COGNOME

NOME

Risolvere gli esercizi negli spazi predisposti. Accompagnare le risposte con spiegazioni chiare ed essenziali. Consegnare SOLO QUESTO FOGLIO. Ogni esercizio vale 5 punti.

- 1. Sia $n \geq 2$. Sia $H \subset S_n$ un sottogruppo che ha la proprietà che l'azione di H su $\{1, 2, \ldots, n\}$ ha un'unica orbita. Dimostrare che n divide #H.
- 2. Sia $G = GL_2(\mathbf{F}_5)$ il gruppo delle matrici 2×2 invertibili con coefficienti in \mathbf{F}_5 e sia D il suo sottogruppo delle matrici scalari.
 - (a) Dimostrare che D è un sottogruppo normale di G.
 - (b) Sia $\sigma = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$ in G. Determinare l'ordine dell'elemento σD nel gruppo quoziente G/D.
- 3. Sia A_4 il sottogruppo delle permutazioni pari nel gruppo simmetrico S_4 . Quanti omomorfismi non iniettivi $A_4 \longrightarrow S_4$ ci sono?
- 4. Sia I l'ideale di $\mathbb{Z}_3[X,Y]$ generato da X e Y. Determinare la cardinalità dell'anello $\mathbb{Z}_3[X,Y]/I^2$.
- 5. Dimostrare che per ogni anello R (commutativo con 1) lo spazio $\operatorname{Spec}(R)$, dotato dalla topologia di Zariski, è compatto.
- 6. Sia k l'anello quoziente $\mathbf{Z}[i]/(7)$ e sia $k' = \mathbf{F}_7(\sqrt{3})$. Dimostrare che k e k' sono campi finiti di cardinalità 49 ed esibire un isomorfismo $k \cong k'$.

Soluzioni.

- 1. Questo è l'esercizio 10 (a) del foglio 2.
- Il sottogruppo D è un sottogruppo normale di G perché è contenuto nel centro di G. Poiché σ² = (0 2 / 2 1) e σ³ = (2 0 / 0 2), l'ordine è uguale a 3.
 Sia f: A4 → S4 un omomorfismo non iniettivo. Allora N = ker f è un sottogruppo normale
- Sia f: A₄ → S₄ un omomorfismo non iniettivo. Allora N = ker f è un sottogruppo normale di A₄ e f si fattorizza via un omomorfismo iniettivo f̄: A₄/N → S₄.
 Se l'indice [A₄ : N] > 4, il fatto che N ≠ {1} implica che [A₄ : N] = 6 e quindi #N = 2.
 Questo implica che N è contenuto nel centro di A₄ il quale è banale. Contraddizione.
 - Si ha quindi che $[A_4:N] \leq 4$ e quindi che A_4/N è abeliano. Questo implica che $[A_4,A_4] \subset N$. Poiché $A_4/[A_4,A_4]$ ha cardinalità 3, ci sono quindi sue possibilità: $N=A_4$, e \overline{f} e quindi anche f, è banale. Oppure $N=[A_4,A_4]$ e A_4/N è ciclico di cardinalità 3. Siccome A_4 contiene 8 elementi di ordine 3, ci sono otto possibilità per \overline{f} e quindi anche per f. Concludiamo che ci sono 9 omomorfismi non iniettivi.
- 4. Si ha che $I^2=(X^2,XY,Y^2)$. Ogni classe di $\mathbf{Z}_3[X,Y]/I^2$ contiene quindi un unico polinomio di grado < 2. Poichè i polinomi di grado < 2 hanno la forma a+bX+cY per $a,b,c\in\mathbf{F}_3$, l'anello $\mathbf{Z}_3[X,Y]/I^2$ ha $3\cdot 3\cdot 3=27$ elementi.
- 5. Questo è l'esercizio 6 del foglio 8.
- 6. Poichè -1 e 3 non sono quadrati modulo 7, i polinomi $X^2 + 1$ e $X^2 3$ sono irriducibili in $\mathbf{F}_7[X]$ e gli anelli quoziente $k = \mathbf{Z}[i]/(7) = \mathbf{F}_7[X]/(X^2+1)$ e $k' = \mathbf{F}_7[X]/(X^2-3)$ sono campi. Sia k che k' ha $7^2 = 49$ elementi. Poichè il quadrato di $2i \in k$ è -4 = 3, l'omomorfismo $\phi : \mathbf{F}_7[X] \longrightarrow k$ che manda X in 2i è ben definito ed ha nucleo $(X^2 + 3)$. Per il teorema di isomorfismo ϕ induce quindi un isomorfismo $k \cong k'$.