Number Theory in Cryptography

Introduction

September 20, 2006 Universidad de los Andes

Guessing Numbers

Guessing Numbers

(person x) \mapsto (last 6 digits of phone number of x)

Guessing Numbers

(person x) \mapsto (last 6 digits of phone number of x)

A Hash Function is a function f from A to B such that

- It is easy to compute f(x) for any $x \in A$.
- For any $y \in B$, it is hard to find an $x \in A$ with f(x) = y.
- It is hard to find $x, x' \in A$ with $x \neq x'$ and f(x) = f(x').

VIXYVR XS VSQI

VIXYVR XS VSQI

A BCDEFGHIJKLMNOPQRSTUVWXYZ WXYZABCDEFGHIJKLMNOPQRSTUV

VIXYVR XS VSQI

A BCDEFGHIJKLMNOPQRSTUVWXYZ WXYZABCDEFGHIJKLMNOPQRSTUV

RETURN TO ROME

VIXYVR XS VSQI

A BCDEFGHIJKLMNOPQRSTUVWXYZ WXYZABCDEFGHIJKLMNOPQRSTUV

RETURN TO ROME

Breaking the code: just try all 26 shifts.

Substitution Cipher

MQWE WE B YXM QBLHGL

ABCDEFGHIJKLMNOPQRSTUVWXYZ QAZXSWEDCVFRTGBNHYUJMKIOLP

Substitution Cipher

MQWE WE B YXM QBLHGL

ABCDEFGHIJKLMNOPQRSTUVWXYZ QAZXSWEDCVFRTGBNHYUJMKIOLP

THIS IS A LOT HARDER

Substitution Cipher

MQWE WE B YXM QBLHGL

ABCDEFGHIJKLMNOPQRSTUVWXYZ QAZXSWEDCVFRTGBNHYUJMKIOLP

THIS IS A LOT HARDER

Breaking the code:

Can not try 26! = 403291461126605635584000000 permutations...

Solution: Letter Frequencies

	English	Spanish		English	Spanish
A	82	125	N	71	67
В	14	14	Ο	80	86
C	28	47	Ρ	20	25
D	38	59	Q	1	9
E	131	137	R	68	69
F	29	7	S	61	79
G	20	10	T	105	46
H	53	7	U	25	39
Ι	63	62	V	9	9
J	1	4	W	15	0
K	4	0	X	2	2
L	34	50	Y	20	9
M	25	31	Z	1	5

out of 1000 letters

Viginere Cipher

HVD PZAHSQ JMLEIDRXPSG ZVZ UCH OVZZSFUIY

Viginere Cipher

HVD PZAHSQ JMLEIDRXPSG ZVZ UCH OVZZSFUIY

Shift the letters of the encrypted message according to the value of the letters of the secret keyword "LLAVES." (a=1, b=2, ...).

ABCDEFGHIJKLMNOPQRSTUVWXYZ 1234567891011121314151617181920212223242526

HVD PZAHSQ JMLEIDRXPSG ZVZ UCH OVZZSFUIY LLA VESLLA VESLLAVESLL AVE SLL AVESLLAVE THE LETTER FREQUENCIES ARE NOT PRESERVED

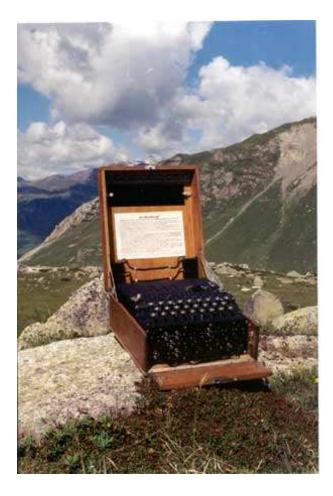
Viginere Cipher

HVD PZAHSQ JMLEIDRXPSG ZVZ UCH OVZZSFUIY

Shift the letters of the encrypted message according to the value of the letters of the secret keyword "LLAVES." (a=1, b=2, ...).

ABCDEFGHIJKLMNOPQRSTUVWXYZ 1234567891011121314151617181920212223242526

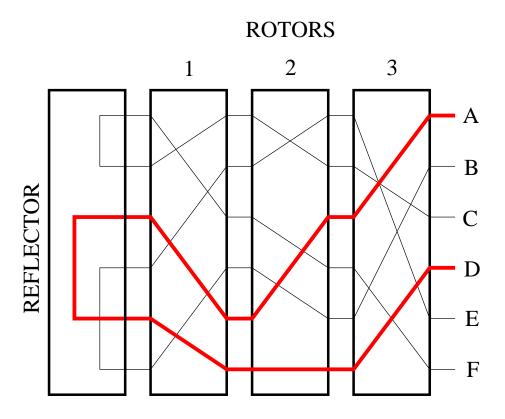
HVD PZAHSQ JMLEIDRXPSG ZVZ UCH OVZZSFUIY LLA VESLLA VESLLAVESLL AVE SLL AVESLLAVE THE LETTER FREQUENCIES ARE NOT PRESERVED EN ES E N ES

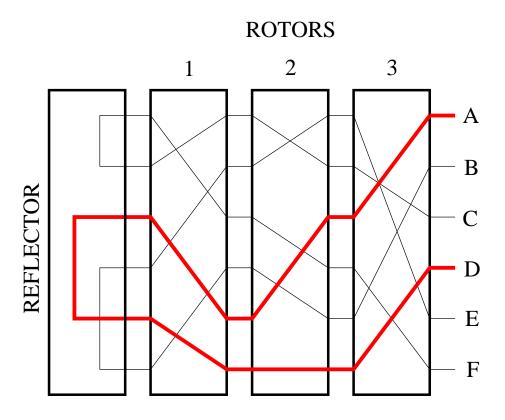

Repeated bigrams stay repeated bigrams

if their distance is a multiple of the length of the key.

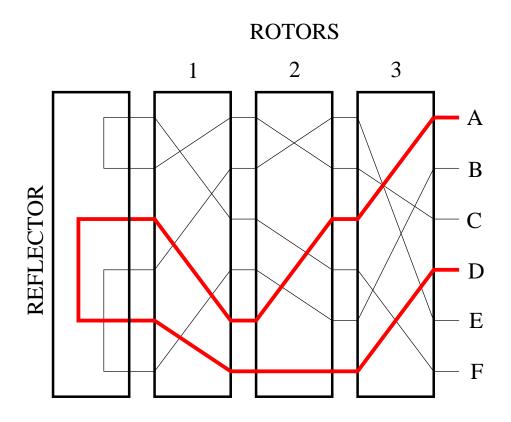
Security


All these ciphers are **breakable** once the enemy knows **the type of encryption**.


Enigma


A German WW-II encryption machine, broken by the allies

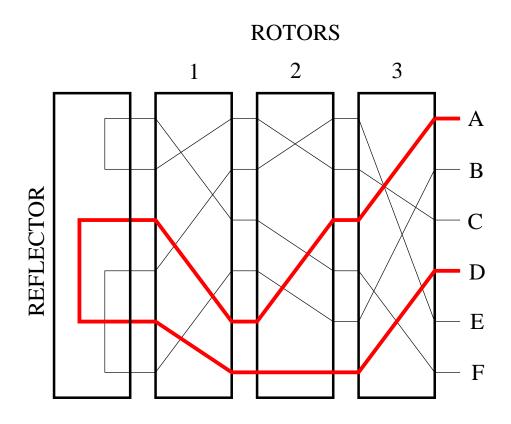
Weaknesses:


Permutations are involutions Letter x does **not** map to xRotors can be stolen Book of initial settings too

Weaknesses:

Permutations are involutions Letter x does **not** map to xRotors can be stolen Book of initial settings too User errors:

repeated initial 3 letters nonrandom initial 3 letters test message with only T's

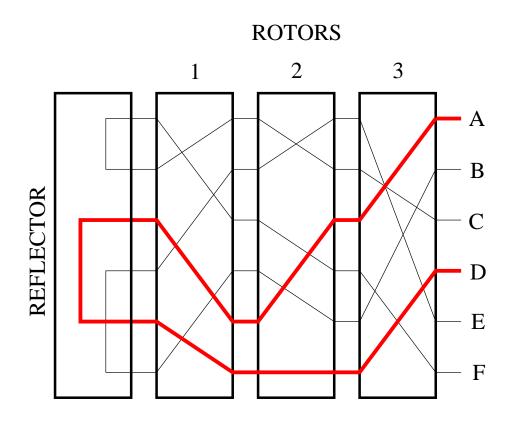


Weaknesses:

Permutations are involutions Letter x does **not** map to xRotors can be stolen Book of initial settings too User errors:

repeated initial 3 letters nonrandom initial 3 letters test message with only T's

British could decipher until 1932, then extra keyboard permutation.



Weaknesses:

Permutations are involutions Letter x does **not** map to xRotors can be stolen Book of initial settings too User errors:

repeated initial 3 letters nonrandom initial 3 letters test message with only T's

British could decipher until 1932, then extra keyboard permutation. Polish until 1939, then extra rotors, no repeated 3 letters.

Weaknesses:

Permutations are involutions Letter x does **not** map to xRotors can be stolen Book of initial settings too User errors:

repeated initial 3 letters nonrandom initial 3 letters test message with only T's

British could decipher until 1932, then extra keyboard permutation.Polish until 1939, then extra rotors, no repeated 3 letters.At the end of the war all messages could be deciphered in 2 days.The Germans were still confident about ENIGMA.

Lesson learned

A crypto system should be safe even if

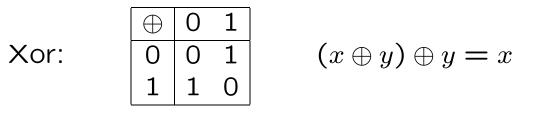
- the enemy knows your encryption algorithm
- the enemy knows lots of plain texts together with their encryptions (no chosen plain text attacks)

Lesson learned

A crypto system should be safe even if

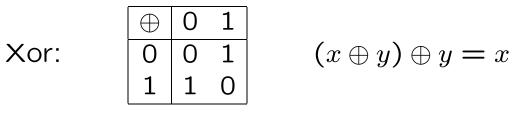
- the enemy knows your encryption algorithm
- the enemy knows lots of plain texts together with their encryptions (no chosen plain text attacks)

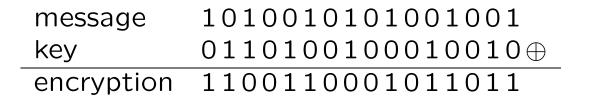
Solution


• Use a public algorithm with a secret key.

Xor:

\oplus	0	1	
0	0	1	
1	1	0	


$$(x\oplus y)\oplus y=x$$

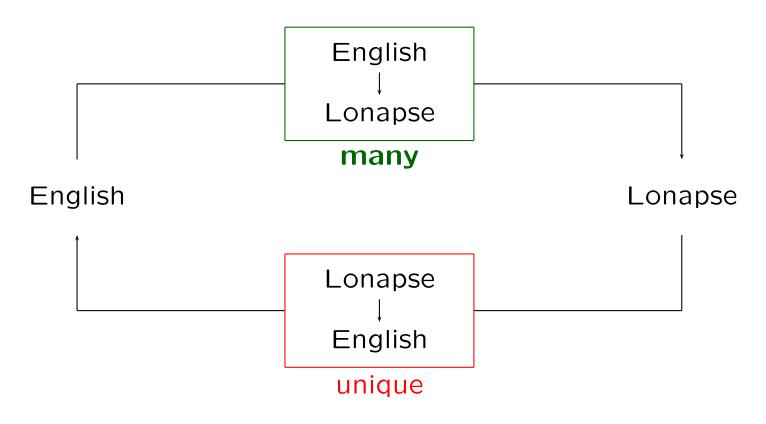


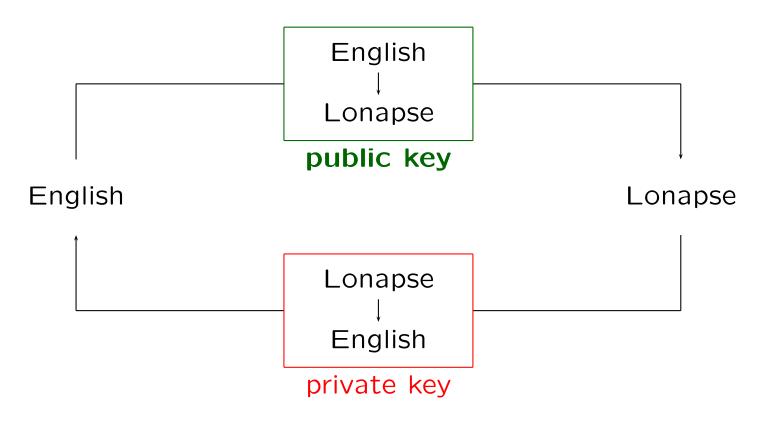
message 101001010000000 key 011010000000000000 encryption 1100110001011011

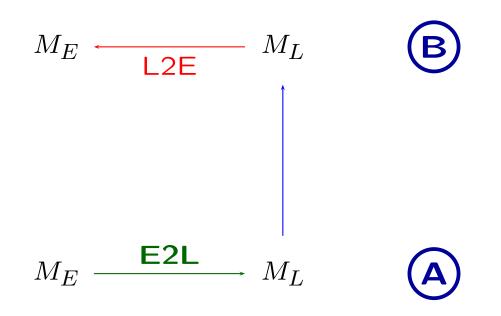
encryption \oplus key = message

encryption \oplus key = message message \oplus encryption = key **!DANGER!**

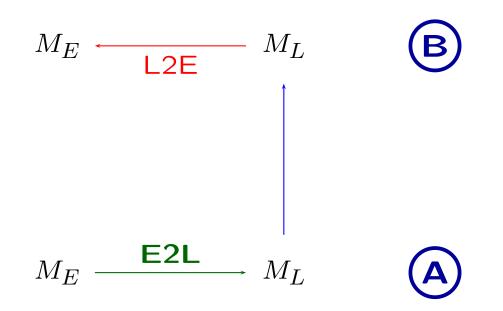
- Pick a secret shared key of 64 bits.
- Divide the message in blocks of 64 bits.
- Encrypting one block consists of a combination of repeated ⊕ with parts of the key, permutations, breaking up in subblocks, and small functions by table.

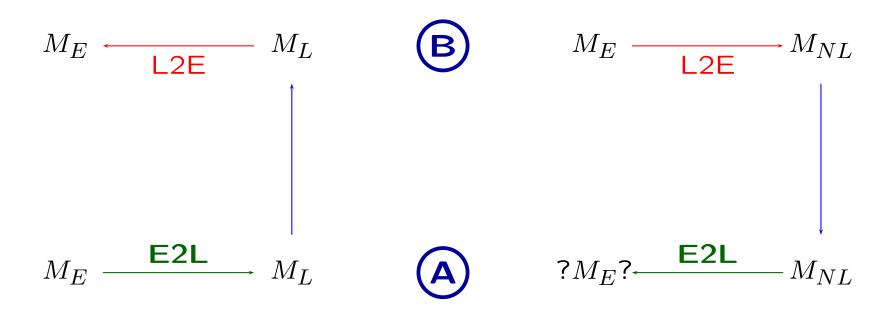

- Pick a secret shared key of 64 bits.
- Divide the message in blocks of 64 bits.
- Encrypting one block consists of a combination of repeated ⊕ with parts of the key, permutations, breaking up in subblocks, and small functions by table.


Disadvantage: Need to agree on a key before hand... System uses a **secret shared key**


- Pick a secret shared key of 64 bits.
- Divide the message in blocks of 64 bits.
- Encrypting one block consists of a combination of repeated ⊕ with parts of the key, permutations, breaking up in subblocks, and small functions by table.

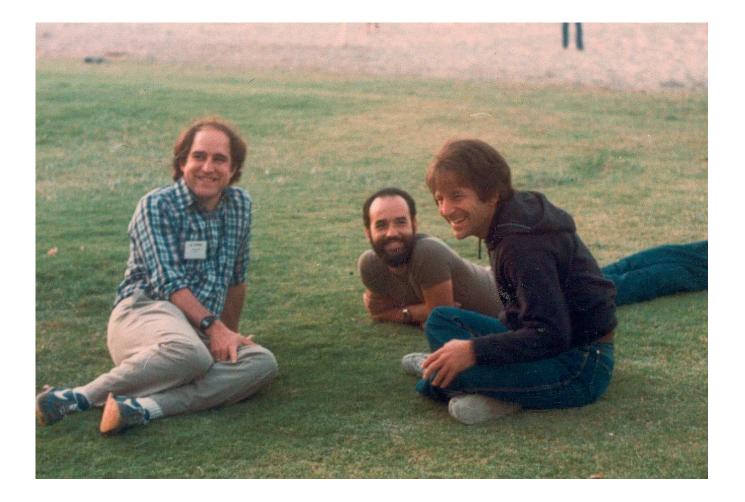
Disadvantage: Need to agree on a key before hand... System uses a **secret shared key**

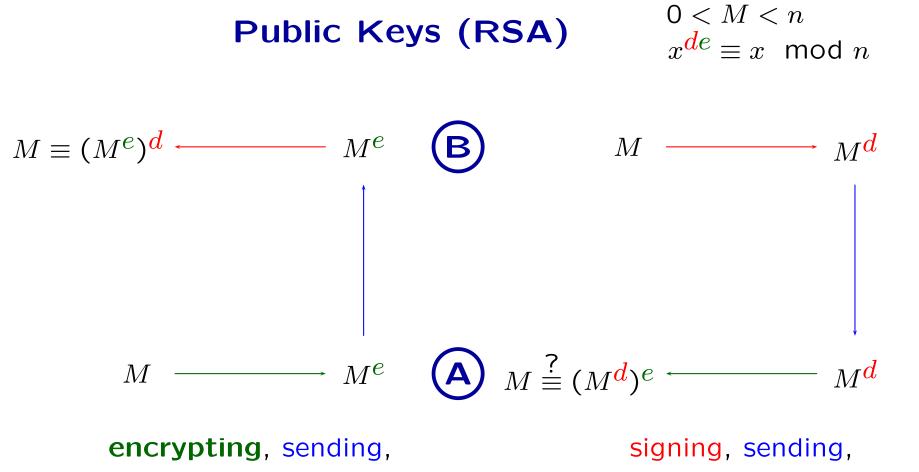

Problem: How do you prove a cryptography system is "secure"?


encrypting, sending, and decrypting a message

encrypting, sending, and decrypting a message

English and Lonapse have same words!


Public Keys



encrypting, sending, and decrypting a message signing, sending, and checking the signature of a message

English and Lonapse have same words!

RSA (Rivest, Shamir, Adleman): An n >> 0, a **public** key e, and a **private** key d, such that $x^{de} \equiv x \mod n$ for all x.

and decrypting and decrypting a message M signing, sending, and checking the signature of a message

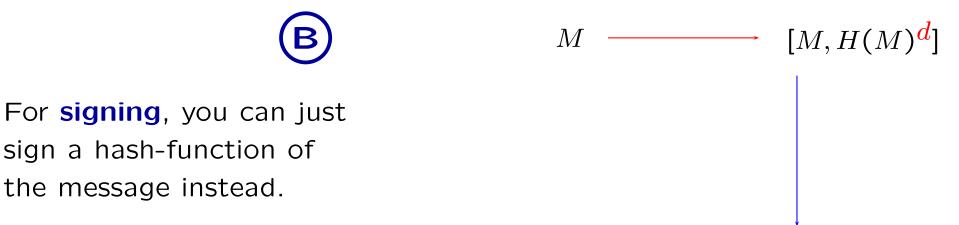
Security of this system is based on our inability to take e-th roots. A factorization of n allows one to compute d from e. It is believed that finding d is as hard as factorizing n. So breaking this system would be as hard as factorizing n.

Security of this system is based on our inability to take e-th roots. A factorization of n allows one to compute d from e. It is believed that finding d is as hard as factorizing n. So breaking this system would be as hard as factorizing n.

Advantages:

compact, use in smart cards both encryption and signing

Security of this system is based on our inability to take *e*-th roots. A factorization of n allows one to compute d from *e*. It is believed that finding d is as hard as factorizing n. So breaking this system would be as hard as factorizing n.

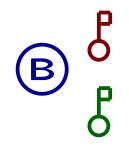

Advantages:

compact, use in smart cards both encryption and signing

Disadvantages:

Computationally intensive only small messages man-in-the-middle attack (weakness of public keys)

RSA only encripts small messages

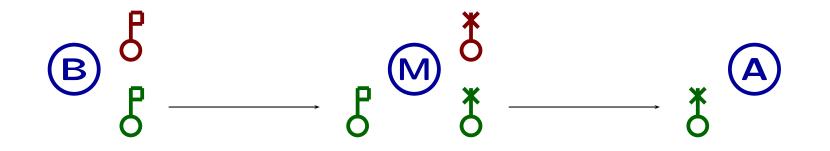

$$(A) \stackrel{?}{\equiv} (H(M)^{d})^{e} \longleftarrow [M, H(M)^{d}]$$

signing, sending, and checking the signature of a message

RSA only encripts small messages

For **encryption**, one can use public-key systems to agree on a shared secret key for a more efficient encryption algorithm (like **triple-DES**).

A certain way of doing this is called **PGP** (Pretty Good Privacy)



Solution: A trusted third party

(online companies that garantee you are you

by checking your credit card info)

Important

• Factorizing integers

Important

- Factorizing integers
- Discrete logarithms (tomorrow)

Important

- Factorizing integers
- Discrete logarithms (tomorrow)
- Coffee (now)