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1. Introduction.

The finite simple groups have recently been classified. A short version of this result,
announced in the 1980’s, is the following.

Theorem 1.1. Any finite simple group is isomorphic to one of the following groups:

(a) a cylic group of prime order;

(b) an alternating group An with n ≥ 5;

(c) a simple group of Lie type;

(d) one of the 26 sporadic simple groups.

Many mathematicians contributed to this classification [0]. The proofs cover thou-
sands of pages, published in numerous different journals. One of the first main steps in
the proof is the celebrated Feit-Thompson theorem (1961).

Theorem 1.2. Every finite group of odd order is solvable.

Although the proof of this theorem is much shorter than the classification of all finite
simple groups (CFSG), it still takes a formidable 250 pages and occupies an entire issue
of the Pacific Journal of Mathematics [0]. Very few people can be said to have read it in
detail.

The proof of Theorem 1.2 is by induction. It suffices to prove that an odd order
group, all of whose proper subgroups are solvable, is itself solvable. In particular, one
may assume that all non-identity elements have solvable centralizers. In the odd order
paper Feit and Thompson proceed by analyzing the structure of the centralizers inside a
hypothetical minimal counterexample to their theorem.

Their arguments extend those in an earlier paper by themselves and Marshall Hall
jr., in which they had proved a weaker version of the odd order theorem. They had, more
precisely, showed that every odd order CN-group is solvable [0]. Here a CN-group is a
group all of whose non-identity elements have nilpotent rather than solvable centralizers.
The proof is difficult, but much shorter than the proof of the odd order theorem. It follows
the strategy of the proof by of the following theorem.

Theorem 1.3. Every CA-group of odd order is solvable.

Here a CA-group is a group all of whose non-identity elements have abelian centralizers.
Suzuki’s paper appeared in 1957 and is only 20 pages long [0]. It is accessible to the non-
expert and is worth reading. In fact, Thompson [0] wrote in 1984

Suzuki’s CA-theorem is a marvel of cunning . . .

In the same paper Thompson writes
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In order to have a genuinely satisfying proof of the odd order theorem, it is
necessary, it seems to me, not to assume this [Suzuki’s] theorem. Once one
accepts this theorem as a step in a general proof, one seems irresistibly drawn
along the path which was followed. To my colleagues who have grumbled about
the tortuous proofs in the classification of finite simple groups, I have a ready
answer: find another proof of Suzuki’s theorem.

In a 2013 blog, Terence Tao in some sense takes up Thompson’s suggestion and presents
Suzuki’s proof [0]. Tao goes back one step further and singles out the role played in the
proof by a famous 1901 result of Frobenius [0].

Theorem 1.4. Let G be a finite group and let H ⊂ G be a subgroup with the property
that for every x ∈ G−H, the intersection H ∩ xHx−1 is trivial. Then the complement of

∪
x∈G

xHx−1 − {1},

is a subgroup K ⊂ G.

Typical examples of groups having subgroups satisfying the conditions of Theorem 1.4
are the following matrix groups.

Example 1.5. Let Fq be a finite field with q elements and let G be the group of matrices

G = {
(

1 b
0 d

)
: b ∈ Fq and d ∈ F∗q}.

It acts via fractional linear transformations on the projective line P1(Fq). All elements of
G fix the point at infinity. Let H be the subgroup of elements of G that fix a given point
in A1(Fq). Then H satisfies the conditions of Theorem 1.4. The subgroup K is precisely
the subgroup of matrices without any fixed points in A1(Fq). It is the normal subgroup of
matrices with d = 1.

Frobenius’ result was one of the first results obtained with character theory. As a
matter of fact, the proofs of the results above all heavily exploit character theory. Tao
writes:

It seems to me that the above four theorems (Frobenius, Suzuki, Feit-Thompson,
and CFSG) provide a ladder of sorts (with exponentially increasing complexity
at each step) to the full classification, and that any new approach to the clas-
sification might first begin by revisiting the earlier theorems on this ladder and
finding new proofs of these results first (in particular, if one had a robust proof
of Suzuki’s theorem that also gave non-trivial control on “almost CA-groups”
—whatever that means— then this might lead to a new route to classifying
the finite simple groups of Lie type and bounded rank). But even for the sim-
plest two results on this ladder —Frobenius and Suzuki— it seems remarkably
difficult to find any proof that is not essentially the character-based proof.

This note is the result of my efforts to read and understand the proof presented by
Terence Tao in his blog. It contains an exposition of Suzuki’s theorem.
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2. Inducing characters

Frobenius’ 1901 theorem is an ingredient in Suzuki’s proof of Theorem 1.3. In this section
we prove it. We make use of standard character theory. In view of the applications to
Suzuki’s theorem, the presentation is slightly more general than strictly necessary for the
proof of Frobenius’ theorem.

In general, for a finite group G, we write C[G] for the group ring of G and C(G) for its
sub-C-algebra of class functions G −→ C. On C[G] we have the usual Hermitian product
given by

〈f, g〉 =
1

#G

∑
x∈G

f(x)g(x).

The characters of the irreducible representations of G form an orthormal basis of C(G).
We denote their Z-span by χ(G). Let χ(G)0 denote the subgroup of elements f ∈ χ(G)
for which f(1) = 0. We have the inclusions

χ(G)0 ⊂ χ(G) ⊂ C(G) ⊂ C[G].

Let H ⊂ G be a subgroup. Then any class function of G can be restricted to H. Restriction
is a C-linear map C(G) −→ C(H). Conversely, a class function f of H can be induced to
a class function Ind f on G as follows. For z ∈ G we put

Ind f(z) =
1

#H

∑
x∈G

f(xzx−1),

with the convention that f(y) = 0 whenever y 6∈ H. Induction is a C-linear map from
C(H) to C(G). It maps χ(H) to χ(G) and χ(H)0 to χ(G)0.

In this section we study the induction homomorphism Ind : χ(H) −→ χ(G) in the
following special situation. We assume that

any two conjugates of H either coincide or have trivial intersection with one another. (∗)

We write N for the normalizer of H in G and W for the “Weyl group” N/H. Let w = #W .
The group W acts on class functions f ∈ C(H) by fs(z) = f(szs−1) for s ∈W and z ∈ H.
It follows easily that for every s ∈W we have Ind f = Ind fs.

Proposition 2.1. Suppose G is a finite group and H ⊂ G is a subgroup satisfying (∗).
Let f ∈ C(H). Then we have for z ∈ G

Ind f(z) =


[G : H]f(1), if z = 1;
0, if z 6∈ ∪x∈GxHx−1;∑
s∈W fs(y), if z = xyx−1 for some x ∈ G and y ∈ H − {1}.

This is an application of the induction formula given above. We leave the straightforward
computation to the reader.
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Proposition 2.2. Suppose G is a finite group and H ⊂ G is a subgroup satisfying (∗).
Let f, g ∈ χ(H)0. Then we have

〈Ind f, Ind g〉G =
1

w
〈
∑
s∈W

fs,
∑
s∈W

gs〉H .

This follows from Proposition 2.1.

Corollary 2.3. Let χ be a non-trivial irreducible character of H of dimension d. Then

||Ind (χ− d)||2G = 1 + wd2.

and
〈Ind (χ− d), 1〉G = −d.

In particular, Ind (χ− d) + d is orthogonal to 1 in χ(G).

Proof. Note that χ− d is in χ(H)0. By Proposition 2.2 we have

||Ind (χ− d)||2G =
1

w
〈
∑
s∈W

χs − wd,
∑
s∈W

χs − wd〉H ,

=
1

w
〈
∑
s∈W

χs,
∑
s∈W

χs〉H + wd2,

= 1 + wd2.

For the second statement we apply Frobenius reciprocity:

〈Ind (χ− d), 1〉G = 〈χ− d, 1〉H = 0− d = −d.
Theorem 1.4. (Frobenius 1901). Let G be a finite group and let H ⊂ G be a subgroup
with the property that for every x ∈ G−H, the intersection H ∩ xHx−1 is trivial. Then
the complement of

∪
x∈G

xHx−1 − {1},

is a subgroup K ⊂ G.

Proof. The condition on H implies that NGH = H and hence w = 1. Let χ be an
irreducible non-trivial character of H. Let d be its degree. To χ we associate the element
of χ(G) given by

χ∗ = Ind (χ− d) + d.

By Corollary 2.3, we have ||Ind (χ − d)||2G = 1 + d2. Since χ∗ is orthogonal to 1, the
Pythagorean Theorem implies that ||χ∗||2 = (d2 + 1) − d2 = 1. Since χ∗(1) = χ(1) = d is
positive, χ∗ is an irreducible non-trivial character of G.

We claim that K = ∩χ kerχ∗, where χ runs over the irreducible non-trivial characters
of H. Indeed, let χ 6= 1 be an irreducible character of H. Since Ind(χ− d) vanishes on K,
we have χ∗(x) = d for every x ∈ K. This shows that K ⊂ kerχ∗. On the other hand, if
x 6∈ K, then x is a non-trivial element of gHg−1 for some g ∈ G. Therefore there is an
irreducible character χ 6= 1 of H for which χ(g−1xg) is not equal to d = χ(1). This means
that χ∗(x) 6= d, so that x 6∈ kerχ∗, as required.

The following proposition is used in the next section.
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Proposition 2.4. Let χ, χ′ be non-trivial irreducible characters of H of the same dimen-
sion. If they are in the same W -orbit, then Indχ = Indχ′. If not, then we have

||Ind (χ− χ′)||2G = 2.

Proof. Note that χ− χ′ is in χ(H)0. By Proposition 2.2 we have

||Ind (χ− χ′)||2G =
1

w
〈
∑
s∈W

(χs − χ′s),
∑
s∈W

(χs − χ′s)〉H .

Since χ and χ′ are not conjugate by W and since the characters χs, s ∈ W are distinct,
orthogonality of characters implies that this is equal to

1

w
〈
∑
s∈W

χs,
∑
s∈W

χs〉H +
1

w
〈
∑
s∈W

χ′
s
,
∑
s∈W

χ′
s〉H = 1 + 1 = 2,

as required.

3. CA-groups.

In this section we describe the basic properties of CA-groups. This part of Suzuki’s proof
is the so-called local analysis. It is easy for CA-groups, but becomes much harder for
CN-groups and in the relevant parts of the Feit-Thompson paper.

Definition. A CA-group is a finite group with the property that the centralizers of its
non-trivial elements are abelian subgroups.

For a centralizer A in a CA-group we letNGA denote its normalizer inG andWA = NGA/A
its “Weyl group”. It acts on A by conjugation. By tA we denote the number of WA-orbits
in A − {1}. By S(A) we denote the set ∪x∈GxAx−1 − {1}. By A we denote the set of
centralizers A in G up to conjugacy. A CA-group is abelian if and only if #A = 1.

Theorem 3.1. Let G be a CA-group. Then
(a) The maximal abelian subgroups of G are precisely the centralizers of the non-trivial

elements of G.
(b) Any two distinct maximal abelian subgroups have trivial intersection. In particular,

any maximal abelian subgroup A ⊂ G has property (∗) of section 2.
(c) Let A be a maximal abelian subgroup. Then each non-trivial element of WA acts

without fixed points on A − {1}. The number of WA-orbits tA is (#A − 1)/#WA.
The cardinality of S(A) is [G : A]tA = (#A− 1)[G : NGA].

(d) The sets S(A) for A ∈ A form a partition of G− {1}. We have

#G− 1 =
∑
A∈A

[G : A]tA.

(e) The number of conjugacy classes of G is

1 +
∑
A∈A

tA.
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(f) The cardinalities of non-conjugate maximal subgroups of G are coprime. We have

#G =
∏
A∈A

#A.

Proof. (a) Let 1 6= x ∈ G and let A be a maximal abelian subgroup that contains it.
Then A is contained in the centralizer C(x) of x. (b) Let A,A′ be two maximal abelian
subgroups and let x ∈ A ∩A′. Then A,A′ ⊂ C(x). Since C(x) is abelian, all three groups
must be equal. (c) Suppose x ∈ NGA commutes with a non-trivial element a ∈ A. Then x
and A are in the centralizer C(a) of a. Since A is maximal, we have A = C(a) and hence
x ∈ A. Parts (d) and (e) are obvious. For (f), let A, A′ be maximal abelian subgroups
and let p be a prime number dividing both #A and #A′. Since p-groups have non-trivial
centers, the p-Sylow subgroups of CA-groups are abelian. Therefore both A and A′ contain
a p-Sylow subgroup. This means that for some g ∈ G the subgroups gAg−1 and A′ contain
the same p-Sylow subgroup. Therefore (b) implies gAg−1 = A′ and (f) follows. slower.

Finite abelian groups are of course CA-groups. If A,B are finite abelian groups and
B acts on A, then the semidirect product Ao B is a CA-group if every b ∈ B − {1} acts
without fixed points on A− {1}. Example 1.5 is a special instance. None of these groups
are simple. But simple CA-groups, albeit of even order, do exist. Indeed, for every 2-power
q the group SL2(Fq) is a CA-groups. For q = 2 and q = 4 it is isomorphic to S3 and A5

respectively. For q ≥ 4 it is a simple group.

Example 3.2. Let q ≥ 4 be a power of 2 and let G = SL2(Fq). Then #A = 3. In other
words, up to conjugacy there are three maximal abelian subgroups. Indeed, by Theorem
3.1 (a), they are the centralizers of three different types of elements of g ∈ G. If the
characteristic polynomial f of g has two distinct eigenvalues in Fq, then its centralizer is
conjugate to the split Cartan subgroup

A = {
(
λ 0
0 λ−1

)
: λ ∈ F∗q}.

We have #A = q − 1. Since [NGA : A] = 2, the Weyl group has order 2 and we have
tA = (q − 2)/2. If f has two conjugate eigenvalues in Fq2 − Fq, then the centralizer of g
is conjugate to the non-split Cartan subgroup

A = {
(
a bλ
b a+ b

)
: a, b ∈ Fq with a2 + ab+ λb2 = 1}.

Here λ is an element in Fq whose trace to F2 is 1. In this case A is cyclic of order q+1. Its
Weyl group has order 2, so that tA = q/2. Finally, if g 6= 1 and f has a double eigenvalue,
then the centralizer of g is conjugate to the unipotent subgroup

A = {
(

1 λ
0 1

)
: λ ∈ Fq}.

It is isomorphic to the additive group of Fq. Its normalizer is the subgroup of upper
triangular matrices. So the Weyl group has order q− 1. It follows that WA-acts transively
on A − {1}, so that tA = 1 in this case. Part (e) of Theorem 3.1 says that there are
(q − 2)/2 + q/2 + 1 + 1 = q + 1 conjugacy classes while part (f) confirms the well known
formula #SL2(Fq) = (q − 1)q(q + 1).
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4. Character theory of CA-groups.

In this section we show that the irreducible non-trivial characters of CA-groups can in
a precise sense be obtained from the inductions of the 1-dimensional characters of its
maximal abelian subgroups. In this section we describe a one-to-one correspondence due
to Brauer [0] and Suzuki [0] between the non-trivial irreducible characters of CA-groups
and the non-trivial characters of its maximal abelian subgroups.

Let G be a finite group and let A be an abelian subgroup of G, having the property
of section 2:

any two conjugates of A either coincide or have trivial intersection with one another. (∗)

Note that CA-groups satisfiy this condition. The Weyl group WA naturally acts on the
set of non-trivial 1-dimensional characters of A. We denote the set of orbits by ΓA. We
have #ΓA = tA.

Proposition 4.1. (Brauer-Suzuki). Let A ⊂ G be as above.

(a) If #ΓA > 2, there exist a unique sign ε ∈ {±1} and for each χ ∈ ΓA a unique
irreducible character χ∗ of G such that Ind(χ− χ′) = ε(χ∗ − χ′∗) for all χ, χ′ ∈ ΓA.

(b) When #ΓA = 2, the same is true, except that there is an ambiguity: one can switch
χ and χ′ and change the sign of ε.

Proof. For every pair of irreducible characters χ, χ′ of the same dimension, the difference
χ − χ′ is in χ(H)0. Corollary 2.4 implies then that ||Ind(χ − χ′)||2 = 2. Therefore there
are for every pair of irreducible characters χ, χ′ of H two distinct irreducible characters
ψ,ψ′ of G such that Ind(χ − χ′) = ±(ψ − ψ′). The set {ψ,ψ′} is uniquely determined
by χ and χ′. When #ΓA = 2, we put χ∗ = ψ and χ′

∗
= ψ′ or vice versa. The sign ε is

determined by this choice.

When #ΓA > 2, then for every χ ∈ ΓA, there is precisely one irreducible character ψ of
G that “appears” in Ind(χ−χ′) for every χ′ ∈ ΓA. We leave this exercise in combinatorics
to the reader. By definition χ∗ = ψ. Since induction is linear, it is easy to see that
Ind(χ− χ′) = ε(χ∗ − χ′∗) for some sign ε, that does not depend on the characters χ, χ′.

This proves the proposition.

Proposition 4.2. Let A ⊂ G as in Proposition 4.1. Then the characters χ∗ associated to
the characters χ ∈ ΓA agree outside S(A) and are integer valued on G− S(A).

Proof. Proposition 2.1 implies that for any two characters χ, χ′ of A, the support of
Ind(χ− χ′) is contained in S(A) = ∪x∈GxAx−1 − {1}. Therefore the characters χ∗ asso-
ciated to χ ∈ ΓA all agree outside the set S(A). This proves the first statement. Since
induction commutes with Galois action, χ∗ = σ(χ∗) = σ(χ)∗ outside S(A) for every σ
in the absolute Galois group of Q. Since the sum over σ of σ(χ∗) has values in Q, the
same is true for the values of χ∗ on S(A). From the fact that traces of representations
are algebraic integers, it follows that χ∗ has values in Z on G− S(A), as required. Write
better.
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Proposition 4.3. Let G be a CA-group. Suppose that each maximal abelian subgroup
A has the property that there are at least two WA-orbits of non-trivial characters . Then
every non-trivial irreducible character of G is of the form χ∗ for some irreducible character
χ of some maximal abelian subgroup A.

Proof. The condition means that tA > 1 for every maximal subgroup A of G. There-
fore Proposition 4.1 applies to every A. By Corollary 2.4, the tA distinct WA-conjugacy
classes of characters χ of A give rise to tA distinct irreducible characters χ∗ of G. Since
the irreducible characters χ∗ associated to different A ∈ A have disjoint supports, they
are orthogonal. Therefore the set of irreducible characters χ∗ associated to some maximal
abelian subgroup A of G has cardinality tA. Since the number of non-identity conjugacy
classes of G is

∑
A∈A tA, Theorem 3.1 (e) implies that every non-trivial irreducible char-

acter of G is of the form χ∗ for some character χ of a maximal abelian subgroup A ⊂ G.
This proves the proposition.

The following formula plays a role in the proof of Suzuki’s theorem. We introduce
some notation. For a maximal abelian subgroup A of an CA-group G, we let ΓA denote
the set of non-trivial characters of A up to conjugacy by G and we put

X∗A =
∑
χ∈ΓA

χ∗.

Proposition 4.4. Let G be a CA-group with the property that tA > 1 for all maximal
subgroups A. Let A0 be a maximal abelian subgroup and let φ be a non-trivial character
of A0. Then the character Ind(φ− 1) has the following Fourier expansion.

Ind(φ− 1) = −1 + εφ∗ +
∑
A∈A

cAX
∗
A,

for certain coefficients cA ∈ Z and some ε = ±1.

Proof. By Proposition 4.3 the non-trivial irreducible characters of G are of the form χ∗

as in Proposition 4.1. By Corollary 2.3 we have 〈Ind(φ−1), 1〉G = −1. For any non-trivial
character χ 6= φ of A0 we have the “Fourier expansion”

〈Ind(φ− 1), χ∗ − φ∗〉 =
ε

w
〈
∑
s

(φ− 1)s,
∑
s

(χ− φ)s〉A0
,

= − ε

w
〈
∑
s

φs,
∑
s

φs〉A0 ,

= −ε,
for some ε ∈ {±1}. It follows that the χ∗-Fourier coefficients of Ind(φ− 1) are all equal to
the one of φ∗ minus ε. Similarly, if χ and χ′ are characters of a maximal abelian subgroup
A 6= A0, then

〈Ind(φ− 1), χ∗ − χ′∗〉 = 0,

because the support of χ∗ − χ′
∗

is S(A), which is disjoint from the support S(A0) of
Ind(φ − 1). It follows that the χ∗ and χ′

∗
-Fourier coefficients are equal to some constant

cA independent of the character.
This proves the proposition.
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5. Character theory of SL2(Fq).

This section plays no role in the proof of Suzuki’s theorem. We merely illustrate the results
of the previous sections in the case of the CA-groups G = SL2(Fq). So, q is a power of 2.
The character table of the group SL2(Fq) is as follows.

Table 5.1.

SL2(Fq) Id S(U) S(T ) S(T ′)

1 1 1 1 1

σ q 0 1 −1

Indψ q + 1 1 ζ + ζ−1 0

Indλ− Ind θ q − 1 −1 0 −(ξ + ξ−1)

The columns correspond to the conjugacy classes of SL2(Fq). We write U , T and T ′ for a
unipotent subgroup, a split-Cartan subgroup and a non-split Cartan subgroup respectively.
The first column lists the identity element, the second the conjugacy class of unipotent
matrices. There are q2−1 unipotent matrices, and they are all conjugate. The third column
stands for the (q−2)/2 conjugacy classes of matrices whose characteristic polynomials have
two distinct zeroes in Fq. Each conjugacy class contains q(q + 1) matrices. The fourth
column stands for the q/2 conjugacy classes of matrices whose characteristic polynomials
are irreducible over Fq. Each conjugacy class contains q(q − 1) matrices. We have

1 + (q2 − 1) + (q/2− 1) · q(q + 1) + q/2 · q(q − 1) = q(q2 − 1) = #SL2(Fq).

There are precisely q + 1 conjugacy classes. When q = 2, the third column is missing.
The rows correspond to the irreducible characters of SL2(Fq). The first row contains

the character 1. The second row is the Steinberg character σ. This is the character of the
representation given by the natural action by fractional linear transformations of SL2(Fq)
on the p-dimensional vector space {f : P1(Fq) −→ C :

∑
P∈P1(Fq) f(P ) = 0}.

The third row contains the (q − 2)/2 distinct inductions of the q − 2 non-trivial
characters ψ of a Borel subgroup B. Here ζ = ψ(t), where t denotes a fixed generator the
Cartan subgroup T ⊂ B. It is a non-trivial (q − 1)-th root of unity. The relation with
Propositions 4.1 and 4.2 is as follows. The non-trivial characters χ of T lift uniquely to
characters ψ of the Borel subgroup. One computes that IndGT χ = IndGUλ+ IndGBψ. Here λ
is any non-trivial character of U . We put χ∗ = IndGBψ. It is an irreducible character. It
follows that for any two characters χ, χ′ of T we have Ind(χ− χ′) = χ∗ − χ′∗, confirming
Proposition 4.1. We see that the characters in the third row of the character table agree
outside the set S(T ) and are Z-valued on G− S(T ), confirming Proposition 4.2.

In the fourth row the so-called cuspidal representations are listed. They correspond
to the q/2 distinct inductions of the q non-trivial characters θ of the non-split Cartan
subgroup T ′. Here ξ = θ(t), where t denotes a fixed generator of T ′. It is a non-trivial (q+
1)-th root of unity. The irreducible character θ∗ corresponding to a non-trivial character
θ of T ′ is given by IndGU λ − IndGT ′ θ, where λ is any non-trivial character of U . For any
two characters θ, θ′ of T ′ we have Ind(θ − θ′) = −(θ∗ − θ′∗), confirming Proposition 4.1.
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Proposition 4.2 follows from the information in the fourth row of the character table. Note
that the characters in this row agree outside the set S(T ′) and are Z-valued there.

This accounts for 1 + 1 + (q− 2)/2 + q/2 = q+ 1 irreducible characters. When q = 2,
the fourth row is missing.

Propositions 4.1 and 4.2 do not apply to the maximal abelian subgroup U . Since the
normalizer of U is the Borel subgroup, the Weyl group acts transitively on the non-trivial
characters of U . Therefore the character IndGU λ does not depend on λ. In fact, IndGU λ
is the sum of all non-trivial irreducible characters of G. Indeed, its dimension is equal to
q + (q + 1)(q − 2)/2 + (q − 1)q/2 = q2 − 1, which is the index of U .

The groups SL2(Fq) do not satisfy its conditions, but Proposition 4.3 is almost true.
Indeed, it is easy to see that the characters χ∗ that occur in Proposition 4.1 for A a split
or non-split Cartan subgroup are precisely the non-trivial characters of G except for the
character σ of the Steinberg representation. Proposition 4.4 does not apply either, but
since we know all characters of G anyway, we can still compute a similar Fourier expansion
of Ind(φ − 1) for a non-trivial character irriducibile φ of a maximal abelian subgroup A.
When A is a Cartan subgroup, Corollary 2.3 implies that ||Ind(φ−1)||2 = 1+wA = 3. One
finds that

Ind(φ− 1) =

{
−1 + φ∗ − σ, when A is split;
−1− φ∗ + σ, when A is non-split.

We have w = q − 1 for the subgroup U and hence ||Ind(φ− 1)||2 = q. In this case one can
show that

Ind(φ− 1) = −1−X∗T +X∗T ′ .

6. Suzuki’s Theorem.

In this section we prove Suzuki’s theorem.

Theorem 6.1. There does not exist a non-abelian simple CA-group of odd order.

Proof. Let G be a simple non-commutative CA-group of odd order and let A be a maximal
abelian subgroup. If the Weyl group WA is trivial, G satisfies the conditions of Frobenius’
Theorem and therefore cannot be simple. Therefore we may assume that #WA ≥ 2. Since
#WA divides #G, we have #WA ≥ 3. Similarly, since #A− 1 is even, while #WA is odd,
the number tA of WA-orbits is even and hence at least 2.

By Theorem 3.1 (d) we have

1− 1

#G
=
∑
A∈A

tA
#A

. (1)

The proof proceeds by providing upper bounds for the terms on the right hand side of this
equality. We’ll succeed in finding a bound that is smaller than 1, which leads to an upper
bound on #G. Then we take care of the finitely many remaining cases by hand.

Fix a maximal abelian subgroup A0 of G and a non-trivial character φ of A0. By
Propositions 4.3 and 4.4 the character Ind(φ− 1) has the following Fourier expansion

Ind(φ− 1) = −1 + εφ∗ +
∑
A∈A

cAX
∗
A, (2)
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with coefficients cA ∈ Z and ε = ±1.
In view of this expansion, we split the sum in equation (1) into three pieces:

1− 1

#G
=

t0
#A0

+
∑

A6=A0, cA 6=0

tA
#A

+
∑

A6=A0, cA=0

tA
#A

.

For brevity we write w0 = #WA0
, t0 = tA0

, Γ0 = ΓA0
, c0 = cA0

and X∗0 = X∗A0
.

The following two lemmas provide estimates for the sums appearing in this formula.

Lemma 6.2. We have ||Ind(φ− 1)||2 = w0 + 1 and∑
A 6=A0, cA 6=0

tA
#A
≤ w0 − 1

min#A
. (3)

Here the minimum is taken over all A 6= A0.

Proof. The first equality follows from Corollary 2.3. By orthogonality of irreducible
characters, formula (2) gives us therefore

w0 + 1 = 1 + (c0 + ε)2 − c20 +
∑
A∈A

c2AtA.

Since t0 ≥ 2, the contribution (c0 − ε)2 − c20 + c20t0 from the Fourier coefficients of the
irreducible characters associated to A0 is at least 1. Therefore we find∑

A6=A0, cA 6=0

tA ≤
∑

A 6=A0,cA 6=0

c2AtA ≤ w0 − 1,

which easily implies inequality. This proves the lemma.

Lemma 6.3. We have ||X∗0 ||2 = t0 and∑
A6=A0, cA=0

tA
#A

≤ 1

t0
. (4)

Proof. The equality holds by definition. For the inequality, consider a maximal abelian
subgroup A 6= A0 with cA = 0. Then Propositions 4.3 and 4.4 imply that Ind(φ − 1)
vanishes on S(A). By Propoposition 4.2, the irreducible characters χ∗ that come from any
maximal abelian subgroup A′ 6= A all agree on S(A) and have integral values there. Since
tA′ is even, X∗A′ takes even integral values on S(A). From (2) we see that on the set S(A)
we have

0 = −1 + εφ∗ +
∑
A′∈A

cA′X∗A′ .

It follows that on each S(A) with A 6= A,A0 for which cA = 0 the character φ∗ takes
odd integral values and hence X∗0 takes integral values that are odd multiples of t0. This
implies

t0 = ||X∗0 ||2 ≥
1

#G

∑
A6=A0, cA=0

t20#S(A),
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from which the lemma easily follows.
From (1), (3) and (4) we obtain the estimate:

1− 1

#G
≤ t0

#A0︸ ︷︷ ︸
< 1

3

+
w0 − 1

min#A︸ ︷︷ ︸
< 1

2

+
1

t0︸︷︷︸
≤ 1

2

(4).

From now on we assume that A0 is a maximal abelian subgroup for which w0 = wA0 is
minimal. Then we see that this estimate is already pretty good. Since #A0 = 1 + w0t0,
the first term is less than 1/w0 ≤ 1/3. Since #A ≥ 1 + 2w0 for each A, the second term is
at most w0/(1 + 2w0) < 1/2. Since t0 ≤ 1/2, the third are also at most 1/2. In order to
get an estimate of the right hand side that is smaller than 1, we proceed a little bit more
carefully.

First we show that t0 = 2. Indeed, since #G ≥ #NGA0 = w0#A0 and since t0/#A0 =
(#A0 − 1)/w0#A0, equation (4) implies

1 ≤ 1

w0
+
w0 − 1

min#A
+

1

t0
. (5)

Since #A ≥ 2w0 for every A and since w 0 ≥ 3, this leads to

1 ≤ 1

w0
+
w0 − 1

2w0
+

1

t0
=

1

2w0
+

1

2
+

1

t0
<

2

3
+

1

t0
,

implying t0 < 3 and hence t0 = 2.
Let A 6= A0 be a maximal subgroup of minimal cardinality. If tA = 2, the fact

that non-conjugate maximal subgroups have coprime order, implies that wA 6= w0. By
minimality of w0 we have wA ≥ w0 + 2 and hence #A = 1 + tAwA ≥ 5 + 2w0. If tA 6= 2,
then tA ≥ 4 and we also have #A ≥ 1 + 4w0 ≥ 5 + 2w0. Substititung this in (5) gives

1 ≤ 1

w0
+

w0 − 1

5 + 2w0
+

1

2
.

This implies that w0 ≤ 10/3 and hence w0 = 3. Substituting t0 = 2, w0 = 3 and
min#A ≥ 5 + 2w0 = 11 in inequality (4) finally gives

1− 1

#G
≤ 2

7
+

2

11
+

1

2
.

We conclude that #G < 31, which easily implies that G is solvable, as required.

Finally we prove Suzuki’s Theorem by reducing to the simple case.

Theorem 1.3. Every CA-group of odd order is solvable.

Proof. Let G be an odd order CA-group. By Theorem 6.1 it cannot be simple. Let N be
a proper normal subgroup. By induction N is solvable, so the last step N ′ in its derived
series is abelian. Let A be the centralizer of N ′ in G. If A = G, the fact that G is an

12



CA-group implies that G is abelian and we are done. So we may assume that A is a proper
subgroup. Since it is a CA-group, it is by induction, solvable. The group A is a normal
subgroup of G and we claim that G/A is a CA-group as well. By induction G/A is then
solvable and we are done.

It remains to prove that G/A is a CA-group. Let x ∈ G−A and let y, z ∈ G centralize
x modulo A. This means that the commutators [x, y] and [x, z] are in A. Since A is an
abelian normal subgroup, the map f : A −→ A given by f(a) = [x, a] is an endomorphism
of A. Since x 6∈ A and A is the centralizer of C, the homomorphism f is injective. Therefore
it is surjective. Since [x, y] ∈ A, there exists u ∈ A such that [x, u] = [x, y]. But then
[x, u−1y] = xu−1yx−1y−1u = xu−1x−1[x, y]u = xu−1x−1[x, u]u = 1. In other words, u−1y
commutes with x. Similarly, there is v ∈ A such that v−1z commutes with x. Since G is a
CA-group, it follows that u−1y and v−1z commute. But then y and z commute modulo A.
This proves the theorem.
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