§1. Introduction. Let \(X^a_{ns}(N) \) denote the modular curve associated with the normalizer of a non-split Cartan group of level \(N \), where \(N \) is an arbitrary integer. The curve \(X^a_{ns}(N) \) is defined over \(\mathbb{Q} \) and the corresponding scheme over \(\mathbb{Z}[1/N] \) is smooth [1]. If \(N \) is a prime, the genus formula for \(X^a_{ns}(N) \) is given in [5, 6]. The curve \(X^a_{ns}(N) \) has genus 0 if \(N < 11 \) and \(X^a_{ns}(11) \) has genus 1. Ligozat [5] has shown that the group of \(\mathbb{Q} \)-rational points on \(X^a_{ns}(11) \) has rank 1. If the genus \(g(N) \) is greater than 1, very little is known about the \(\mathbb{Q} \)-rational points of \(X^a_{ns}(N) \). Since under simple conditions imaginary quadratic fields with class number 1 give an integral point on these curves, Serre and others have asked whether all integral points are obtained in this way [8].

In this note we determine the \(j \)-invariants of elliptic curves corresponding to points of \(X = X^a_{ns}(7) \) which are integral over \(\mathbb{Z}[1/7] \). These are points which are rational over \(\mathbb{Q} \) and do not give cusps modulo \(p \) for \(p \neq 7 \). We prove that each such point corresponds to an exceptional unit of the first kind of the field \(K = \mathbb{Q}(\cos 2\pi/7) \). Nagell [7] has shown that there are 24 such units. Half of these (those arising from the choice of the generator of \(\text{Gal}(K/\mathbb{Q}) \); the other half relate to the other generator) correspond to the integral points of \(X \). They are the values taken by a uniformizing parameter \(f \) of \(X \) at the integral points. By explicitly constructing \(f \) we are able to find a relationship between \(f \) and the modular invariant \(j \). Eight of the 12 \(\mathbb{Z}[1/7] \)-integral points correspond to elliptic curves with complex multiplication (7 of them predictably so; the exception being the point corresponding to the \(j \) invariant having the value 0). The \(j \) invariants for all the \(\mathbb{Z}[1/7] \)-integral points and the corresponding units are given in a table at the end of the paper.

A similar investigation may be made of level 9 instead of level 7. The exceptional units of that field have also been determined by Nagell [7], but all of these correspond to elliptic curves with complex multiplication.

We note that both \(N = 7 \) and \(N = 9 \) give yet another proof that a 10th imaginary quadratic field with \(h = 1 \) does not exist, since such a field would give an integral point on \(X \), distinct from those already found, since 7 and 3 would respectively have to be inert in the field.

The author thanks J.-P. Serre who found the connection between the integral points and Nagell's units and suggested the determination of the invariants.

§2. Units and integral points on \(X \). Let \(F \) be an algebraic number field, a unit \(E \) of \(F \) is called an exceptional unit if there exists another unit \(E_i \) such that

\[E + E_i = 1. \]
It is well known [2] that there are at most finitely many exceptional units in any given number field \(F \). For \(F \) a cyclic cubic field Nagell [7] has called an exceptional unit of \(F \) which satisfies an equation of the form

\[
X^3 - pX^2 + (p - 3)X + 1 = 0, \tag{1}
\]

where \(p \) is a rational integer, an exceptional unit of the first kind. The discriminant of the cubic equation is

\[
(p^2 - 3p + 9)^2.
\]

If \(E \) satisfies equation (1) then \(E \) satisfies the equation

\[
X^3 + (p - 3)X^2 - pX + 1 = 0,
\]

so that, if \(E \) is an exceptional unit of the first kind, so is \(E_1 \), and \(E_1 \) corresponds to \(3 - p \). For the field \(F = K \), Nagell proved that there are 24 such units corresponding to values of \(p \) from \((1, 2), (8, -5), (15, -12) \) and \((1262, -1259) \).

The modular curve \(X \) has 3 conjugate cusps which are defined over the field \(K \). Let \(P_1 \) be the projective line and \(\sigma \) the automorphism \(Z \to 1 - 1/Z \) of \(P_1 \) which is of order 3 and permutes \(1, 0, \infty \) cyclically. Using \(\sigma \) and \(K/Q \) we can obtain a "twist" \(C \) of \(P_1 \). The curve \(C \) therefore has genus 0 and is defined over \(Q \). It has 3 "marked" points (corresponding to the cusps on \(C \)) rational over \(K \) which are permuted by the non-trivial automorphisms of \(K \). It is thus a model of \(X \) over \(Q \). Let \(s \) be the non-trivial automorphism of \(K/Q \) which corresponds to \(\sigma \) by its action on the marked points. We therefore have a \(K \)-isomorphism

\[
f: X \to P_1
\]

taking the cusps of \(X \) to \(0, 1, \infty \) and such that \(f^s = 1 - f^{-1} \).

The isomorphism between \(C \) and \(X \) extends to that of their corresponding schemes over \(Z[1/7] \) since the scheme corresponding to \(X \) is smooth over \(Z[1/7] \). We prove

Lemma 1. Let \(x \in X \) be integral over \(Z[1/7] \) (equivalently \(x \in X(Q) \) and the \(j \)-invariant is in \(Z[1/7] \)). Put \(\varepsilon = f(x) \), where \(f: X \to P_1 \) is the function above, then \(\varepsilon \) is a unit of \(K \) and \(s(\varepsilon) = 1 - \varepsilon^{-1} \).

Proof: Let \(x \in X \) be a point of \(X \) which is integral over \(Z[1/7] \). Then \(\varepsilon = f(x) \) is a unit over \(Z[1/7] \). Also since the \(Q \)-rational points of \(X \) are defined as those corresponding under \(f \) to points \(y \) in \(P_1(K) \) satisfying

\[
s(y) = 1 - 1/y
\]

it suffices to prove that \(\varepsilon \) is a genuine unit of \(K \).

Let \(\rho \) be a generator of the prime ideal above 7 in \(K \). A priori we have \(\varepsilon = \rho^m u \), where \(m \in Z \) and \(u \) is a unit. Hence it suffices to show that \(m = 0 \).

If \(m > 0 \) we obtain a contradiction from the equation

\[
s(\varepsilon) = 1 - \varepsilon^{-1},
\]

since \(s(\varepsilon) \) is a conjugate of \(\varepsilon \) and so is a unit if \(\varepsilon \) is a unit. Similarly if \(m < 0 \) we obtain a contradiction. Hence we have \(m = 0 \) and \(\varepsilon = u \). So that \(\varepsilon \) is a
INTEGRAL POINTS OF A MODULAR CURVE OF LEVEL 7

unit. It is an exceptional unit since

$$e - e \cdot s(e) = 1.$$

From the equation $s(e) = 1 - e^{-1}$ we can also deduce that it is of the first kind (see Nagell [7]).

Since f is a K-isomorphism, the proof of the lemma shows also that any exceptional unit of the first kind e of K which satisfies $s(e) = 1 - e^{-1}$ corresponds to a $\mathbb{Z}[1/7]$-integral point of X.

§3. The function f and the modular invariant j. To relate the function f to the modular invariant j we consider X as a covering of $X(1)$, the j-line.

The covering

$$X \longrightarrow X(1)$$

is of degree 21 and is defined over \mathbb{Q}. If we extend scalars to $\mathbb{Q}(\sqrt{-7})$, this can be factored through a curve Y

$$X \overset{d_1}{\longrightarrow} Y \overset{d_2}{\longrightarrow} X(1)$$

where Y is the modular curve attached to the symmetric group $S_4 \subset PSL_2(F_7)$, and d_3, d_7 are covering maps of degrees 3 and 7 respectively. We may identify Y with the projective line over $\mathbb{Q}(\sqrt{-7})$ by a uniformizing parameter y such that the map

$$Y \overset{d_7}{\longrightarrow} X(1)$$

is given by

$$j = y(y^2 + 7\lambda y + 7\lambda - 21)^3$$

where $\lambda = \frac{1}{2}(1 + \sqrt{-7})$ (see [3, p. 89] and [4, p. 752]). It should be noted that the parameters in Fricke–Klein [4] and here are related by $J = j/(2^33^2)$ and $\lambda \tau = y$.

Since the point $y = \infty$ on Y corresponds to $f = 0, 1$ and ∞ on X and $y = 0$ on Y has a cubic ramification in the covering $X \rightarrow Y$, y must be given by an equation

$$y = \frac{a(f - b)^3}{f(f - 1)^3},$$

for some coefficients a and b in the field $\mathbb{Q}(\sqrt[3]{1})$. So to determine the values of j corresponding to the exceptional units it suffices to determine a and b explicitly. We do this by writing f explicitly in terms of Klein forms $k_{(r,s)}$ where r, s are integers not both congruent to 0 mod 7. Following the method described in [5, Ch. II] we obtain a function

$$f = \mu \frac{k_{(1,0)}k_{(0,1)}k_{(3,2)}k_{(2,3)}k_{(2,5)}k_{(5,3)}k_{(5,9)}k_{(9,2)}}{k_{(1,1)}k_{(2,1)}k_{(1,2)}k_{(1,5)}k_{(1,6)}k_{(3,9)}k_{(0,3)}k_{(5,1)}}$$

where $\mu = \xi^{-2}(1 - \xi^2)(1 - \xi)/(1 - \xi^2)^2$ and $\xi = \exp(2\pi i/7)$. The function f
INTEGRAL POINTS OF A MODULAR CURVE OF LEVEL 7

takes 0, 1 and \(\infty\) respectively at the cusps of \(X\) and is normalized so that expansion of \(y\) at the cusp, where \(f\) has a pole of order 1, is

\[\xi^a q^{-\frac{1}{7}} - 3\lambda + \text{(terms with positive powers of } q)\].

The constant \(\alpha\) satisfies \(0 \leq \alpha \leq 6\) and reflects the ambiguity of \(y\). Expressing \(y\) as a function of \(f\) gives values \(a\) and \(b\) depending on \(\alpha\). The only value of \(\alpha\) which gives \(y\) lying in \(\mathbb{Q}(\sqrt{-7})\) for the exceptional units is 4. It yields the values \(a = 4u^{-1}\) and \(b = 1 + \xi + \xi^4\). From these we obtain the following table.

<table>
<thead>
<tr>
<th>(f)</th>
<th>(y)</th>
<th>(p)</th>
<th>(j)</th>
<th>Discriminant (d) and conductor (l) of the order corresponding to (j) for CM cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-(\xi + \xi^6))</td>
<td>(-(\lambda)^6)</td>
<td>1</td>
<td>2^3</td>
<td>(d = -4, \ l = 1)</td>
</tr>
<tr>
<td>(-(\xi + \xi^2))</td>
<td>-1</td>
<td>1</td>
<td>2^5</td>
<td>(d = -8, \ l = 1)</td>
</tr>
<tr>
<td>(-(\xi + \xi^7))</td>
<td>(-(\lambda)^3)</td>
<td>1</td>
<td>2^{15}</td>
<td>(d = -43, \ l = 1)</td>
</tr>
<tr>
<td>(-(\xi + \xi^3)(\xi^2 + \xi^4)^3)</td>
<td>((3 - \lambda)^3)</td>
<td>15</td>
<td>2^{18}3^5</td>
<td>(d = -67, \ l = 1)</td>
</tr>
<tr>
<td>((\xi^2 + \xi^3)^3(\xi + \xi^4)^3)</td>
<td>(-(\lambda)^3)</td>
<td>15</td>
<td>2^{13}3^511^3</td>
<td>(d = -3, \ l = 1)</td>
</tr>
<tr>
<td>(-(\xi + \xi^3)(\xi^2 + \xi^4)^2)</td>
<td>(-15\lambda)</td>
<td>-5</td>
<td>2^{25}7^5</td>
<td>Non-CM case</td>
</tr>
<tr>
<td>(-(\xi + \xi^3)^3(\xi^2 + \xi^4)^2)</td>
<td>(1 - 15\lambda)</td>
<td>-5</td>
<td>2^{16}3^5</td>
<td>Non-CM case</td>
</tr>
<tr>
<td>(-(\xi + \xi^3)^3(\xi^2 + \xi^4)^2)</td>
<td>(-1(1 + 5\lambda))</td>
<td>-5</td>
<td>2^{25}7^5</td>
<td>Non-CM case</td>
</tr>
<tr>
<td>(440 + 244(\xi^2 + \xi^4) - 305(\xi^3 + \xi^4)(-1 + 5\lambda)^3)</td>
<td>(-1259)</td>
<td>-1259</td>
<td>2^{13}3^5</td>
<td>Non-CM case</td>
</tr>
<tr>
<td>(135 + 305(\xi^2 + \xi^4) + 549(\xi^3 + \xi^4)(5 + \lambda)^3)</td>
<td>(-1259)</td>
<td>-1259</td>
<td>2^817^3</td>
<td>Non-CM case</td>
</tr>
<tr>
<td>(-684 - 549(\xi^2 + \xi^4) - 244(\xi^3 + \xi^4)(-13 + 4\lambda)^3)</td>
<td>(-1259)</td>
<td>-1259</td>
<td>2^911^3</td>
<td>Non-CM case</td>
</tr>
</tbody>
</table>

References

Dr. M. A. Kenku,
Department of Mathematics,
University of Lagos,
Akoka, Lagos, Nigeria.

14K07: ALGEBRAIC GEOMETRY; Special ground fields, arithmetic problems; Elliptic curves. Received on the 23rd of January, 1984.