p= 1000667 p - 1 = 2 * 500333 bound = 10 primes 2,3,5,7,11,13,17,19,23 1 tries: 2^33728 = 475/-624 = [-1, 1; 2, -4; 3, -1; 5, 2; 13, -1; 19, 1] 25 tries: 3^310192 = 8/91 = [2, 3; 7, -1; 13, -1] 4 tries: 5^727871 = 320/693 = [2, 6; 3, -2; 5, 1; 7, -1; 11, -1] 27 tries: 7^490415 = 399/442 = [2, -1; 3, 1; 7, 1; 13, -1; 17, -1; 19, 1] 26 tries: 11^121212 = 95/72 = [2, -3; 3, -2; 5, 1; 19, 1] 1 tries: 13^710809 = 225/-28 = [-1, 1; 2, -2; 3, 2; 5, 2; 7, -1] 27 tries: 17^790052 = 880/-507 = [-1, 1; 2, 4; 3, -1; 5, 1; 11, 1; 13, -2] 67 tries: 19^886032 = 15/338 = [2, -1; 3, 1; 5, 1; 13, -2] 12 tries: 23^789520 = 289/210 = [2, -1; 3, -1; 5, -1; 7, -1; 17, 2] [1 -33732 -1 2 0 0 -1 0 1 0] [0 3 -310192 0 -1 0 -1 0 0 0] [0 6 -2 -727870 -1 -1 0 0 0 0] [0 -1 1 0 -490414 0 -1 -1 1 0] [0 -3 -2 1 0 -121212 0 0 1 0] [1 -2 2 2 -1 0 -710809 0 0 0] [1 4 -1 1 0 1 -2 -790052 0 0] [0 -1 1 1 0 0 -2 0 -886032 0] [0 -1 -1 -1 -1 0 0 2 0 -789520] [2 0 0 0 0 0 0 0 0 0] solution modulo 500333 [0; 304406; 71175; 480760; 485962; 315126; 205614; 315412; 204968; 1] These are logarithms wrt basis q = 23. Notation = ln EXAMPLE: Take g = 2 as primitive root and compute log_2(3). log_2(3) = ln(3)/ln(2) = 13506 modulo 500333 Try: 2^13506 = 3 mod p (OK: so log_2(3) = 13506 mod p-1) log_2(7) = ln(7)/ln(2) = 381069 modulo 500333 Try: 2^381069 = 1000660 = -7 mod p So log_2(7) = 381069 + 500333 = 881402 mod p-1.