM !
TM be an holomorphic vector field on M . Then the following are equivalent.

1. H is an infinitesimal generator,
2. For all z;w 2 M with z ¤ w it holds

.dkM/.z;w/ � .H.z/;H.w// � 0:

This apparently harmless characterization contains instead all the needed infor-
mation to get good growth estimates. In particular, it is equivalent to the Berkson–
Porta representation formula in the unit disc.

14.4 Ld -Herglotz Vector Fields and Evolution Families
on Complete Hyperbolic Manifolds

Let M be a complex manifold, and denote by k � k a Hermitian metric on TM and
by dM the corresponding integrated distance.
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Definition 10. Let M be a complex manifold. A weak holomorphic vector field
of order d � 1 on M is a mapping G W M � R

C ! TM with the following
properties:

(i) The mappingG.z; �/ is measurable on R
C for all z 2M .

(ii) The mappingG.�; t/ is a holomorphic vector field on M for all t 2 R
C.

(iii) For any compact set K 	 M and all T > 0, there exists a function CK;T 2
Ld .Œ0; T �;RC/ such that

kG.z; t/k � CK;T .t/; z 2 K; a.e. t 2 Œ0; T �:

A Herglotz vector field of order d � 1 is a weak holomorphic vector fieldG.z; t/
of order d with the property that M 3 z 7! G.z; t/ is an infinitesimal generator for
almost all t 2 Œ0;C1/.

IfM is complete hyperbolic, due to the previous characterization of infinitesimal
generators, a weak holomorphic vector field G.z; t/ of order d if a Herglotz vector
field of order d if and only if

.dkM /.z;w/ � .G.z; t/; G.w; t// � 0; z;w 2M; z ¤ w; a.e. t � 0: (54)

This was proved in [41] for strongly convex domains, and in [18] for the general
case.

One can also generalize the concept of evolution families:

Definition 11. LetM be a complex manifold. A family .'s;t /0�s�t of holomorphic
self-mappings of M is an evolution family of order d � 1 (or Ld -evolution family)
if it satisfies the evolution property

's;s D id; 's;t D 'u;t ı 's;u; 0 � s � u � t; (55)

and if for any T > 0 and for any compact set K 		 M there exists a function
cT;K 2 Ld .Œ0; T �;RC/ such that

dM.'s;t .z/; 's;u.z// �
Z t

u
cT;K.�/d�; z 2 K; 0 � s � u � t � T: (56)

It can be proved that all elements of an evolution family are univalent (cf. [20,
Proposition 2.3]).

The classical Löwner and Kufarev–Löwner equations can now be completely
generalized as follows:

Theorem 17. Let M be a complete hyperbolic complex manifold. Then for any
Herglotz vector field G of order d 2 Œ1;C1� there exists a unique Ld -evolution
family .'s;t / over M such that for all z 2M

@'s;t

@t
.z/ D G.'s;t .z/; t/ a.e. t 2 Œs;C1/: (57)



Classical and Stochastic Löwner–Kufarev Equations 119

Conversely for any Ld -evolution family .'s;t / overM there exists a Herglotz vector
field G of order d such that (57) is satisfied. Moreover, if H is another weak
holomorphic vector field which satisfies (57), then G.z; t/ D H.z; t/ for all z 2 M
and almost every t 2 R

C.

Equation (57) is the bridge between the Ld -Herglotz vector fields and Ld -
evolution families. In [42] the result has been proved for any complete hyperbolic
complex manifoldM with Kobayashi distance of class C1 outside the diagonal, but
the construction given there only allowed to start with evolution families of order
d D C1. Next, in [117] the case of Ld -evolution families has been proved for the
case M D B

n the unit ball in C
n. Finally, in [18], Theorem 17 was proved in full

generality.
The previous equation, especially in the case of the unit ball of Cn and for the

case d D C1, with evolution families fixing the origin and having some particular
first jets at the origin has been studied by many authors, we cite here Pfaltzgraff
[184, 185], Poreda [193], Graham et al. [107], Graham et al. [109] (see also [110]).

Using the so-called product formula, proved in convex domains by Reich and
Shoikhet [211] (see also [212]), and later generalized on complete hyperbolic
manifold in [18] we get a strong relation between the semigroups generated at
a fixed time by a Herglotz vector field and the associated evolution family. Let
G.z; t/ be a Herglotz vector field on a complete hyperbolic complex manifold
M . For almost all t � 0, the holomorphic vector field M 3 z 7! G.z; t/ is
an infinitesimal generator. Let .	tr/ be the associated semigroups of holomorphic
self-maps of M . Let .'s;t / be the evolution family associated with G.z; t/. Then,
uniformly on compacta of M it holds

	rt D lim
m!1'ım

t;tC r
m
D lim

m!1 .'t;tC r
m
ı : : : ı 't;tC r

m
/„ ƒ‚ …

m

:

14.5 Löwner Chains on Complete Hyperbolic Manifolds

Although one could easily guess how to extend the notion of Herglotz vector fields
and evolution families to several complex variables, the concept of Löwner chains
is not so easy to extend. For instance, starting from a Herglotz vector field on the
unit ball of Cn, one would be tempted to define in a natural way Löwner chains
with range in C

n. However, sticking with such a definition, it is rather hard to get a
complete solution to the Löwner PDE. In fact, in case D D B

n the unit ball, much
effort has been done to show that, given an evolution family .'s;t / on B

n such that
's;t .0/ D 0 and d.'s;t /0 has a special form, then there exists an associated Löwner
chain. We cite here the contributions of Pfaltzgraff [184,185], Poreda [193], Graham
et al. [107], Graham et al. [109], Arosio [16], Voda [255]. In the last two mentioned
papers, resonances phenomena among the eigenvalues of d.'s;t /0 are taken into
account.
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The reason for these difficulties is due to the fact that, although apparently
natural, the definition of Löwner chains as a more or less regular family of univalent
mappings from the unit ball to C

n is not the right one. And the reason why this is
meaningful in one dimension is just because of the Riemann mapping theorem, as
we will explain.

Indeed, as shown before, there is essentially no difference in considering
evolution families or Herglotz vector fields in the unit ball of Cn or on complete
hyperbolic manifolds, since the right estimates to produce the Löwner equation are
provided just by the completeness of the Kobayashi distance and its contractiveness
properties.

The right point of view is to consider evolution families as random iteration
families, and thus, the “Löwner chains” are just the charts of the abstract basins
of attraction of such a dynamical system. To be more precise, let us recall the theory
developed in [20]. Interesting and surprisingly enough, regularity conditions—
which were basic in the classical theory for assuming the classical limiting process
to converge—do not play any role.

Definition 12. Let M be a complex manifold. An algebraic evolution family is
a family .'s;t /0�s�t of univalent self-mappings of M satisfying the evolution
property (55).

A Ld -evolution family is an algebraic evolution family because all elements of a
Ld -evolution family are injective as we said before.

Definition 13. Let M;N be two complex manifolds of the same dimension.
A family .ft /t�0 of holomorphic mappings ft W M ! N is a subordination chain
if for each 0 � s � t there exists a holomorphic mapping vs;t W M ! M such that
fs D ft ı vs;t . A subordination chain .ft / and an algebraic evolution family .'s;t /
are associated if

fs D ft ı 's;t ; 0 � s � t:
An algebraic Löwner chain is a subordination chain such that each mapping ft W

M ! N is univalent. The range of an algebraic Löwner chain is defined as

rg .ft / WD
[
t�0
ft .M/:

Note that an algebraic Löwner chain .ft / has the property that

fs.M/ 	 ft .M/; 0 � s � t:
We have the following result which relates algebraic evolution families to

algebraic Löwner chains, whose proof is essentially based on abstract categorial
analysis:

Theorem 18 ([20]). Let M be a complex manifold. Then any algebraic evolution
family .'s;t / on M admits an associated algebraic Löwner chain .ft WM ! N/.
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Moreover if .gt WM ! Q/ is a subordination chain associated with .'s;t / then there
exist a holomorphic mapping�W rg .ft /! Q such that

gt D � ı ft ; 8t � 0:
The mapping� is univalent if and only if .gt / is an algebraic Löwner chain, and in
that case rg .gt / D �.rg .ft //.

The previous theorem shows that the range rg .ft / of an algebraic Löwner
chain .ft / is uniquely defined up to biholomorphisms. In particular, given an
algebraic evolution family .'s;t / one can define its Löwner range Lr.'s;t / as the
biholomorphism class of the range of any associated algebraic Löwner chain.

In particular, if M D D the unit disc, then the Löwner range of any evolution
family on D is a simply connected non compact Riemann surface, thus, by the
uniformization theorem, the Löwner range is either the unit disc D or C. Therefore,
in the one-dimensional case, one can harmlessly stay with the classical definition of
Löwner chains as a family of univalent mappings with image in C.

One can also impose Ld -regularity as follows:

Definition 14. Let d 2 Œ1;C1�. Let M;N be two complex manifolds of the
same dimension. Let dN be the distance induced by a Hermitian metric on N . An
algebraic Löwner chain .ft WM ! N/ is a Ld -Löwner chain (for d 2 Œ1;C1�) if
for any compact set K 		M and any T > 0 there exists a kK;T 2 Ld.Œ0; T �;RC/
such that

dN .fs.z/; ft .z// �
Z t

s

kK;T .�/d� (58)

for all z 2 K and for all 0 � s � t � T .

The Ld -regularity passes from evolution family to Löwner chains:

Theorem 19 ([20]). Let M be a complete hyperbolic manifold with a given
Hermitian metric and d 2 Œ1;C1�. Let .'s;t / be an algebraic evolution family
on M and let .ft WM ! N/ be an associated algebraic Löwner chain. Then .'s;t /
is a Ld -evolution family on M if and only if .ft / is a Ld -Löwner chain.

Once the general Löwner equation is established and Löwner chains have been
well defined, even the Löwner–Kufarev PDE can be generalized:

Theorem 20 ([20]). Let M be a complete hyperbolic complex manifold, and let N
be a complex manifold of the same dimension. Let G W M � R

C ! TM be a
Herglotz vector field of order d 2 Œ1;C1� associated with the Ld -evolution family
.'s;t /. Then a family of univalent mappings .ft WM ! N/ is an Ld -Löwner chain
associated with .'s;t / if and only if it is locally absolutely continuous on R

C locally
uniformly with respect to z 2 M and solves the Löwner–Kufarev PDE

@fs

@s
.z/ D �.dfs/zG.z; s/; a.e. s � 0; z 2M:
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14.6 The Löwner Range and the General Löwner PDE in C
n

As we saw before, given a Ld -evolution family (or just an algebraic evolution
family) on a complex manifold, it is well defined the Löwner range Lr.'s;t / as the
class of biholomorphism of the range of any associated Löwner chain.

In practice, it is interesting to understand the Löwner range of an evolution family
on a given manifold. For instance, one may ask whether, starting from an evolution
family on the ball, the Löwner range is always biholomorphic to an open subset
of Cn. This problem turns out to be related to the so-called Bedford’s conjecture.
Such a conjecture states that given a complex manifold M , an automorphism f W
M ! M and a f -invariant compact subset K 	 M on which the action of f is
hyperbolic, then the stable manifold of K is biholomorphic to C

m for some m �
dimM . The equivalent formulation which resembles the problem of finding the
Löwner range of an evolution family in the unit ball is in [78], see also [17] where
such a relation is well explained.

In [16, Sect. 9.4] it is shown that there exists an algebraic evolution family .'s;t /
on B

3 which does not admit any associated algebraic Löwner chain with range in
C
3. Such an evolution family is, however, not Ld for any d 2 Œ1;C1�.
In the recent paper [19] it has been proved the following result:

Theorem 21. Let D 	 C
n be a complete hyperbolic starlike domain (for instance,

the unit ball). Let .'s;t / be an Ld -evolution family, d 2 Œ1;C1�. Then the Löwner
range Lr.'s;t / is biholomorphic to a Runge and Stein open domain in C

n.

The proof, which starts from the existence of a Löwner chain with abstract range,
is based on the study of manifolds which are union of balls, using a result by
Docquier and Grauert to show that the regularity hypothesis guarantees Rungeness
and then one can use approximation results of Andersén and Lempert in order to
construct a suitable embedding.

As a corollary of the previous consideration, we have a general solution to
Löwner PDE in higher dimension, which is the full analogue of the one-dimensional
situation:

Theorem 22 ([19]). Let D 	 C
N be a complete hyperbolic starlike domain.

Let G W D � R
C ! C

N be a Herglotz vector field of order d 2 Œ1;C1�. Then
there exists a family of univalent mappings .ft WD ! C

N / of order d which solves
the Löwner PDE

@ft

@t
.z/ D �dft .z/G.z; t/; a.a. t � 0;8z 2 D: (59)

Moreover, R WD [t�0ft .D/ is a Runge and Stein domain in C
N and any other

solution to (59) is of the form .˚ ıft/ for a suitable holomorphic map˚ W R! C
N .

In general, one can infer some property of the Löwner range from the dynamics
of the evolution family. In order to state the result, let us recall what the Kobayashi
pseudometric is:
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Definition 15. Let M be a complex manifold. The Kobayashi pseudometric �M W
TM ! R

C is defined by

�M .zI v/ WD inffr > 0 W 9g W D!M holomorphic W g.0/ D z; g0.0/ D 1

r
vg:

The Kobayashi pseudometric has the remarkable property of being contracted by
holomorphic maps, and its integrated distance is exactly the Kobayashi pseudodis-
tance. We refer the reader to [134] for details.

Definition 16. Let .'s;t / be an algebraic evolution family on a complex manifold
M . For v 2 TzM and s � 0 we define

ˇsz .v/ WD lim
t!1 �M .'s;t .z/I .d's;t /z.v//: (60)

Since the Kobayashi pseudometric is contracted by holomorphic mappings the
limit in (60) is well defined.

The function ˇ is the bridge between the dynamics of an algebraic evolution
family .'s;t / and the geometry of its Löwner range. Indeed, in [20] it is proved that
if N is a representative of the Löwner range of .'s;t / and .ft W M ! N/ is an
associated algebraic Löwner chain, then for all z 2 M and v 2 TzM it follows

f �
s �N .zI v/ D ˇsz .v/:

In the unit disc case, if .'s;t / is an algebraic evolution family, the previous
formula allows to determine the Löwner range: by the Riemann mapping theorem
the Löwner range is either C or D. The first being non-hyperbolic, if ˇsz .v/ D 0 for
some s > 0; z 2 D (v can be taken to be 1), then the Löwner range is C, otherwise
it is D.

Such a result can be generalized to a complex manifold M . Let aut.M/ denote
the group of holomorphic automorphisms of a complex manifoldM . Using a result
by Fornæss and Sibony [77], in [20] it is shown that the previous formula implies

Theorem 23. Let M be a complete hyperbolic complex manifold and assume that
M=aut.M/ is compact. Let .'s;t / be an algebraic evolution family on M . Then

1. If there exists z 2 M , s � 0 such that ˇsz .v/ ¤ 0 for all v 2 TzM with v ¤ 0,
then Lr.'s;t / is biholomorphic to M .

2. If there exists z 2 M , s � 0 such that dimCfv 2 TzM W ˇsz .v/ D 0g D 1, then
Lr.'s;t / is a fiber bundle with fiber C over a closed complex submanifold of M .
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30. I.E. Bazilevič, Generalization of an integral formula for a subclass of univalent functions.

Mat. Sb. N.S. 64 (106), 628–630 (1964)
31. J. Becker, Löwnersche, Differentialgleichung und quasikonform fortsetzbare schlichte Funk-

tionen. J. Reine Angew. Math. 255, 23–43 (1972)
32. J. Becker, Ch. Pommerenke, Schlichtheitskriterien und Jordangebiete. J. Reine Angew. Math.

354, 74–94 (1984)
33. V. Beffara, The dimension of the SLE curves. Ann. Probab. 36(4), 1421–1452 (2008)
34. A.A. Belavin, A.M. Polyakov, A.B. Zamolodchikov, Infinite conformal symmetry in two-

dimensional quantum field theory. Nuclear Phys. B 241(2), 333–380 (1984)
35. E. Berkovich, B. Shein, Odyssey of Fritz Noether. Epilogue, Notes in Jewish History (2009),

no. 11(114), July
36. E. Berkson, H. Porta, Semigroups of holomorphic functions and composition operators. Mich.

Math. J. 25, 101–115 (1978)
37. L. Bieberbach, Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte

Abbildung des Ein- heitskreises vermitteln. S.-B. Preuss. Akad. Wiss. 940–955 (1916)
38. Bill of indictment on L.A. Vishnevskiı̆. February 15, 1938. Novosibirsk
39. K.I. Bobenko, On the theory of extremal problems for univalent functions of class S . Trudy

Mat. Inst. Steklov. vol. 101 (Izdat. “Nauka”, Moscow, 1972)
40. E. Bombieri, On the local maximum property of the Koebe function. Inv. Math. 4, 26–67

(1967)
41. F. Bracci, M. D. Contreras, S. Díaz-Madrigal, Pluripotential theory, semigroups and boundary

behaviour of infinitesimal generators in strongly convex domains. J. Eur. Math. Soc. 12, 23–
53 (2010)

42. F. Bracci, M.D. Contreras, S. Díaz-Madrigal, Evolution families and the Löwner equation
I: the unit disk. J. Reine Angew. Math. 672, 1–37 (2012)

43. F. Bracci, M.D. Contreras, and S. Díaz-Madrigal, Evolution Families and the Löwner
Equation II: complex hyperbolic manifolds. Math. Ann. 344, 947–962 (2009)

44. F. Bracci, M.D. Contreras, S. Díaz-Madrigal, Semigroups versus evolution families in the
Löwner theory. J. Anal. Math. 115(1), 273–292 (2011)



126 F. Bracci et al.

45. L. de Branges, A proof of the Bieberbach conjecture. Preprint E-5-84, Leningrad Branch of
the Steklov Institute of Mathematics, LOMI, Leningrad, 1984

46. L. de Branges, A proof of the Bieberbach conjecture. Acta Math. 154(1–2), 137–152 (1985)
47. D. Bshouty, W. Hengartner, A variation of the Koebe mapping in a dense subset of S . Can.

J. Math. 39(7), 54–73 (1987)
48. J. Cardy, Boundary conformal field theory, in Encyclopedia of Mathematical Physics, ed. by

J.-P. Francoise, G. Naber, S. Tsun Tsou (Elsevier, Amsterdam, 2006), pp. 333–340
49. L. Carleson, N. Makarov, Aggregation in the plane and Loewner’s equation. Comm. Math.

Phys. 216, 583–607 (2001)
50. A. Carverhill, Flows of stochastic dynamical systems: ergodic theory. Stochastics 14(4), 273–

317 (1985)
51. D.Y.C. Chan, B.D. Hughes, L. Paterson, Ch. Sirakoff, Simulating flow in porous media. Phys.

Rev. A 38(8), 4106–4120 (1988)
52. D. Chelkak, S. Smirnov, Universality in the 2D Ising model and conformal invariance of

fermionic observables. Invent. Math. 189(3), 515–580 (2012)
53. M.D. Contreras, S. Díaz-Madrigal, P. Gumenyuk, Löwner chains in the unit disk. Rev. Mat.

Iberoam. 26(3), 975–1012 (2010)
54. M.D. Contreras, S. Díaz-Madrigal, P. Gumenyuk, Local duality in Löwner equations. J.

Nonlinear Convex Anal. (to appear). Available in http://arxiv.org/pdf/1202.2334.pdf
55. M.D. Contreras, S. Díaz-Madrigal, P. Gumenyuk, Loewner Theory in annulus I: evolution

families and differential equations. Trans. Am. Math. Soc. 365, 2505–2543 (2013)
56. M.D. Contreras, S. Díaz-Madrigal, P. Gumenyuk, Loewner Theory in annulus II: Loewner

chains. Anal. Math. Phys. 1, 351–385 (2011)
57. J. Conway, Functions of One Complex Variable II (Springer, New York, 1995)
58. E. Date, M. Kashiwara, T. Miwa, Vertex operators and functions: transformation groups for

soliton equations II. Proc. Jpn. Acad. Ser. A Math. Sci. 57, 387–392 (1981)
59. E. Date, M. Kashiwara, M. Jimbo, T. Miwa, Transformation groups for soliton equations.

Nonlinear Integrable Systems—Classical Theory and Quantum Theory (Kyoto, 1981) (World
Sci. Publishing, Singapore, 1983), pp. 39–119

60. B. Davidovitch, H.G.E. Hentschel, Z. Olami, I. Procaccia, L.M. Sander, E. Somfai, Diffusion
limited aggregation and iterated conformal maps. Phys. Rev. E 59(2), 1368–1378 (1999)

61. B. Davidovitch, M.J. Feigenbaum, H.G.E. Hentschel, I. Procaccia, Conformal dynamics of
fractal growth patterns without randomness. Phys. Rev. E 62(2), 1706–1715 (2000)

62. A. Dick, Emmy Noether. 1882–1935 (Birkhäuser, Basel, 1970)
63. L. A. Dickey, Soliton Equations and Hamiltonian Systems, 2nd edn. Advanced Series in

Mathematical Physics, vol. 26 (World Scientific, Singapore, 2003)
64. R.G. Douglas, Banach Algebra Techniques in Operator Theory, 2nd edn. Graduate Texts in

Mathematics, vol. 179. (Springer, New York, 1998)
65. B. Doyon, Conformal loop ensembles and the stress–energy tensor: I. Fundamental notions

of CLE. arXiv:0903.0372 (2009)
66. B. Doyon, Conformal loop ensembles and the stress–energy tensor: II. Construction of the

stress–energy tensor. arXiv:0908.1511 (2009)
67. B. Doyon, Calculus on manifolds of conformal maps and CFT. J. Phys. A Math. Theor.

45(31), 315202 (2012)
68. P.L. Duren, H.S. Shapiro, A.L. Shields, Singular measures and domains not of Smirnov type.

Duke Math. J. 33, 247–254 (1966)
69. J. Dubédat, SLE and the free field: partition functions and couplings. J. Am. Math. Soc. 22(4),

995–1054 (2009)
70. D.A. Dubovikov, An analog of the Loëwner equation for mappings of strip. Izv. Vyssh.

Uchebn. Zaved. Mat. 51(8), 77–80 2007 (Russian); translation in Russian Math. (Iz. VUZ)
51(8), 74–77 (2007)

71. P.L. Duren, M. Schiffer, The theory of the second variation in extremum problems for
univalent functions. J. Anal. Math. 10, 193–252 (1962/1963)

72. P.L. Duren, Univalent Functions (Springer, New York, 1983)



Classical and Stochastic Löwner–Kufarev Equations 127

73. C.J. Earle, A.L. Epstein, Quasiconformal variation of slit domains. Proc. Am. Math. Soc.
129(11), 3363–3372 (2001)

74. L.D. Faddeev, Discretized Virasoro Algebra. Contemporary Mathematics, vol. 391 (American
Mathematical Society, Providence, RI, 2005), pp. 59–67

75. M. Fekete, G. Szegö, Eine Bemerkung über ungerade schlichte Funktionen. J. Lond. Math.
Soc. 8(2), 85–89 (1933)

76. C.H. FitzGerald, Ch. Pommerenke, The de Branges theorem on univalent functions. Trans.
Am. Math. Soc. 290, 683–690 (1985)

77. J.E. Fornæss, N. Sibony, Increasing sequences of complex manifolds. Math. Ann. 255, 351–
360 (1981)

78. J.E. Fornæss, B. Stensønes, Stable manifolds of holomorphic hyperbolic maps. Int. J. Math.
15(8), 749–758 (2004)

79. S. Friedland, M. Schiffer, Global results in control theory with applications to univalent
functions. Bull. Am. Math. Soc. 82, 913–915 (1976)

80. S. Friedland, M. Schiffer, On coefficient regions of univalent functions. J. Anal. Math. 31,
125–168 (1977)

81. R. Friedrich, The global geometry of stochastic Loewner evolutions. Probabilistic Approach
to Geometry. Advanced Studies in Pure Mathematics, vol. 57 (Mathematical Society of Japan,
Tokyo, 2010), pp. 79–117

82. R. Friedrich, W. Werner, Conformal restriction, highest-weight representations and SLE.
Comm. Math. Phys. 243(1), 105–122 (2003)

83. L.A. Galin, Unsteady filtration with a free surface. Dokl. Akad. Nauk USSR 47, 246–249
(1945). (in Russian)

84. R.V. Gamkrelidze, Foundations of Optimal Control Theory (Tbilisi University, Tbilisi, 1977)
85. P.R. Garabedian, M.A. Schiffer, A proof of the Bieberbach conjecture for the fourth

coefficient. J. Rational Mech. Anal. 4, 427–465 (1955)
86. C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura, Korteweg-deVries equation and

generalization. VI. Methods for exact solution. Comm. Pure Appl. Math. 27, 97–133 (1974)
87. F.W. Gehring, E. Reich, Area distortion under quasiconformal mappings. Ann. Acad. Sci.

Fenn. Ser. A I 388, 1–14 (1966)
88. J.-L. Gervais, Infinite family of polynomial functions of the Virasoro generators with

vanishing Poisson brackets. Phys. Lett. B 160(4–5), 277–278 (1985)
89. l. Gibbons, S.P. Tsarev, Conformal maps and reductions of the Benney equations. Phys. Lett.

A 258(4–6), 263–271 (1999)
90. G.M. Goluzin, Über die Verzerrungssätze der schlichten konformen Abbildungen. Rec. Math.

[Mat. Sbornik] N.S. 1(34)(1), 127–135 (1936)
91. G.M. Goluzin, Sur les théor Jemes de rotation dans la théorie des fonctions univalentes. Rec.

Math. [Mat. Sbornik] N.S. 1(43)(1), 293–296 (1936)
92. G.M. Goluzin, On the parametric representation of functions univalent in a ring. Mat. Sbornik

N.S. 29(71), 469–476 (1951)
93. G.M. Goluzin, Geometrical Theory of Functions of a Complex Variable, 2nd edn. (Nauka,

Moscow, 1966)
94. G. S. Goodman, Pontryagins Maximal Principle as a variational method in conformal

mapping. Abstracts of Brief Scientific Communications, sec. 13 (ICM Moscow, 1966), pp.
7–8

95. G.S. Goodman, Univalent functions and optimal control, Ph.D. Thesis, Stanford University,
1968

96. V.V. Goryainov, V.Ya. Gutlyanskiı̆, Extremal Problems in the Class SM , Mathematics
collection (Russian) (Izdat. “Naukova Dumka”, Kiev, 1976), pp. 242–246

97. V.V. Gorjainov, On a parametric method of the theory of univalent functions. Math. Notes
27(3–4), 275–279 (1980)

98. V.V. Gorjainov, Boundary functions of a system of functionals composed of values of a
univalent function and its derivative. Soviet Math. (Iz. VUZ) 26(7), 91–94 (1982)



128 F. Bracci et al.

99. V.V. Gorjainov, Extremals in Estimates of Functionals Depending on Values of a Univalent
Function and Its Derivative. Theory of Mappings and Approximation of Functions (“Naukova
Dumka”, Kiev, 1983), pp. 38–49

100. V.V. Gorjainov, The Parametric Method and Extremal Conformal Mappings. Soviet Math.
Dokl. 28(1), 205–208 (1983)

101. V.V. Goryainov, Semigroups of conformal mappings. Mat. Sb. (N.S.) 129(171)(4), 451–472
(1986) (Russian); translation in Math. USSR Sbornik 57, 463–483 (1987)

102. V.V. Goryajnov, Evolution families of analytic functions and time-inhomogeneous Markov
branching processes. Dokl. Akad. Nauk 347(6) 729–731 (1996); translation in Dokl. Math.
53(2), 256–258 (1996)

103. V.V. Goryainov, The Löwner – Kufarev equation and extremal problems for conformal
mappings with fixed points on the boundary (in Russian). Talk at the International Workshop
on Complex Analysis and its Applications, Steklov Mathematical Institute, Moscow, 26
December 2011

104. V.V. Goryainov, I. Ba, Semigroups of conformal mappings of the upper half-plane into itself
with hydrodynamic normalization at infinity. Ukrainian Math. J. 44, 1209–1217 (1992)

105. V.V. Goryainov, O.S. Kudryavtseva, One-parameter semigroups of analytic functions, fixed
points and the Koenigs function. Mat. Sb. 202(7), 43–74 (2011) (Russian); translation in
Sbornik: Mathematics 202(7), 971–1000 (2011)

106. V.V. Goryainov, Semigroups of analytic functions in analysis and applications. Uspekhi Mat.
Nauk 67(6), 5–52 (2012)

107. I. Graham, H. Hamada, G. Kohr, Parametric representation of univalent mappings in several
complex variables. Can. J. Math. 54, 324–351 (2002)

108. I. Graham, G. Kohr, Geometric Function Theory in One and Higher Dimensions (Marcel
Dekker, New York, 2003)

109. I. Graham, H. Hamada, G. Kohr, M. Kohr, Asymptotically spirallike mappings in several
complex variables. J. Anal. Math. 105 267–302 (2008)

110. I. Graham, G. Kohr, J.A. Pfaltzgraff, The general solution of the Loewner differential equation
on the unit ball in C

n. Contemp. Math. .AMS/ 382, 191–203 (2005)
111. I. Graham, G. Kohr, Geometric Function Theory in One and Higher Dimensions (Marcel

Dekker, New York, 2003)
112. R. Greiner, O. Roth, On support points of univalent functions and a disproof of a conjecture

of Bombieri. Proc. Am. Math. Soc. 129(12), 3657–3664 (2001)
113. D. Grier, E. Ben-Jacob, R. Clarke, L.M. Sander, Morphology and Microstructure in Electro-

chemical Deposition of Zinc. Phys. Rev. Lett. 56, 1264–1267 (1986)
114. B. Gustafsson, A. Vasil’ev, Conformal and Potential Analysis in Hele-Shaw Cells (Birkhäuser,

Basel, 2006)
115. V.Ya. Gutlyanskiı̆, Parametric representation of univalent functions. Dokl. Akad. Nauk SSSR

194, 750–753 (1970)
116. V.Ya. Gutljanskı̆, Parametric Representations and Extremal Problems in the Theory of

Univalent Functions (in Russian), Dissertation Dokt. Fiz.-Mat. Nauk, Mat. Inst. Akad. Nauk
Ukrain. SSR, Kiev, 1972

117. H. Hamada, G. Kohr, J.R. Muir, Extension of Ld -Loewner chains to higher dimensions.
J. Anal. Math. 120(1), 357–392 (2013)

118. T.E. Harris, The Theory of Branching Processes. Corrected reprint of the 1963 original, Dover
Phoenix Editions (Dover Publications, Mineola, NY, 2002)

119. T.C. Halsey, Diffusion-Limited Aggregation: A Model for Pattern Formation. Phys. Today
53(11), 36 (2000)

120. M.B. Hastings, Renormalization theory of stochastic growth. Phys. Rev. E 55(1), 135–152
(1987)

121. M.B. Hastings, L.S. Levitov, Laplacian growth as one-dimensional turbulence. Phys.
D 116(1–2), 244–252 (1998)

122. W.K. Hayman, Multivalent Functions (Cambridge University Press, Cambridge, 1958)



Classical and Stochastic Löwner–Kufarev Equations 129

123. M.H. Heins, Semigroups of holomorphic maps of a Riemann surface into itself which are
homomorphs of the set of positive reals considered additively, in E.B. Christoffel—The
Influence of His Work on Mathematics and the Physical Sciences (Bikhäuser, Basel, 1981),
pp. 314–331

124. H.S. Hele-Shaw, The flow of water. Nature 58, 33–36 (1898)
125. Yu.E. Hohlov, S.D. Howison, C. Huntingford, J.R. Ockendon, A.A. Lacey, A model for non-

smooth free boundaries in Hele-Shaw flows. Q. J. Mech. Appl. Math. 47, 107–128 (1994)
126. G. Ivanov, A. Vasil’ev, Lï£¡wner evolution driven by a stochastic boundary point. Anal. Math.

Phys. 1(4), 387–412 (2011)
127. G. Ivanov, D. Prokhorov, A. Vasil’ev, Non-slit and singular solutions to the Loewner equation.

Bull. Sci. Math. 136(3), 328–341 (2012)
128. V.G. Kac, Simple irreducible graded Lie algebras of finite growth. Math. USSR Izv. 2, 1271–

1311 (1968); Izv. Akad. Nauk USSR Ser. Mat. 32, 1923–1967 (1968)
129. W. Kager, B. Nienhuis, L.P. Kadanoff, Exact solutions for Löwner evolutions. J. Stat. Phys.

115(3–4), 805–822 (2004)
130. N.-G. Kang, N.G. Makarov, Gaussian free field and conformal field theory. arXiv: 1101.1024

[math.PR], 2011
131. N.-G. Kang, N.G. Makarov, Radial SLE martingale-observables. arXiv:1209.1615 [math.PR],

2012
132. H. Kesten, Hitting probabilities of random walks on Z

d . Stoch. Proc. Appl. 25, 165–184
(1987)

133. A.A. Kirillov, D.V. Yuriev, Representations of the Virasoro algebra by the orbit method.
J. Geom. Phys. 5(3), 351–363 (1988)

134. S. Kobayashi, Hyperbolic Complex Spaces (Springer, Berlin Heidelberg, 1998)
135. Y. Komatu, Über eine Verschärfung des Löwnerschen Hilfssatzes. Proc. Imp. Acad. Tokyo

18, 354–359 (1942)
136. Y. Komatu, On conformal slit mapping of multiply-connected domains. Proc. Jpn. Acad.

26(7), 26–31 (1950)
137. E.L. Korotyaev, P. Kargaev, Inverse problems generated by conformal mappings on complex

plane with parallel slits. 2009, unpublished preprint.
138. E.L. Korotyaev, P. Kargaev, Estimates for periodic Zakharov–Shabat operators. J. Differ.

Equat. 249, 76–93 (2010)
139. E.L. Korotyaev, S. Kuksin, KdV Hamiltonian as function of actions. arXiv 1110.4475, 2011
140. I.K. Kostov, I. Krichever, M. Mineev-Weinstein, P.B. Wiegmann, A. Zabrodin, The � -function

for analytic curves. Random Matrix Models and Their Applications. Mathematical Sciences
Research Institute Publications, vol. 40 (Cambridge University Press, Cambridge, 2001), pp.
285–299

141. I. Krichever, M. Mineev-Weinstein, P. Wiegmann, A. Zabrodin, Laplacian growth and
Whitham equations of soliton theory. Phys. D 198(1–2), 1–28 (2004)

142. I. Krichever, A. Marshakov, A. Zabrodin, Integrable structure of the Dirichlet boundary
problem in multiply-connected domains. Comm. Math. Phys. 259(1), 1–44 (2005)
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