
An explicit example 3rd version Dec 2024

In this example we consider the polynomial

f(X) = X4 + 6X2 − 3X − 6.

Since it is Eisenstein with respect to the prime 3, it is irreducible in Q[X]. Let α denote
a zero of f . In this note we prove the following theorem.

Theorem. Let F = Q(α). Then we have the following.
(a) The ring of integers OF of F is equal to Z[α].
(b) The ideal class group of OF is cyclic of order 4.
(c) the unit group O∗F is generated by −1 and the units

1− α2 + α3 and 7− 6α+ α2 − α3.

1. Discriminant, ring of integers and quadratic form.

Proposition 1. The ring of integers OF of F is equal to Z[α] and the discriminant of F
is equal to −402219 = −3314897.

Proof. In general, if α is a zero of an irreducible polynomial of the form x4−a3X3+a2X
2−

a1X + a0, Newton’s formulas imply that Tr(αk) = 4, a3, a
2
3 − 2a2 and a33 − 3a2a3 − 3a2

for k = 0, 1, 2, 3 respectively. In this case, we find that Tr(αk) = 4, 0,−12 and 9 for
k = 0, 1, 2, 3 respectively. We use the relation αk = −6αk−2 + 3αk−3 + 6αk−4 to compute
the trace of αk for k ≥ 4. This gives Tr(αk) = 96,−90 and −621 for k = 4, 5 and 6
respectively. Therefore the discriminant of the ring Z[α] is given by

det


4 0 −12 9
0 −12 9 96
−12 9 96 −90

9 96 −90 −621

 = −402219 = −3314897.

Since f is Eisenstein at 3 and since 14897 is prime, the ring Z[α] is integrally closed.
Therefore the ring of integers OF of F is equal to Z[α]. This proves the Lemma.

The second derivative of f is 12X2 + 12. Since it has no zeroes, the derivative of
f has only one zero and hence f has only one minimum. Since f(0) = −6 is negative,
f has precisely two real zeroes. They are approximately equal to −0.7542 and 1.1359.
Let φ1 and φ2 denote the corresponding embeddings F ↪→ R. The non-real zeroes are
−0.1908± 2.6393i. Let φ3 : F ↪→ C be the embedding that maps α to −0.1908 + 2.6393i
and φ4 its complex conjugate.

The natural scalar product on the 4-dimensional R-algebra FR gives rise to the fol-
lowing formula for the length of an element x ∈ F ↪→ FR:

||x||2 =
4∑
i=1

|φi(x)|2.
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For the computation of the unit group, it is useful to make this explicit. Since 1, α, α2, α3

is a Z-basis of OF , any x ∈ OF can be written as λ1 + λ2α+ λ3α
2 + λ4α

3 with λi ∈ Z. It
follows that ||x||2 is the value of the quadratic form

Q(X1, X2, X3, X4) =

4∑
i,j=1

aijXiXj , with aij =
∑4
k=1 φk(αi−1)φk(αj−1)

in (λ1, λ2λ3, λ4). The determinant of the matrix (aij) is |∆F |. Numerically, we have

Q(X1, X2, X3, X4) = 4X2
1 − 24X1X3 + 18X1X4 + 15.8644X2

2 − 3.2722X2X3

− 190.1235X2X4 + 100.0599X2
3 − 34.1395X3X4 + 689.0786X2

4

= 4(X1 − 3X3 + 9
4X4)2

+ 15.8644(X2 − 0.1031X3 − 5.9921X4)2

+ 63.8911(X3 + 0.0019X4)2

+ 99.2057X2
4 .

2. The class group.

We compute the Minkowski constant of F . It is given by

4!

44
4

π

√
402219 = 75.7029.

It follows that the class group of OF is generated by the prime ideals of norm ≤ 73.
Generators of these prime ideals can be computed by factoring the polynomial f modulo
the prime numbers p ≤ 73. Prime ideals of characteristic p that have norm pk with k ≥ 2
necessarily satisfy p ≤

√
73. We list these primes in Table I.

Table I.

p

2 p2p
′
2p4 p2 = (α, 2), p′2 = (α+ 1, 2), p4 = (2, 1 + α+ α2)

3 p43 p3 = (α, 3)
5 p5p125 p5 = (5, α+ 2)
7 p7p343 p7 = (7, α− 2)

The remaining prime ideals of norm ≤ 73 are of the form (p, α−z), where p is a prime ≤ 73
and z is a root of the polynomial f in Fp. We list these prime ideals in Table II. Note that
the ring OF does not possess any prime ideals whose norm is between 47 and 73.
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Table II.

p

13 p13 = (13, α− 5)
19 p19 = (19, α+ 9)
23 p23 = (23, α+ 3), p′23 = (23, α+ 16)
29 p29 = (29, α− 7), p′29 = (29, α− 5)
31 p31 = (31, α+ 9), p′31 = (31, α− 6)
41 p41 = (41, α− 17)
43 p43 = (43, α+ 11), p′43 = (43, α+ 20)
47 p47 = (47, α+ 24)

Proposition 2. The class group of OF is generated by p2. Moreover, p42 is principal.

Proof. To see this, we factor a few “small” principal ideals. It is convenient to consider
principal ideals generated by elements of the form a+ bα for a, b ∈ Z, because their norms
are equal to b4f(−a/b) and are easy to compute. We computed the norms of a + bα for
a, b ∈ Z satisfying −5 ≤ a, b ≤ 5. There are 39 such numbers with gcd(a, b) = 1. In
Table III we have listed the factorizations of a + bα all of whose prime ideal factors have
norm ≤ 47.

Table III.

a+ bα |N(a+ bα)|
1 + 2α 47 p47
1 + 4α 29 · 43 p29p43
3− 2α 3 · 43 p3p

′
43

3− 5α 22 · 3 · 7 · 41 p′2
2
p3p7p41

4− 3α 22 · 5 · 31 p22p5p31
1 + 5α 23 · 13 · 31 p′2

2
p13p

′
31

5− α 2 · 13 · 29 p′2p13p
′
29

3 + α 2 · 3 · 23 p′2p3p23
2 + 3α 22 · 23 p22p

′
23

1− 2α 5 · 19 p5p19
2− 3α 25 · 13 p52p13
2− α 22 · 7 p22p7
2 + α 25 · 5 p52p5
2 24 p2p

′
2p4

α 2 · 3 p2p3
1− α 2 p′2

All prime ideals of prime norm ≤ 47 appear as a divisor of one of the numbers in the table.
The only exceptions are p29 = (29, α− 7) and p4. For p29 we observe that α− 7 has norm
22 · 23 · 29. For p4 we remark that it divides the ideal (2). This leads to the factorizations

(α− 7) = p′2
2
p′23p29,

(2) = p2p
′
2p4.
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These factorizations together with the ones listed in Table III show inductively that the
class of each of the prime ideals p with 3 ≤ N(p) ≤ 47 is in fact contained in the subgroup
of ideal classes generated by primes of smaller norm. It follows that the ideal class group of
OF is generated by the primes of norm 2. Since p′2 is principal, ClF is actually generated
by the class of p2 alone. Since p2p3 is equal to the principal ideal generated by α, the class
group is also generated by p3. The fact that (3) = p43, implies that p42 is principal. Indeed,
we have p42 = ( 1

3α
4) = (2α2 − α− 2). This proves the proposition.

It follows that the class group is cyclic of order dividing 4. Attempts to find additional
relations turn out to fail. This leads to the suspicion that the class group is actually cyclic
of order 4 generated by p2 or, equivalently, by p3. In other words, we wonder whether

ClF ∼= Z/4Z?

This is likely, but to prove this we need some information about the unit group O∗F . Indeed,
if the order of the class group were a proper divisor of 4, then p23 would be principal,
generated by β ∈ OF say. Since p43 = (3), this would mean that β2 = 3ε for some ε ∈ O∗F .
In order to be able to check this, we need to know something about ε. Fortunately, we do
not need to know the full unit group O∗F . It suffices to know generators for the unit group
modulo squares. In section 4 we explain how to compute O∗F modulo p-th powers for small
primes p. As an application we prove in section 5 that the class group has order 4.

3. The unit group.

By Dirichlet’s Unit Theorem, the rank of the unit group O∗F is 2. Since F can be embedded
into R, the subgroup of roots of unity is equal to {±1}. Our method to find other units, is
to look for principal ideals (x) and (y) that have the same factorization into prime ideals.
Then we know that x/y is in O∗F . From our list of factored elements of the form a + bα
with a, b ∈ Z, we single out the following factorizations.

Table IV.

a+ bα N(a+ bα)

1− α −2 p′2
1 + α 22 p′2

2

1− 3α −29 p′2
9

We see that the principal ideal generated by (1 − α)2 has the same factorization as the
ideal (1 + α). Therefore the quotient is a unit. Put

ε1 = (1− α)2/(1 + α) = 7− 6α+ α2 − α3.

Similarly, the principal ideal generated by (1 + α)4(1 − α) has the same factorization as
the ideal (1− 3α). A second unit is therefore given by

ε2 = (1 + α)4(1− α)/(1− 3α) = 1− α2 + α3.
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Subsequent attempts to find more units always lead to units that are in the group U
generated by −1, ε1 and ε2. For instance, the factorizations

(3 + 4α) = p3p5, (3− α) = p′2
3
p3p5, (1− α) = p′2

give rise to the unit (1 − α)3(3 + 4α)/(3 − α) which turns out to be equal to −ε1ε2.
Therefore, we wonder

O∗F = U?

We suspect that the answer is yes, but proving rigorously that O∗F is equal to U is not so
easy. We do so in section 6. Solving the problem of section 2, i.e. proving that the class
group of F is cyclic of order 4 is easier. We do this in section 5. The following computer
calculation may convince us that indeed O∗F = U and hF = 4, but it is not a proof.

Remark 3. If it were true that U = O∗F , then the regulator RF is given by

RF = |det

(
log |φ1(ε1)| log |φ2(ε1)|
log |φ1(ε2)| log |φ2(ε2)|

)
| = 29.20221526896605359567660481 . . . ,

which is equal to the covolume of the unit lattice L(O∗F ) divided by
√

2. If it also were true
that hF = #Cl(OF ) is equal to 4, then we can compute the residue of te zeta function of
F in s = 1. It would be equal to

22 · 2π · hFRF
2
√

402219
= 2.314484957373174001420705655 . . .

On the other hand, if either U is a proper subgroup of O∗F or if hF is a proper divisor of 4,
then the residue is k times smaller for some integer k ≥ 2.

This is very unlikely. Indeed, we have

ζF (s)

ζ(s)
=

∏
p(1− 1

N(p)s )∏
p(1−

1
ps )

=
∏
p

∏
p|p(1−

1
N(p)s )

1− 1
ps

and the Euler product converges for s = 1. Its limit is the residue of ζF (s) in s = 1 and is
equal to ∏

p

1

Ep(
1
p )
,

were Ep(X) is a polynomial which is 1 and (1 − X)2 for the ramified primes p = 3 and
p = 14897 respectively.

Table VI.

d1, d2, . . . Ep(X)

1, 1, 1, 1 (1−X)3

1, 1, 2 (1−X2)(1−X)
1, 3 1−X3

2, 2 (1−X2)(1 +X)
4 1 +X +X2 +X3
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For the other primes, Ep is a degree 3 polynomial that depends on the degrees d1, d2, . . .
of the irreducible factors of f modulo p as in Table VI.

The rate of convergence is very slow. Under assumption of the Riemann Hypothesis
for the zeta function of the normal closure of F , it can be proved that a partial product
involving the primes ≤ X approximates the limit with a relative error of the order of
magnitude O(1/

√
X). This is also what happens in practice. A direct evaluation of

an approximation to the Euler product using the primes p < 1000000 gives the value
2.31427982 . . .. The relative error is about 0.0001, which is bit better than the square root
of 1000000. Given this numerical result, it is extremely unlikely that the actual residue is
k times smaller than the partial product for some integer k ≥ 2. It is almost certain that
U = O∗F and hF = 4. A rigorous proof is given in the next sections.

4. Units modulo p-th powers.

In this section we consider the following situation. The field F is the field defined above,
and we have U ⊂ O∗F where

U = 〈−1, ε1, ε2〉.

We try to prove that O∗F = U , in which case [O∗F : U ] = 1. In this section we show how to
check something weaker, namely that a given prime number p does not divide [O∗F : U ].
This kind of information plays a role the determination of the class group as well as the
unit group.

The following algebraic result is useful.

Lemma 4. Let N be a subgroup of a finitely generated abelian group M and let p be
a prime number. Let V be an Fp-vector space. If there exists a group homomorphism
h : M −→ V with the property that dimh(N) = dimM/pM , then we have the following.
(a) The natural map N/pN −→M/pM is bijective;
(b) the index [M : N ] is finite and not divisible by p.

Proof. The homomorphism h factors through M/pM . Consider the following commuta-
tive diagram

N/pN −→ M/pMyh yh
h(N) ⊂ h(M) ⊂ V

The vertical arrows are surjective. Since dimh(N) ≤ dimh(M) ≤ dimM/pM , the hy-
pothesis dimh(N) = dimM/pM means that we have equality everywhere. Therefore
h(N) = h(M) and the map h : M/pM → h(M) is an isomorphism. It follows that the
map N/pN −→M/pM is surjective.

Since M is a finitely generated group, we have dimN/pN ≤ dimM/pM , so that
the map N/pN −→ M/pM is a bijection. This proves (a). The surjectivity of the map
N/pN −→ M/pM also implies that the finitely generated group Q = M/N satisfies
Q/pQ = 0. This means that Q is finite of order prime to p, which implies (b).

We apply Lemma 4 with M and N equal to the multiplicative group O∗F and its
subgroup U respectively. The homomorphism h is provided by the reductions modulo
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suitable prime ideals of OF . Indeed, for any prime ideal p of OF there is a natural
homomorphism O∗F −→ k∗p. Here kp denotes the residue field OF /p. If p is a prime
number dividing #k∗p = N(p)− 1, we get a homomorphism

φp : O∗F −→ k∗p/k
∗
p
p ∼= Z/pZ = V.

By combining these homomorphisms for various prime ideals p, we get homomorphisms
from O∗F to Fp-vector spaces V of higher dimension. In applications, one usually tries to
use prime ideals p of small norm.

Recall the following elementary fact.

Lemma 5. Let q be a prime power and let l be a prime. If l does not divide q − 1, then
every element of F∗q is an l-th power. If l divides q− 1, then a ∈ F∗q is an l-th power if and

only if a(q−1)/l ≡ 1 (mod p).

Proof. If l does not divide q − 1, raising to the l-th power is an isomorphism F∗q → F∗q .
This proves the first statement. When l divides q − 1, the map F∗q −→ F∗q given by

a 7→ a(q−1)/l is a group homomorphism, that induces an isomorphism between F∗q/F
∗
q
l and

the subgroup µl of l-th roots of unity of F∗q . This follows from the fact that F∗q is a cyclic
group. This proves the lemma.

Since −1 is a p-th power when p is odd, the com putation of [O∗F : U ] (mod p) is bit
simpler when p is odd. In this section we only deal with odd primes p. For p = 2, see the
next section. The following proposition is used in the proof of Proposition 12.

Proposition 6. The index [O∗F : U ] is not divisible by the primes p = 3, 5, 7 and 11.

Proof. We explain the case p = 3 in some detail. We apply Lemma 4 with M = O∗F and
N equal to the subgroup generated by −1, ε1 and ε2. Since −1 is a cube, the F3-dimension
of O∗F /O

∗
F
3 is 2. The residue fields of the primes p7 = (7, α− 2) and p13 = (13, α− 5) are

equal to F7 and F13 respectively. The orders of their multiplicative groups are divisible
by 3. Therefore V = F∗7/F

∗
7
3 × F∗13/F

∗
13

3is an F3-vector space of dimension 2. The map
h : M −→ V of Lemma 4 is the map

O∗F −→ F∗7/F
∗
7
3 × F∗13/F

∗
13

3

given by reduction modulo p7 in the first coordinate and by reduction modulo p13 in the
second. We check that the image of U has dimension 2.

First we deal with p7. It turns out that both units ε1 = (1 − α)2/(1 + α) and
ε2 = 1 − α2 + α3 are congruent to 5 (mod p7) . We use the isomorphism of Lemma 5 to
compute the bijection F∗7/F

∗
7
3 ∼= µ3, where µ3 indicates the subgroup third roots of unity

in F∗7. This means that we raise everything to the power (7 − 1)/3 = 2. For both units
we obtain 52 = 4 ∈ µ3 ⊂ F∗7. Finally, we choose a generator of the cyclic group µ3 and
use it to identify µ3 with Z3. Since µ3 = {1, 2, 4}, we may choose 2 as a generator. Then
the map Z/3Z −→ µ3 given by x 7→ 2x is a group isomorphism. The element 4 ∈ µ3

corresponds to the element 2 ∈ Z/3Z. It follows that

h(ε1) =

(
2
2

)
.
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For p13 the computation is similar. The units ε1 and ε2 are congruent to 9 and 10 modulo
p13 respectively. We use Lemma 5 and raise everything to the power (13− 1)/3 = 4. We
get 9 and 3 respectively. The subgroup µ3 of F∗13 is {1, 3, 9}. The bijection Z/3Z −→ µ3

given by x 7→ 3x identifies the elements 9 and 3 of µ3 with the elements 2 and 1 of Z/3Z.
It follows that

h(ε2) =

(
2
1

)
.

Since the matrix (
2 2
2 1

)
is invertible modulo 3, the dimension of the image of U is 2 and Lemma 4 applies. It
follows that 3 does not divide the index [O∗F : U ].

The computation could have been done in other ways, by using different primes. For
instance the order of the multiplicative group of the prime p4 is also divisible by 3. It is easy
to check that both units ε1 and ε2 have images congruent to α+ 1 (mod p4). So, we could
have used p4 instead of p7. Choosing different isomorphisms between the various groups
of 3rd roots of unity and Z/3Z, replaces the columns of the matrix by scalar multiples. It
does not affect the rank of the matrix.

The cases p = 5, 7 and 11. For each of these primes the Fp-dimension of O∗F /O
∗
F
p is 2.

For the prime 5 we use the prime ideals p31 = (31, α+ 9) and p′31 = (31, α− 6). Both have
residue fields F31 We reduce ε1 and ε2 modulo p31 and p′31 and map them to the subgroup
µ5 = {1, 2, 4, 8, 16} of F31 by raising them to the power (31 − 1)/5 = 6 as in Lemma 5.
One checks that ε1 and ε2 are mapped to (16, 8) and (16, 1) respectively in µ5 × µ5. Next
we compute discrete logarithms with respect to the generator 2 of µ5. In other words,
we apply the inverse of the isomorphism Z/5Z → µ5 given by x 7→ 2x. We find that the
images of ε1 and ε2 in Z/5Z× Z/5Z are the columns of the matrix(

4 4
3 0

)
.

Since this matrix is invertible modulo 5, Lemma 4 implies that 5 does not divide the
index [O∗F : U ].

For the prime 7 we use the prime ideals p43 and p′43. The residue fields are both
equal to F43. For the prime 11 we use the primes p23 and p′23. In both cases we find an
invertible 2× 2-matrix and may conclude that 7 and 11 do not divide [O∗F : U ]. We leave
the calculations to the reader.

This proves the proposition.
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5. Units modulo squares.

In this section we discuss the analogue of Proposition 6 of the previous section for the
prime p = 2. There are a few small differences. First of all, in this case −1 is not a p-th
power. It follows that the the F2-dimension of O∗F /O

∗
F
3 is 3 rather than 2.

For the prime p = 2, there are extra homomorphisms from O∗F to Z/2Z, provided by
the embeddings φi : F −→ R. These give rise to homomorphisms

O∗F −→ R∗/R∗2 ∼= Z/2Z.

given by ε 7→ sign(φi(ε)). They are easy to compute.
The mages of ε1 and ε2 under (φ1, φ2, φ3, φ4) in FR are given by

ε1 =


12.5236
0.0086

−2.76− 1.25i
−2.76 + 1.25i

 and ε2 =


0.0019
1.1754

11.91 + 17.09i
11.91− 17.09i

 .

Proposition 7. Let U be the subgroup of O∗F generated by −1, ε1 and ε2. Then the
index [O∗F : U ] is not divisible by 2.

Proof. We apply Lemma 4 with M = O∗F and N = U . Then M/2M ∼= O∗F /O
∗
F
2 is a

3-dimensional F2-vector space. We construct a homomorphism h from M to an F2-vector
space V using the first embedding φ1 : F ↪→ R and the primes p5, p7 and p13. The residue
fields are F5, F7 and F13 respectively. The vector space appearing in Lemma 5 is

V = R∗/R∗2 × F∗5/F
∗
5
2 × F∗7/F

∗
7
2 × F∗13/F

∗
13

2.

It is a 4-dimensional F2-vector space. A small computation shows that the images of −1,
ε1 and ε2 are the columns of the matrix

A =


1 0 0
0 0 0
1 1 1
0 1 0

 .

As an example we explain in some detail how to compute the second column of the matrix A
above. This is the image of ε1 in V . The first coordinate is zero, because φ1(ε1) = 12.5236
is positive and therefore trivial in the group R∗/R∗2 ∼= Z/2Z. The second coordinate
is given by reducing ε1 modulo p5 = (5, α + 2). The residue field OF /p5 is F5. We get
ε1 = (1 − α)2/(1 + α) ≡ (1 + 2)2/(1 − 2) ≡ 1 (mod p5), which is the trivial element of
F∗5/F

∗
5
2 ∼= Z/2Z.

The third coordinate is given by reducing ε1 modulo p7 = (7, α−2). The residue field is
F7. We get ε1 ≡ (1− 2)2/(1 + 2) ≡ 5 (mod p7). The subgroup of squares of F∗7 is {1, 2, 4}.
So, this time ε1 is mapped to the non-trivial element of F∗7/F

∗
7
2 ∼= Z/2Z. Finally, the

fourth coordinate is determined by reducing ε1 modulo p13 = (13, α−5). The residue field
is F13. We get ε1 ≡ (1− 5)2/(1 + 5) ≡ 7 (mod p13). To determine the image in F∗13/F

∗
13

2,
we need to decide whether 7 is a square modulo 13 or not. This can be done by listing
all squares in F∗13, or by applying Lemma 5. Indeed, from 76 ≡ (−3)3 ≡ −1 (mod 13) it
follows that 7 is not a square modulo 13.

Since the rank of A is 3, the condition of Lemma 4 is satisfied and we conclude that
U generates O∗F modulo squares and that the index [O∗F : U ] is not divisible by 2.
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Theorem 8. The class group ClF is cyclic of order 4.

Proof. We saw at the end of section 2 that it suffices to show that 3 is not of the form uβ2

for some u ∈ O∗F and some β ∈ OF . We apply Lemma 5 with M equal to the multiplicative
group

O∗3 = {x ∈ F ∗ : ordp(x) = 0 for all primes p 6= p3}.

Then O∗F is contained in O∗3 . It is the kernel of the non-zero homomorphism v : O∗3 −→ Z
given by v : x 7→ vp3(x). In other words, we have an exact sequence

0 −→ O∗F −→ O∗3
v−→Z

This implies that O∗3 is isomorphic to O∗F × Z so that O∗3/O
∗
3
2 is isomorphic to Z/2Z4

Moreover, 3 is in O∗3 and β, if it exists, it is also in O∗3 .
Let U3 denote the subgroup of O∗3 generated by U and 3. We apply Lemma 5 with

p = 2, with M = O∗3 and N = U3. We extend the homomorphism h of part (a) to the
group O∗3 . This makes sense, since elements of O∗3 are not zero modulo p5, p7 or p13. A
small computation shows that the image of 3 in V is the vector

0
1
1
0

 ,

which is independent of the columns of the matrix A above. Therefore, h(N) has dimension
4 in this case. Lemma 5 implies that the map U3/U

2
3 −→ O∗3/O

∗
3
2 is bijective. It follows

that 3 is not contained in the 3-dimensional subspace generated by −1, ε1 and ε2. In other
words, 3 is not of the form uβ2 for some u ∈ U and some β ∈ OF , as required.

Two final comments on the computations involved in these proofs. We did not make
use of the embedding φ2 and the prime p3, because they happen not to add any information.
The prime p5 gives rise to a zero row of the matrix A and is of no help for the proof of
Proposition 7, but its presence is important for the proof of Theorem 8.

Remark 9. From the relations given in Table III one finds that the ideals of norm ≤ 73
are distributed over the four ideal classes in the following way. Here c denotes the class of
the ideal p2.

Table V.

class

1 p′2, p47
c p2, p19, p23, p′29, p′43
c2 p7, p′23, p29, p43
c3 p3, p4, p5, p13, p′31, p31, p41
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6. The unit group.

In this section we prove that the unit group O∗F is equal to the group U generated by −1,
ε1 and ε2. The images of ε1 and ε2 under the logarithmic map L : O∗F −→ (

∏
φR)0 are

L(ε1) =


2.5276
−4.7494
1.1109
1.1109

 and L(ε2) =


−6.2345
0.1616
3.0364
3.0364

 .

Their lengths are 5.6048 and 7.5720 respectively. The cosine of the angle θ between them
is −0.2304. It follows that the covolume of the rank 2 lattice generated by the vectors of
logarithms of ε1 and ε2 is

||L(ε1)||||(L(ε2)||sin(θ) = 41.2981.

The vectors L(ε1) and L(ε2) are linearly independent. This agrees with the fact that ε1
and ε2 generate a subgroup U of O∗F of rank 2 and that U has finite index m in O∗F .

We want to prove that m = 1. The following inequality is useful.

Lemma 10. Let n ∈ Z>0, let r ∈ R>0 and suppose x1, . . . , xn ∈ R satisfy
∑n
i=1 xi = 0

and
∑n
i=1 x

2
i ≤ r2. Then we have

∑n
i=1 e

2xi ≤ e2r + n− 1− 2r.

Proof. For i = 1, . . . , n put yi = xi/r. Then we have
∑n
i=1 y

2
i ≤ 1 and hence |yi| ≤ 1 for

i = 1, . . . , n. It follows that yk1 + . . . + ykn ≤ y21 + . . . + y2n ≤ 1 for k ≥ 2. Let f(x) denote
the function e2rx − 2rx − 1. Since the Taylor series expansion around 0 of f(x) has no
constant or linear term, while the higher degree terms have positive coefficients, we have∑n
i=1 f(yi) ≤ f(1). Therefore we have

n∑
i=1

e2ryi ≤ e2r − 2r − 1 + 2r

n∑
i=1

yi + n.

Since
∑n
i=1 yi vanishes, the result follows.

Proposition 11. If [O∗F : U ] ≥ m, then there exists η ∈ O∗F with η 6= ±1 and

||η||2 ≤ exp(14.502/
√
m) + 3− 14.502/

√
m.

Proof. The covolume of the logarithmic unit lattice L(O∗F ) is at most 41.2981/m. By
Minkowki’s Theorem, a disk centered in the origin of R2 with radius r satisfying πr2 ≥
4 · 41.2981/m contains a non-zero point of L(O∗F ). This means that there exists a unit
η 6= ±1 for which

4∑
i=1

(log |φi(η)|)2 ≤ 4 · 41.2981/mπ.

Since
∑4
i=1 log |φi(η)| = 0, Lemma 10 applies with r =

√
4 · 41.2981/mπ = 7.251/

√
m and

the bound for ||η||2 follows.
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On the other hand, we have that η = λ1 +λ2α+λ3α
2 +λ4α

3 with λi ∈ Z. In section 1
we saw that this means that ||η||2 = Q(λ1, λ2λ3, λ4) where Q is the quadratic form given
by

Q(X1, X2, X3, X4) = 4(X1 − 3X3 + 9
4X4)2 + 15.8644(X2 − 0.1031X3 − 5.9921X4)2

+ 63.8911(X3 + 0.0019X4)2 + 99.2057X2
4 .

In principle, it is possible to enumerate all (λ1, λ2, λ3, λ4) ∈ Z4 for which Q(λ1, λ2, λ3, λ4)
is at most exp(14.502/

√
m)+3−14.502/

√
m. If it turns out that none of the corresponding

elements in OF has norm ±1, then we know that U = O∗F and we are done.
But this is a cumbersome computation if the upper bound is large. The larger the lower

bound m of Proposition 11 is, the better is the upper bound for ||η||2 = Q(λ1, λ2, λ3, λ4).
Here is a table.

m ||η||2 ≤

3 4322.076
5 652.075
7 237.663

11 77.8703
13 54.7978

Theorem 12. The unit group O∗F is generated by −1, ε1 and ε2.

Proof. Suppose that O∗F 6= U . Propositions 6 and 7 say that [O∗F : U ] is not divisible by
the primes p ≤ 11. It follows that we can take m = 13 in Proposition 11. It follows that
there exist λ1, . . . , λ4 ∈ Z for which η = λ1 + λ2α + λ3α

2 + λ4α
3 is a unit 6= ±1 and for

which ||η||2 = Q(λ1, λ2, λ3, λ4) ≤ 54.7978. Here Q is the quadratic form of section 1. Since

||η||2 = Q(λ1, λ2, λ3, λ4) =

= 4(λ1 − 3λ3 + 9
4λ4)2 + 15.8644(λ2 − 0.1031λ3 − 5.9921λ4)2

+ 63.8911(λ3 + 0.0019λ4)2 + 99.2057λ24.

we have λ3 = λ4 = 0. It follows that

||η||2 = 4λ21 + 15.864λ22 < 54.810,

and hence −1 ≤ λ2 ≤ 1. Since η 6∈ Z and since we may multiply η by −1, we may
assume that λ2 = 1. Then λ21 < (54.810 − 15.864)/4 = 9.74 and hence |λ1| ≤ 3 However,
it follows from the computations in section 1 that α − λ1 does not have norm ±1 when
λ1 ∈ {−3,−2,−1, 0, 1, 2, 3}. Therefore η does not exist and we obtain a contradiction.

This means that O∗F = U as required.

The choice of m in the proof of Theorem 12 is somewhat arbitrary. If we decided to
consider fewer primes in section 4, we would end up with a larger value for m. This means
that the upper bound for Q(λ1, λ2, λ3, λ4) in Proposition 11 is larger, so that we need to
check more quadruples (λ1, λ2, λ3, λ4). If we deal with more primes in section 4, it is the
other way around.
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