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Guessing Numbers
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Guessing Numbers

(person x) 7−→ (last 6 digits of phone number of x)
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Guessing Numbers

(person x) 7−→ (last 6 digits of phone number of x)

A Hash Function is a function f from A to B such that

• It is easy to compute f(x) for any x ∈ A.

• For any y ∈ B, it is hard to find an x ∈ A with f(x) = y.

• It is hard to find x, x′ ∈ A with x 6= x′ and f(x) = f(x′).
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Caesar Cipher

VIXYVR XS VSQI
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Caesar Cipher

VIXYVR XS VSQI

A BCDEFGH I J KLMNOPQR S TUVWXYZ
WXYZABCDEFGH I J K LMNOPQR S TUV
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Caesar Cipher

VIXYVR XS VSQI

A BCDEFGH I J KLMNOPQR S TUVWXYZ
WXYZABCDEFGH I J K LMNOPQR S TUV

RETURN TO ROME

7



Caesar Cipher

VIXYVR XS VSQI

A BCDEFGH I J KLMNOPQR S TUVWXYZ
WXYZABCDEFGH I J K LMNOPQR S TUV

RETURN TO ROME

Breaking the code: just try all 26 shifts.
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Substitution Cipher

MQWE WE B YXM QBLHGL

ABCDE F GH I J KLMNOPQRST U VWXYZ
QAZX SWEDCVFRTGBNHYU J MK I OLP
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Substitution Cipher

MQWE WE B YXM QBLHGL

ABCDE F GH I J KLMNOPQRST U VWXYZ
QAZX SWEDCVFRTGBNHYU J MK I OLP

THIS IS A LOT HARDER
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Substitution Cipher

MQWE WE B YXM QBLHGL

ABCDE F GH I J KLMNOPQRST U VWXYZ
QAZX SWEDCVFRTGBNHYU J MK I OLP

THIS IS A LOT HARDER

Breaking the code:

Can not try 26! = 403291461126605635584000000 permutations...
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Solution: Letter Frequencies

English Spanish

A 82 125
B 14 14
C 28 47
D 38 59
E 131 137
F 29 7
G 20 10
H 53 7
I 63 62
J 1 4
K 4 0
L 34 50
M 25 31

English Spanish

N 71 67
O 80 86
P 20 25
Q 1 9
R 68 69
S 61 79
T 105 46
U 25 39
V 9 9
W 15 0
X 2 2
Y 20 9
Z 1 5

out of 1000 letters
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Viginere Cipher

HVD PZAHSQ JMLEIDRXPSG ZVZ UCH OVZZSFUIY
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Viginere Cipher

HVD PZAHSQ JMLEIDRXPSG ZVZ UCH OVZZSFUIY

Shift the letters of the encrypted message according to the value of the

letters of the secret keyword “LLAVES.” (a= 1, b= 2, . . .).

ABCDEFGH I J K L M N O P Q R S T U VWX Y Z
1 2 3 4 5 6 7 8 910111213141516171819202122 23 242526

H VD PZ A H S Q J ML E I DRXP S G ZVZ U C H OVZZ S F U I Y
L L A VE S L L A V E S L L A VE S L L AVE S L L A VES L L AV E
TH E L ETTE R F R EQU E NC I E S ARE NOT P RESERVED
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Viginere Cipher

HVD PZAHSQ JMLEIDRXPSG ZVZ UCH OVZZSFUIY

Shift the letters of the encrypted message according to the value of the

letters of the secret keyword “LLAVES.” (a= 1, b= 2, . . .).

ABCDEFGH I J K L M N O P Q R S T U VWX Y Z
1 2 3 4 5 6 7 8 910111213141516171819202122 23 242526

H VD PZ A H S Q J M L E I D R XP S G ZVZ U C H OVZZ S F U I Y
L L A VE S L L A V E S L L A V E S L L AVE S L L A VES L L AV E
TH E L ETTE R F R EQU E N C I E S ARE N OT P RESERVED

EN ES E N ES

Repeated bigrams stay repeated bigrams

if their distance is a multiple of the length of the key.
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Security

All these ciphers are breakable

once the enemy knows

the type of encryption.
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Enigma

A German WW-II encryption machine, broken by the allies
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ROTORS
Period of 263 substitutions

Weaknesses:

Permutations are involutions

Letter x does not map to x

Rotors can be stolen

Book of initial settings too

19



F

E

D

C

B

A

R
E

FL
E

C
T

O
R

1 2 3

ROTORS
Period of 263 substitutions
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Permutations are involutions
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Rotors can be stolen

Book of initial settings too

User errors:

repeated initial 3 letters

nonrandom initial 3 letters

test message with only T ’s
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Weaknesses:

Permutations are involutions

Letter x does not map to x

Rotors can be stolen

Book of initial settings too

User errors:

repeated initial 3 letters

nonrandom initial 3 letters

test message with only T ’s

British could decipher until 1932, then extra keyboard permutation.
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Weaknesses:

Permutations are involutions
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Rotors can be stolen

Book of initial settings too

User errors:

repeated initial 3 letters

nonrandom initial 3 letters

test message with only T ’s

British could decipher until 1932, then extra keyboard permutation.

Polish until 1939, then extra rotors, no repeated 3 letters.
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ROTORS
Period of 263 substitutions

Weaknesses:

Permutations are involutions

Letter x does not map to x

Rotors can be stolen

Book of initial settings too

User errors:

repeated initial 3 letters

nonrandom initial 3 letters

test message with only T ’s

British could decipher until 1932, then extra keyboard permutation.

Polish until 1939, then extra rotors, no repeated 3 letters.

At the end of the war all messages could be deciphered in 2 days.

The Germans were still confident about ENIGMA.
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Lesson learned

A crypto system should be safe even if

• the enemy knows your encryption algorithm

• the enemy knows lots of plain texts together with their encryptions

(no chosen plain text attacks)
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Lesson learned

A crypto system should be safe even if

• the enemy knows your encryption algorithm

• the enemy knows lots of plain texts together with their encryptions

(no chosen plain text attacks)

Solution

• Use a public algorithm with a secret key.
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Data Encryption Standard (DES, 1974)

Xor:

⊕ 0 1

0 0 1
1 1 0

(x⊕ y)⊕ y = x
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Data Encryption Standard (DES, 1974)

Xor:

⊕ 0 1

0 0 1
1 1 0

(x⊕ y)⊕ y = x

message 1010010101001001
key 0110100100010010⊕

encryption 1100110001011011
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Data Encryption Standard (DES, 1974)

Xor:

⊕ 0 1

0 0 1
1 1 0

(x⊕ y)⊕ y = x

message 1010010101001001
key 0110100100010010⊕

encryption 1100110001011011

encryption ⊕ key = message
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Data Encryption Standard (DES, 1974)

Xor:

⊕ 0 1

0 0 1
1 1 0

(x⊕ y)⊕ y = x

message 1010010101001001
key 0110100100010010⊕

encryption 1100110001011011

encryption ⊕ key = message

message ⊕ encryption = key !DANGER!
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Data Encryption Standard (DES, 1974)

• Pick a secret shared key of 64 bits.

• Divide the message in blocks of 64 bits.

• Encrypting one block consists of a combination of

repeated ⊕ with parts of the key, permutations,

breaking up in subblocks, and small functions by table.
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Data Encryption Standard (DES, 1974)

• Pick a secret shared key of 64 bits.

• Divide the message in blocks of 64 bits.

• Encrypting one block consists of a combination of

repeated ⊕ with parts of the key, permutations,

breaking up in subblocks, and small functions by table.

Disadvantage: Need to agree on a key before hand...

System uses a secret shared key
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Data Encryption Standard (DES, 1974)

• Pick a secret shared key of 64 bits.

• Divide the message in blocks of 64 bits.

• Encrypting one block consists of a combination of

repeated ⊕ with parts of the key, permutations,

breaking up in subblocks, and small functions by table.

Disadvantage: Need to agree on a key before hand...

System uses a secret shared key

Problem: How do you prove a cryptography system is “secure”?
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Public Keys

English Lonapse

many

English

Lonapse

unique

English

Lonapse
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Public Keys

English Lonapse

public key

English

Lonapse

private key

English

Lonapse
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Public Keys

ME ML

ME ML

encrypting, sending,

and decrypting

a message

E2L

L2E
B

A
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Public Keys

ME ML

ME ML

encrypting, sending,

and decrypting

a message

E2L

L2E
B

A

English and Lonapse have same words!
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Public Keys

ME ML

ME ML

encrypting, sending,

and decrypting

a message

E2L

L2E

English and Lonapse have same words!

B

A ?ME? MNL

ME MNL

signing, sending,

and checking the signature

of a message

E2L

L2E
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Public Keys (RSA)

RSA (Rivest, Shamir, Adleman):

An n >> 0, a public key e, and a private key d,

such that xde ≡ x mod n for all x.
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Public Keys (RSA)
0 < M < n

xde ≡ x mod n

M Me

M ≡ (Me)d Me

encrypting, sending,

and decrypting

a message M

B

A M
?
≡ (Md)e Md

M Md

signing, sending,

and checking the signature

of a message
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Public Keys (RSA)

Security of this system is based on our inability to take e-th roots.

A factorization of n allows one to compute d from e.

It is believed that finding d is as hard as factorizing n.

So breaking this system would be as hard as factorizing n.
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Public Keys (RSA)

Security of this system is based on our inability to take e-th roots.

A factorization of n allows one to compute d from e.

It is believed that finding d is as hard as factorizing n.

So breaking this system would be as hard as factorizing n.

Advantages:

compact, use in smart cards

both encryption and signing
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Public Keys (RSA)

Security of this system is based on our inability to take e-th roots.

A factorization of n allows one to compute d from e.

It is believed that finding d is as hard as factorizing n.

So breaking this system would be as hard as factorizing n.

Advantages:

compact, use in smart cards

both encryption and signing

Disadvantages:

Computationally intensive

only small messages

man-in-the-middle attack

(weakness of public keys)
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RSA only encripts small messages

For signing, you can just

sign a hash-function of

the message instead.

B

A H(M)
?
≡ (H(M)d)e [M, H(M)d]

M [M, H(M)d]

signing, sending,

and checking the signature

of a message
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RSA only encripts small messages

For encryption, one can use public-key systems to agree

on a shared secret key for a more efficient encryption

algorithm (like triple-DES).

A certain way of doing this is called PGP (Pretty Good Privacy)
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Public key systems and the man-in-the-middle attack

B A
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Public key systems and the man-in-the-middle attack

B A
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Public key systems and the man-in-the-middle attack

B AM
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Public key systems and the man-in-the-middle attack

B AM
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Public key systems and the man-in-the-middle attack

B AM
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Public key systems and the man-in-the-middle attack

B AM

Solution: A trusted third party

(online companies that garantee you are you

by checking your credit card info)
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Important

• Factorizing integers
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Important

• Factorizing integers

• Discrete logarithms (tomorrow)
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Important

• Factorizing integers

• Discrete logarithms (tomorrow)

• Coffee (now)
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