- 1. Siano $\mathbf{x} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \in \mathbf{R}^2$ e $\mathbf{y} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$, calcolare;
- a il coseno dell'angolo φ fra i vettori \mathbf{x} e \mathbf{y} ;
- b. il coseno dell'angolo φ fra i vettori $-\mathbf{x}$ e \mathbf{y} ,
- c. il coseno dell'angolo φ fra i vettori \mathbf{x} e $-\mathbf{y}$
- d. il coseno dell'angolo φ fra i vettori $\mathbf{x} \mathbf{y}$ e $\mathbf{x} + \mathbf{y}$
- 2. Sia $\mathbf{x} = \begin{pmatrix} -1 \\ 3 \end{pmatrix} \in \mathbf{R}^2$, trovare un vettore $\mathbf{y} \in \mathbf{R}^2$ tale che:
- a. \mathbf{y} è perpendicolare a \mathbf{x} e $\|\mathbf{y}\| = 3$;
- b. $\mathbf{x} \cdot \mathbf{y} = -2 \, e \, || \, \mathbf{y} \, || = 2;$
- c. $\mathbf{x} \cdot \mathbf{y} = ||\mathbf{x}|| ||\mathbf{y}||$;
- $d. \|\mathbf{x} \mathbf{y}\| = 0;$
- e. $\mathbf{x} \cdot \mathbf{y} = 5 \text{ e } ||\mathbf{y}|| = 1.$
- 3. Trovare (se esistono, altrimenti dimostrare che non possono esistere) $\mathbf{x}, \mathbf{y} \in \mathbf{R}^2$ non nulli tali che
- a. $\| \mathbf{x} + \mathbf{y} \| = \| \mathbf{x} \| + \| \mathbf{y} \|$;
- b. $\|\mathbf{x} + \mathbf{y}\| = \|\mathbf{x}\| + 2\|\mathbf{y}\|$
- c. $\| \mathbf{x} \| = \| \mathbf{y} \| = \| \mathbf{x} + \mathbf{y} \|$.
- 4. Siano $\mathbf{x} = \begin{pmatrix} -2\\1 \end{pmatrix}$ e $\mathbf{y} = \begin{pmatrix} 1\\2 \end{pmatrix}$ calcolare;
- a l'area del triangolo di vertici 0, x e y;
- b. l'area del parallelogramma di vertici $\mathbf{0}, -\mathbf{x}, -\mathbf{y} \in -\mathbf{x} \mathbf{y};$
- c. l'area del parallelogramma di vertici $\mathbf{0}$, $-\mathbf{x}$, \mathbf{y} e $\mathbf{y} \mathbf{x}$;