
THE NUMBER FIELD SIEVE

Peter Stevenhagen

Abstract. We describe the main ideas underlying the factorization of integers using
the number field sieve.

1. Introduction

The number field sieve is a factoring algorithm that tries to factor a ‘hard’ composite
number by exploiting factorizations of smooth numbers in a well-chosen algebraic
number field. It is similar in nature to the quadratic sieve algorithm, but the un-
derlying number theory is less elementary, and the actual implementation involves
a fair amount of optimization of the various parameters.

The key idea of the algorithm, the use of smooth numbers in number rings
different from Z, was proposed in 1988 by Pollard. Many people have contributed
theoretical and practical improvements since then. An excellent reference for many
of the details left out in this paper is [4]. It contains a complete bibliography of the
early years of the number field sieve, as well as original contributions by most of
the main developers of the algorithm.

Among the successes of the algorithm are the 1999 factorization of the 512-bit
RSA challenge number

RSA-155 = p78 · q78

into a product of two primes of 78 decimal digits each, and the factorization in 2000
of the 233-digit Cunningham number

2773 + 1 = 3 · 533371 · p55 · p71 · p102

into a product of 3, 533371 and three primes of 55, 71, and 102 digits, respectively.
Unlike RSA-155, the second number has a ‘special form’ that can be exploited by
the number field sieve. No other algorithm is currently capable of factoring integers
of this size.

For the quadratic sieve algorithm and the elliptic curve method, the conjectural
asymptotic expected running time for factoring a large number n is

exp(
√

log n log log n),
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which is on a loglog-scale ‘half way’ between exponential and polynomial. The
number field sieve conjecturally improves this bound to

(1.1) exp(c(log n)1/3(log log n)2/3),

where the constant c = (64/9)1/3 ≈ 1.93 can be lowered to (32/9)1/3 ≈ 1.53 if we
are dealing with numbers n of the ‘special form’ explained in section 3.

2. Factoring by congruent squares

The number field sieve is one of the algorithms that tries to factor n by producing
congruent squares modulo n, as explained in [8]. For this we will assume from now
on that n is odd, composite and not a power of a prime number. Note that each
of these conditions can easily be checked for large n. One tries to find integers x
and y satisfying x 6≡ ±y mod n and

(2.1) x2 ≡ y2 mod n.

In this case, gcd(x − y, n) is a non-trivial factor of n. As at least half of all pairs
(x, y) of invertible residue classes modulo n satisfying (2.1) satisfy x 6≡ ±y mod n,
we may expect to find a non-trivial factor of n within a few tries if we can produce
solutions (x, y) to (2.1) in a pseudo-random way.

An old factoring algorithm based on this idea is the continued fraction method .
It uses the convergents xi/yi ∈ Q (i = 1, 2, . . . ) occurring in the continued fraction
expansion of

√
n as defined in [1]. These fractions, which can be computed from

simple two-term recursive relations for the integers xi and yi, provide rational
approximations to the real number

√
n. The associated integers

Qi = x2
i − ny2

i

are of absolute value at most 2
√

n, and we may hope to be able to find a fair
number of these Qi which are smooth. As we saw in [8], it is a matter of linear
algebra over the field of two elements to construct a square from a sufficiently large
set of integers that factor over a given factor base. From every square y2 =

∏

i∈I Qi,
we find a solution

(
∏

i∈I

xi)
2 ≡ y2 mod n

to the congruence (2.1).
The quadratic sieve replaces the integers Qi in the continued fraction algorithm

by the values of the polynomial

Q(X) = X2 − n.

For integers x satisfying |x−√
n| < M for some small bound M , the absolute value

of Q(x) is not much larger than 2M
√

n. As M has to be large enough to allow for a
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reasonable supply of x-values, the numbers Q(x) we encounter here are somewhat
larger than the Qi above. However, the advantage of using values of the polynomial
Q is that the values of x for which Q(x) is smooth may be detected by sieving .

From the smooth values of Q, we construct a square y2 =
∏

x∈S Q(x) and a
solution

(
∏

x∈S

x)2 ≡ y2 mod n,

to the basic congruence (2.1) exactly as for the continued fraction algorithm.

The algebraic description one may give of both methods is as follows. We have
constructed squares (x2, y2) ∈ Z × Z whose images under the reduction map

Z × Z
φ−→ Z/nZ× Z/nZ

(x2
i , x

2
i − ny2

i ) 7−→ (x2
i , x

2
i )

(x2, x2 − n) 7−→ (x2, x2)

lie in the ‘diagonal’. If we are lucky, φ(x, y) does not land in

D = {(x,±x) : x ∈ Z/nZ}

and we find a non-trivial factor of n. As (x2, y2) is constructed in such a way that
φ(x, y) has no obvious reason to always end up in D, we expect to be lucky in at
least half of all cases.

The construction of squares in the continued fraction and quadratic sieve meth-
ods requires many auxiliary numbers Qi or Q(x) of size O(

√
n) to be smooth. The

superior performance of the number field sieve stems from the fact that it is a
sieving method that requires substantially smaller auxiliary numbers to be smooth:
they are of size

exp(c′(log n)2/3(log log n)1/3)

with c′ = (64/3)1/3 ≈ 2.77. Informally phrased, the ‘length’ of these numbers is
not half of the length of n, but only the 2/3-rd power of the length of n. This
improvement is obtained by replacing Z×Z by Z×Z[α] for a suitable number ring

Z[α] and producing squares (x2, γ2) with diagonal image under the reduction map

Z × Z[α]
φ−→ Z/nZ × Z/nZ.

Exactly as before, this yields a solution

(2.2) x2 ≡ φ(γ)2 mod n

to our basic congruence (2.1).
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3. Number rings

A number field is a finite field extension of the field Q of rational numbers, and
a number ring [10] is by definition a subring of a number field. The basic type of
number ring used in the number field sieve is the ring

Z[α] = Z[X]/fZ[X]

generated by a ‘formal zero’ α = (X mod fZ[X]) of some irreducible polynomial
f ∈ Z[X] of degree d ≥ 1. The elements of this ring are finite expressions

∑

i≥0 aiα
i

with ai ∈ Z. One may obtain an embedding Z[α] ⊂ C by taking α to be a complex

zero of f . Note that even though the field of fractions of a number ring is always
of the form Q(α) for some root α of an irreducible polynomial in Z[X], there are
many number rings that are of finite rank over Z but not of the form Z[α].

We will take f to be a monic irreducible polynomial in Z[X], such that

Z[α] = Z · 1 ⊕ Z · α ⊕ Z · α2 ⊕ . . .⊕ Z · αd−1

is integral over Z. It is an order in the field of fractions Q(α) of Z[α].
The norm

N : Q(α) → Q

takes x ∈ Q(α) to the determinant of the multiplication-by-x map on the Q-vector
space Q(α). It is multiplicative, and for non-zero x ∈ Z[α], the absolute value

|N(x)| = #(Z[α]/xZ[α]) ∈ Z

of the norm of x measures the ‘size’ of x.

Example 3.1. The best known example of a number ring with d = deg(f) > 1 is
probably the ring Z[i] of Gaussian integers obtained by putting f = X2 + 1 and
α = i =

√
−1. For this ring, the norm function is given by the simple formula

N(a + bi) = a2 + b2. //

More generally, one can find the norm of an element x = a − bα ∈ Q(α) from the

irreducible polynomial f =
∑d

i=0 ciX
i of α as

(3.2) N(a − bα) = bdf(a/b) =
∑d

i=0 cia
ibd−i.

For polynomial expressions g(α) in α of higher degree the norm can efficiently be
computed from the resultant of f and g, but we won’t need this.

For a number ring Z[α] to be useful in factoring n, it needs to come with a
reduction homomorphism

φ : Z[α] → Z/nZ.



THE NUMBER FIELD SIEVE 5

Giving such a homomorphism amounts to giving a zero m = φ(α) of f modulo n.
In order to have a ‘small’ number ring Z[α], one tries to choose a polynomial f of
moderate degree—in practice d is usually between 3 and 10, although its optimal
value does slowly tend to infinity with n—and having small coefficients. This is not
an easy problem, but for certain special n one can find very small f .

Example 3.3. For the Fermat number

n = F9 = 229

+ 1 = 2512 + 1

the polynomial f = X5 + 8 is irreducible in Z[X] and satisfies

f(2103) = 2515 + 8 = 8n ≡ 0 mod n.

Similarly, for the record factorization of the Cunningham number n = 2773 + 1
mentioned in the introduction, the polynomial f = X6 + 2 is irreducible in Z[X]
and satisfies

f(2129) = 2774 + 2 = 2n ≡ 0 mod n. //

For numbers n of the special form n = re−s, with r, s and e ‘small’, one can find a
small polynomial f as in the example. For general n we cannot hope to be so lucky in
finding f , and one has to deal with ‘large’ number rings. The special and the general

number field sieve stand for the versions of the algorithm corresponding to these
two cases. As is to be expected, the special number field sieve has a somewhat better
conjectural running time, and this is reflected by the size of the record factorizations
for each of these versions.

We will mainly be concerned with the case of general integers n to be factored.
For such n, the ‘base m’ method yields a polynomial f of any desired degree d > 1
such that m = m(d) is a zero of f modulo n. One simply puts

m =
(

integer part of n1/d
)

and writes n in base m as
n =

∑d
i=0 cim

i.

Then f =
∑d

i=0 ciX
i is a polynomial in Z[X] satisfying f(m) = n. In realistic

situations n is much larger than d, which ensures that f will be monic; one may
further assume that f is irreducible, as non-trivial factors of f yield non-trivial
factors of n.

From |ci| < m < n1/d we deduce that the discriminant ∆(f) of f satisfies

(3.4) |∆(f)| < d2dn2−3/d.

As |∆(f)| often exceeds n, we cannot hope to be able to factor ∆(f).
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4. Sieving for smooth elements

Having chosen d, f and m as above, we can combine the ordinary reduction map
on Z with our reduction map on Z[α] to obtain a ring homomorphism

Z × Z[α]
φ−→ Z/nZ × Z/nZ

(x,
∑d−1

i=0 aiα
i) 7−→ (x mod n,

∑d−1
i=0 aim

i mod n).

By construction, the elements (a − bm, a − bα) have φ-image in the ‘diagonal’. In
order to combine them into squares, we need to find sets S of coprime integer pairs
(a, b) for which we have

∏

(a,b)∈S

(a − bm) is a square in Z;(4.1)

∏

(a,b)∈S

(a − bα) is a square in Z[α].(4.2)

As in the case of the quadratic sieve, this is in principle done by sieving for smooth

elements (a − bm, a − bα) and combining them into a square via linear algebra
methods over F2. The details are however more involved.

Let us define an element (a− bm, a− bα) ∈ Z×Z[α] to be y-smooth if a− bm is
a y-smooth rational integer and a− bα is a y-smooth algebraic integer in Z[α]. The
latter condition simply means that the norm N(a− bα) ∈ Z is a y-smooth integer.
On the rational side, the procedure to find a set S for which (4.1) holds is more or
less standard. We pick a ‘universe’

U = {(a, b) : |a| ≤ u, 0 < b ≤ u and gcd(a, b) = 1}

of coprime integer pairs (a, b) depending on a parameter u.
Using the factor base B1 consisting of primes p ≤ y and a sign-bit, we can

determine the subset of pairs (a, b) ∈ U for which a − bm is y-smooth by sieving.
here we have a 2-dimensional array of pairs (a, b) over which the sieving with the
primes in B1 needs to be done. One may simply choose to sieve over a for each value
of b, but there exist other methods than this straightforward ‘line-by-line’ sieving.
Recent record factorizations have used a combination of different sieving methods.

On the algebraic side, the pairs (a, b) ∈ U for which N(a − bα) is y-smooth can
also be found by sieving with the primes in B1, since we see from (3.2) that the
norms

(4.3) N(a − bα) = bdf(a/b) =

d
∑

i=0

cia
ibd−i

are the (a, b)-values of the homogeneous polynomial f(X, Y ). It is however not

sufficient to find elements a− bα whose norm factors over our factor base B1. This
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information will only enable us to construct a product
∏

(a,b)∈S(a−bα) with square

norm, which is far too weak to imply (4.2). A square in Z[α] certainly has square
norm, but the converse only holds in the trivial case Z[α] = Z, where the norm of
an element is the element itself.

Example 4.4. In the ring of Gaussian integers Z[i] we have

N(3 + 4i) = 32 + 42 = 52 = N(5).

Now 3 + 4i = (2 + i)2 is indeed a square, but 5 = (2 + i)(2 − i) is not. //

The problem we encounter is that different prime divisors of an element x ∈ Z[α]
can give rise to the same prime factor p in its norm N(x). This forces us to keep
track of ‘prime factors’ of x in the ring Z[α].

5. Primes dividing a − bα

The theory of prime divisors in number rings lies at the very heart of algebraic
number theory, and understanding the workings of the number field sieve is not
possible without entering this area. Rather than assuming the more extensive ex-
position on the arithmetic of number rings in [10], we use the concrete example
of our number ring Z[α] to illustrate and motivate the more general statements of
algebraic number theory in that paper.

Let R be any number ring. A prime in R is a non-zero prime ideal p ⊂ R.
The residue class ring F = R/p of a prime is a finite field. We say that p divides

an element x ∈ R if x is contained in p. For the number ring Z the primes pZ
correspond to the prime numbers p ∈ Z. A prime p ⊂ R lies over a unique prime
pZ = p ∩ Z of Z. The corresponding prime number p is the characteristic of the
field F . It is the unique prime number contained in p. The degree of p is the degree
of F over its prime field Fp.

A prime of degree 1 in Z[α] is nothing but the kernel p of a ring homomorphism

π : Z[α] −→ Fp

for some prime number p. As π may be specified by giving the rational prime p
together with the zero rp = π(α) ∈ Fp of (f mod p) to which α is mapped, we use
the ad hoc notation p ∼ (p, rp) to denote p = ker π.

Primes of degree 1 are the only primes we need for the number field sieve. Indeed,
suppose that we have (a, b) ∈ U as in the previous section, and that p is a prime
over p dividing a − bα. Then we have p - b, since p|b would imply a ∈ p ∩ Z = pZ,
contradicting the coprimality of a and b. From a = bα ∈ F = Z[α]/p we find that
rp = α = ab−1 mod p is a zero of (f mod p), and that

p = pZ[α] + (a − bα)Z[α]

is the kernel of the map

Z[α]
π−→ Fp

α 7−→ (ab−1 mod p).
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Thus p ∼ (p, rp) is of degree 1, with rp = ab−1 mod p a zero of f mod p. Conversely,
a prime (p, rp) of degree 1 divides a − bα if we have rp = ab−1 mod p.

From our norm formula (3.2), we see that ab−1 mod p is a zero of (f mod p)
if and only if N(a − bα) is divisible by p. We conclude that for a rational prime
number p, there is a prime divisor p of a− bα in Z[α] that lies over p if and only if
p divides the norm N(a − bα). If p divides N(a − bα), the prime p ∼ (p, rp) with
rp = (ab−1 mod p) is the unique such prime, and we call

ep(a − bα) = ordp(N(a − bα))

the exponent to which p occurs in a − bα. For the primes p of Z[α] that do not
divide a− bα, we put ep(a− bα) = 0. We then have the following fundamental fact.

5.1. Lemma. For each prime p of degree 1, the exponent ep extends to a homo-

morphism

ep : Q(α)∗ → Z.

This Lemma is slightly less innocent than it may appear at first sight, and we will
define ep(x) for arbitrary x ∈ Q(α)∗ in (7.4). There is actually no need to restrict
to primes of degree 1, but we do so as we have not defined the exponent at other
primes. For our purposes, it suffices to know that we have ep(x) = 0 whenever x is
a product of elements a − bα with (a, b) ∈ U and p is a prime of degree at least 2.

6. Sieving and linear algebra

On the rational side, we already chose a factor base B1 consisting of the primes
p ≤ y and a sign bit. For the factorization of our numbers a− bα in Z[α], we choose
a factor base B2 consisting of all primes p ∼ (p, rp) with p ≤ y prime and rp ∈ Fp

a root of (f mod p). There may be several primes in B2 lying over a given rational
prime p, and the notation (p, rp) enables us to distinguish between such primes, and
to identify the prime that accounts for the p-contribution (if any) to N(a − bα).

For each rational p, there are at most d = deg(f) values rp. On average, there
is 1 root of (f mod p) in Fp if we let y tend to infinity. This elegant result of
Kronecker, which was generalized by Frobenius, is now often proved as a corollary
of the Chebotarev density theorem [9]. We deduce that both B1 and B2 are of size
y1+o(1).

The combination of rational and algebraic sieving yields a subset U ′ ⊂ U of pairs
(a, b) ∈ U that give rise to a y-smooth factorization of a− bm in Z and a y-smooth
factorization of a− bα in Z[α]. Such a pair (a, b) ∈ U ′, together with the exponents
of the rational primes p ∈ B1 in a− bm and the exponents of the algebraic primes p

in a− bα, is usually referred to as a relation. All exponents are taken modulo 2, so
they can be stored in a single bit.

In order to obtain dependencies between the exponent vectors of elements in U ′,
the number #U ′ of relations should exceed #B1 + #B2. For large factorizations,
collecting sufficiently many relations may take several years of computer time. As
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different computers can independently test elements (a, b) ∈ U for smoothness, dis-
tribution of the computation over a large number of computers is usually necessary
to perform this step of the algorithm in practice.

The set U ′, which may consist of millions of relations, is often so large that the
linear algebra step over F2 needs to be performed on a computer that is equipped
to handle huge amounts of data. It is important that the matrix of exponents is a
very sparse matrix, which can be transformed into a much smaller ‘dense’ matrix
before it is given to the reduction algorithm that yields the desired dependencies.
A practical reduction algorithm, such as the so-called block Lanczos method, may
run for several days on a single large computer. In this case, distribution of the
problem over more computers is not an easy matter.

Every dependency in the matrix of exponent vectors coming from the pairs
(a, b) ∈ U ′ corresponds to a subset S ⊂ U ′ such that the following two conditions
are satisfied:

∏

(a,b)∈S

(a − bm) is positive with even exponents at all primes p ∈ Z;(6.1)

∏

(a,b)∈S

(a − bα) has even exponents at all primes p ⊂ Z[α].(6.2)

What we need is the validity of (4.1) and (4.2) in order to obtain the required square
in Z × Z[α]. It is a simple and well known fact that (6.1) implies (4.1): requiring
positivity is enough to produce true squares from integers having even exponents at
all prime numbers. The situation is not so simple in Z[α]: several obstructions may
prevent the validity of the implication (6.2) ⇒ (4.2). Writing β =

∏

(a,b)∈S(a− bα)

for the element in (6.2), they are the following.

6.3. The ring Z[α] is possibly not the ring of integers O of Q(α). The ring of
integers, which is the maximal order in Q(α), is the ‘text book ring’ for which the
theorem of unique prime ideal factorization holds. If we have Z[α] 6= O, then (6.2)
need not imply that βO is the square of an ideal.

6.4. If βO is the square of some ideal c, then c does not have to be a principal

O-ideal. This is exactly the reason why unique prime element factorization has to
be replaced by unique prime ideal factorization in general number fields.

6.5. If βO is the square of some principal ideal γO, we only have β = γ2 up to
multiplication by units in O. This obstruction already occurs in the case for O = Z.
Unlike Z, the ring O usually has infinitely many units.

6.6. If we do obtain an equality β = γ2 in O, we may have γ /∈ Z[α]. If this
happens, the reduction map φ is not defined on γ and we do not obtain our final
congruence (2.2).

Algebraic number theory provides the tools for dealing with all of these obstructions.
In the next section, we will deal with the obstructions 6.3 and 6.6, which arise
from the fact that Z[α] may be strictly smaller than O. Section 8 is devoted to the
obstructions 6.4 and 6.5, which are classical and lie at the roots of algebraic number
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theory. It will be our aim to bound the index [V : (V ∩ Q(α)∗
2
)] of the subgroup

of true squares inside the group V ⊂ Q(α)∗ generated by the elements that meet
condition (6.2).

7. Non-maximality of Z[α]

The ring of integers O ⊂ Q(α), which consists by definition of all elements of Q(α)
that occur as the zero of some monic polynomial in Z[X], is the maximal order
contained in Q(α). It is free of rank d = deg(f) over Z, and contains Z[α] as a
subring of finite index. There is the classical identity

(7.1) ∆(f) = [O : Z[α]]2 · ∆

relating the index [O : Z[α]] to the discriminant ∆(f) of the polynomial f from
(3.4) and the discriminant ∆ of the number field Q(α). As ∆ is known to be a
non-zero integer, we find that [O : Z[α]] is bounded by |∆(f)|1/2. As we do not
want to factor the possibly huge number ∆(f), we may not be able to determine
[O : Z[α]] or O. However, it is a standard fact that for any x ∈ O, we have

f ′(α) · x ∈ Z[α].

This is enough to deal with obstruction 6.6: we simply multiply our purported
square in Z × Z[α] by

(f ′(m)2, f ′(α)2).

Then its square root gets multiplied by (f ′(m), f ′(α)), so it will lie in Z × Z[α].
In order to keep an element that is invertible modulo n, we need to assume that
f ′(m) is coprime to n. This is not a serious restriction as this condition is always
satisfied in practice; if it isn’t, we have found a factor of n without applying the
number field sieve!

Example 7.2. Let us take f = X2 + 16. Then the order Z[α] = Z[4i] has index 4
in the maximal order O = Z[i] in Q(i). Example 4.4 shows that 3 + α = 3 + 4i is
a square in O, but its square root γ = 2 + 1

4α is not in Z[α]. However, the element
f ′(α) · γ = 2α · γ = 4α − 8 does lie in Z[α]. //

In order for an ideal c ⊂ O to be a square of some other ideal, it is necessary
and sufficient that the exponents ordq(b) are even at all primes q of O. This is
an immediate corollary of the classical theorem of unique prime ideal factorization
in O. Now the primes q of O coprime to the index [O : Z[α]] are ‘the same’ as
the ideals p of Z[α] coprime to the index. By this we mean that there is a natural
bijection between the sets of such primes given by q 7→ p = q ∩ Z[α]. Moreover,
if p and q are corresponding prime ideals, the inclusion map Z[α] ⊂ O induces an
isomorphism of the local rings

(7.3) Z[α]p
∼−→ Oq.
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Both rings are discrete valuation rings, and the exponent ep : Q(α)∗ → Z is in this
case equal to the familiar prime ideal exponent eq for the ring of integers O, which
is multiplicative on the set of all non-zero O-ideals, not just the principal ones.

For primes q of O dividing the index [O : Z[α]], the situation is more complicated.
There may be more primes q lying above the same prime p = q∩Z[α], and even if p

has a single extension q in O, the natural map (7.3) need not be an isomorphism. If
either of these happens, p is said to be a singular prime of Z[α]. The other primes
are the regular primes of Z[α].

For a prime p of Z[α], we define the exponent at p as the homomorphism ep :
Q(α)∗ → Z by

(7.4) ep(x) =
∑

q⊃p

f(q/p) eq(x),

where the sum ranges over the primes q ⊂ O lying over p, and f(q/p) is the degree
of the residue field extension Z[α]/p ⊂ O/q. This definition provides the extension
of the homomorphism ep occurring in Lemma 5.1. For regular primes p, formula
(7.4) reduces to ep = eq.

We now consider, inside the subgroup of Q(α)∗ that is generated by the elements
a − bα ∈ Z[α] having gcd(a, b) = 1, the group V of those elements that have even
exponents at the primes p of Z[α]. We let V1 ⊂ V be the subgroup of elements
x ∈ V that have even exponents at all primes q of O, i.e., the elements x ∈ V for
which xO is the square of a O-ideal. We have an injective homomorphism

V/V1 −→
⊕

q|[O:Z[α]]

Z/2Z

x 7−→ (eq(x) mod 2)q,

so V/V1 is an F2-vector space of dimension bounded by the number of primes q

of O dividing the index [O : Z[α]]. In view of (7.1), the number of rational primes
dividing the index is no more than 1

2
log |∆(f)|. For each of these primes there are

at most d = deg(f) primes q in O that divide it, so we find

(7.5) dimF2
(V/V1) ≤ 1

2d · log(∆(f)).

This is a quantitative version of obstruction 6.3. Note that we have completely
disregarded the fact that the elements of V have even exponents at the singular
primes of Z[α]. It is possible to obtain a slightly better upper bound for the index

[V : (V ∩ Q(α)∗
2
)] than that in 8.4 by taking this into account.

8. Finiteness results from algebraic number theory

Inequality (7.5) is the first step in bounding the successive F2-dimensions of the
quotient spaces in the filtration

V ⊃ V1 ⊃ V2 ⊃ V3 = V ∩ Q(α)∗
2
.
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Here V1 is the subgroup from the previous section consisting of those x ∈ V for
which xO is an ideal square, and V2 is the subgroup of those x ∈ V for which xO
is the square of a principal O-ideal. Thus, the F2-spaces V1/V2 and V2/V3 measure
the obstructions 6.4 and 6.5, respectively. We can bound their dimensions using
two fundamental finiteness results from algebraic number theory.

The first result says that the class group of Q(α), which is the group of all
fractional O-ideals modulo the subgroup of principal O-ideals, is a finite abelian
group. One can derive from [5, Theorem 6.5] that its order h can be bounded in
terms of the degree d and the discriminant ∆(f) of f by

(8.1) h < |∆(f)|1/2 · d − 1 + log |∆(f)|d−1

(d − 1)!
.

We can map V1 to the class group by sending x ∈ V1 to the ideal class of the ideal
a satisfying a2 = xO. This map has kernel V2, so we find the dimension of the
F2-vector space V1/V2 to be bounded by log(h), yielding

(8.2) dimF2
(V1/V2) ≤ log(h)/ log(2).

As the elements in V2 are squares in Q(α)∗ up to multiplication by elements of the
unit group O∗, the order of V2/V3 does not exceed the order of O∗/O∗2. By the
Dirichlet unit theorem [10], the group O∗ is the product of a finite cyclic group of
roots of unity in Q(α) with a free abelian group of rank at most d − 1. It follows
that O∗/O∗2 is finite of order at most 2d, and we find

(8.3) dimF2
(V2/V3) ≤ d.

Putting the estimates (3.4), (7.5), (8.1), (8.2) and (8.3) together, we arrive after a
short computation at the following theorem for the values of n and d that we need.

8.4 Theorem. Let V be as above, and suppose we have n > d2d2

> 1. Then the

subgroup V3 = V ∩ Q(α)∗
2

of squares in V satisfies

dimF2
(V/V3) ≤ (log n)3/2.

A more careful analysis using the information at the singular primes of Z[α] shows
[4, Theorem 6.7, p. 61] that the exponent 3/2 can be replaced by 1.

9. Quadratic character columns

The algorithm described so far is only able to produce elements in Z×Z[α] for which

the second component is in V , but not necessarily in the subgroup V3 = V ∩Q(α)∗
2

of squares. In order for an element x ∈ V to be V3, it is necessary and sufficient
that all characters χ : V/V3 → F2 vanish on x. At most k = dim(V/V3) characters
are needed to span the dual space W = Hom(V/V3,F2), and an element x ∈ V is a
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square if and only if all these spanning characters assume the value 1 on x. As there
is no easy way to produce a spanning set of characters, we will use random quadratic
characters instead. An elementary calculation shows that if W is any k-dimensional
F2-vector space, a randomly chosen set of k + e elements has probability at least
1 − 2−e of generating W . As this probability converges exponentially to 1 in the
number e of ‘extra’ random elements, we can be ‘morally sure’ to generate W for
moderate values of e.

We are now faced with the problem of exhibiting suffciently many ‘quadratic
characters’ on Z[α]. On Z, quadratic characters can be obtained from Legendre
symbols x 7→

(

x
p

)

, which are easily evaluated. If x ∈ Z is not a square, we have, in

a sense that is easily made precise,

(

x
p

)

= −1

for ‘half’ of the primes p. More precisely, they are the odd primes p that remain
prime in the number ring Z[

√
x].

Example 9.1. We have
(

−16
p

)

= −1 for all primes p ≡ 3 mod 4. //

Loosely speaking, we can say that an integer x 6= 0 that satisfies
(

x
p

)

= 1 for t

randomly chosen primes p is a square with ‘probability’ 1 − 2−t. We can use an
analogue of this idea over Z[α].

Every prime q = ker π ∼ (q, rq) of degree 1 of Z[α] gives rise to a Legendre
symbol

(

·
q

)

: Z[α]
π−→ Fq

(·

q
)

−→ {±1} ∪ {0}

such that for non-square x ∈ Z[α], we have
(

x
q

)

= −1 ‘half of the time’. For y-

smooth elements x ∈ Z[α], we can avoid the character value 0 by restricting to
Legendre symbols coming from primes q ∼ (q, rq) of degree 1 with q > y. It is a
consequence of the Chebotarev density theorem that the Legendre symbols coming
from such q are equidistributed over Hom(V/V3, {±1}).

In the rational factor base B1 consisting of primes p ≤ y, we incorporated a
‘sign bit’ to ensure that the integers with even prime exponents at all primes p are
actually squares. This ‘sign bit’ for Z is nothing but the non-trivial chracter on the
1-dimensional F2-vector space that becomes V/V3 if we replace Z by Z[α].

In a similar way, we incorporate in our algebraic factor base B2, which so far
consisted of the primes (p, rp) with p ≤ y, a sufficiently large number of F2-valued
characters χq : V → F2 coming from the Legendre symbols of primes q ∼ (q, rq) of
degree 1 with q > y. The character χq is simply the Legendre symbol in additive
notation, and the values χq(a − bα) for (a, b) ∈ U are treated exactly like the
exponent values ep(a − bα). In this way, we obtain a probabilistic algorithm for
producing y-smooth elements x ∈ V that do not only satisfy (6.2) but that are
true squares. In this set-up the outcome of the linear algebra step, which reduces a
matrix of approximate size y × y, consists of subsets S ⊂ U such that not only we
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have (6.1) and (6.2), but in addition

(f ′(m)2
∏

(a,b)∈S

(a − bm), f ′(α)2
∏

(a,b)∈S

(a − bα))

is with very high probability a square (x2, γ2) ∈ Z × Z[α].

10. Square root extraction

The element (x2, γ2) just found yields a solution to our basic congruence (2.1). In
order to obtain a factorization of n, we now need the values (x mod n) and φ(γ)
in Z/nZ. The gcd of n with their difference is hopefully a non-trivial factor of n.
Thus, we need to compute a square root (x, γ) of our square (x2, γ2) ∈ Z×Z[α]. On
the rational side, this is immediate since we know how to extract squares in Z. It is
even possible to avoid computing the large number x2 = f ′(m)2

∏

(a,b)∈S(a − bm)

as we have a complete prime factorization of each of the elements a− bm occurring
in the product, and therefore a prime factorization of the product itself.

On the number field side, the situation is more complicated. The prime ideal
factorization of

∏

(a,b)∈S(a − bα) is easily determined, but this is not immediately

useful as prime ideals may not have generators at all and, moreover, we most likely
will be unable to compute generators for the unit group O∗ in the large number
field Q(α). Only for the special number field sieve [4, p. 21ff], which often yields
rings of integers O with small units and trivial class group, one may be able to
compute a square root of the element γ2 ∈ Z[α] using explicit generators of the
primes in Z[α].

For the general number field sieve, one can compute a root of the polynomial
X2 − γ2 in Q(α) by standard methods, such as successive approximation using
Hensel’s lemma [1] at an appropriate prime. Theoretically, this can be done with-
out affecting the expected asymptotic running time of the algorithm. In practice,
it is feasible as well but rather cumbersome because of the size of the number γ2,
which necessitates the handling of very large numbers in the final iterations. Mont-
gomery’s method [6, 7], which uses complex approximations, has a better practical
performance but has not yet been carefully analyzed.

11. Running time

From the analysis given in [8], it follows that the conjectural asymptotic expected
running time the quadratic sieve takes to factor n is

exp((1 + o(1))
√

log n log log n)

for n tending to infinity. The elliptic curve method has the same running time,
which is ‘half way’ between exponential and polynomial.

For the number field sieve, we can do better if we carefully choose d and f , and
optimize the smoothness bound y and the parameter u for the size of the universe U
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of pairs (a, b) accordingly. We briefly sketch how to find heuristically the asymptotic
optimal values, disregarding all lower order terms that occur along the way.

The basic cost of the algorithm, which is computed as in [8], is u2+o(1) + y2+o(1)

as n tends to infinity. The first term represents the sieving part of the algorithm,
and equals the length of the sieve times a lower order factor. The second term is the
matrix reduction part, which assumes that fast asymptotic methods are applied to
a matrix of size at most y × y. In order to balance these contributions, we will take
log(u) ≈ log(y).

The numbers a− bα we consider are y-smooth if the integer (a− bm) ·N(a− bα)
is, and using (4.3) and the size n1/d of m and of the coefficients of f , we may bound
this integer by

(11.1) un1/d · (d + 1)udn1/d ≈ n2/dud+1,

Here we already take into account that d will be chosen in (11.3) to be of much
smaller order than the other factors. The ‘uu-philosophy’ in [8] shows that a number
x ≈ n2/dud+1 is y-smooth with ‘probability’ r−r, where r = log x/ log y. In order
to maximize this probability, we minimize the quantity

(11.2) r =
log x

log y
≈ log x

log u
≈

(

2 log n

log u

)

1

d
+ d + 1

by taking the degree of f to be d = ( 2 log n
log u )1/2.

In order to obtain sufficiently many relations from our pairs (a, b) ∈ U to create
a dependent matrix, we need u2 · r−r ≈ y. Taking logarithms and replacing log y by
log u, we find log u ≈ r log r or, equivalently, r ≈ log u/ log log u. Comparison with
(11.2) for d as above now leads to

(

2 log n

log u

)1/2

≈ log u

log log u
,

and we take 2/3-rd powers to obtain log u(log log u)−2/3 ≈ 2(log n)1/3. In order to
rewrite this, we observe that if we have real quantities s, t satisfying s = t(log t)a for
some a ∈ R, then, as t tends to infinity, we have t = (1 + o(1))s(log s)−a. Applying
this for t = log u and s = 2(log n)1/3 with a = −2/3 we arrive at

log y ≈ log u ≈ 2(log n)1/3( 1
3 log log n)2/3 = (8/9)1/3(log n)1/3(log log n)2/3.

With this choice of the basic parameters u and y, the asymptotic running time
u2+o(1) + y2+o(1) becomes

exp
(

(

(64/9)1/3 + o(1)
)(

log n
)1/3(

log log n
)2/3

)

,
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as claimed in (1.1). The optimal asymptotic value of the degree d of f comes out
as

(11.3) d ≈
(

2 logn

log u

)1/2

≈
(

3 log n

log log n

)1/3

,

and we find that the size in (11.1) of the integers we require to be smooth is

exp
(

(

(64/3)1/3 + o(1)
)(

log n
)2/3(

log log n
)1/3

)

.

This bound, which we mentioned already in section 2, makes the number field sieve
the fastest general purpose factoring algorithm that is currently known.

As with the quadratic sieve, there are various practical improvements to the
basic number field sieve as we have described it here. The most important “bells
and whistles” are mentioned in [3, Section 6.2.7]. Although they do not significantly
change the asymptotic running time of the algorithm, they greatly enhance its prac-
tical performance, and they are instrumental in completing the record factorizations
that mark the borderlines of what is currently feasible in factoring.
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